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Notation

o X =(Xi,...,Xk)" arandom vector.
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Notation

o X =(Xi,...,Xk)" arandom vector.
o pu = E(X)=(u1,-..,puk) mean vector.
o V = Cov(X) = E((X — p)(X — p)") covariance matrix.

o x=(x1,...,x) € Rk
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Main results The univariate Chebyshev's inequality
The multivariate Chebyshev’s inequality
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Notation

X =(Xi,...,Xk)" a random vector.
p=E(X)=(u1,...,unx) mean vector.

V = Cov(X) = E((X — p)(X — u)’) covariance matrix.
x=(x1,...,x) € Rk

e 6 6 o o

Mahalanobis distance from x to u:

Ay(x,p) = \/(x —p)V-1(x—p).
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The (univariate) Markov's inequality.

o If Z is a non-negative random variable with finite mean E(2)
and € > 0, then

5Pr(225):5/

[e,00)

dFz7(x) < /

[5700)

xdFz(x) < /[0 )xdFZ(x) =E(2)

where Fz(x) = Pr(Z < x).
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The (univariate) Markov's inequality.

o If Z is a non-negative random variable with finite mean E(2)
and € > 0, then

5Pr(225):5/

[e,00)

dFz7(x) < /

[5700)

xdFz(x) < /[0 )xdFZ(x) =E(2)

where Fz(x) = Pr(Z < x).

o It can be stated as
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The univariate Chebyshev's inequality.

o If X is a random variable with finite mean p = E(X) and
variance 02 = Var(X) > 0, then by taking Z = (X — pu)?/0?

in (1), we get
Pr (M > 6> < é (2)

for all e > 0.
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The univariate Chebyshev's inequality.

o If X is a random variable with finite mean p = E(X) and
variance 02 = Var(X) > 0, then by taking Z = (X — pu)?/0?

in (1), we get
(X — p)? 1
Pr ( = >e| < B (2)
for all e > 0.
o It can also be written as
1
Pr((X —p)? <eo?)>1- =
or as
o2
Pr(|X—,u|<r)<1—ﬁ
for all r > 0.
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The multivariate Chebyshev's inequality (MCI).

o If X is a random vector with finite mean pu = E(X)’ and
positive definite covariance matrix V = Cov(X).
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The multivariate Chebyshev's inequality (MCI).

o If X is a random vector with finite mean pu = E(X)’ and
positive definite covariance matrix V = Cov(X).

o Then
Pr((X —p) VI (X —p)>e) <

for all e > 0.
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The multivariate Chebyshev's inequality (MCI).

o If X is a random vector with finite mean pu = E(X)’ and
positive definite covariance matrix V = Cov(X).
@ Then
Pr((X — Y VHX — ) > ) <

for all e > 0.

o Chen, X. (2011). A new generalization of Chebyshev
inequality for random vectors. arXiv:0707.0805v2.
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The multivariate Chebyshev's inequality.

o The inequality in (3) can also be written as
k
Pr((X = p) V(X —p) <e) > 1= (4)

for all e > 0.

0SD2016, Piraeus, Greece J. Navarro, E-mail: jorgenav@um.es



Main results The univariate Chebyshev's inequality
The multivariate Chebyshev's inequality
The bounds are sharp

The multivariate Chebyshev's inequality.

o The inequality in (3) can also be written as

k
Pr((X = p) V(X —p) <e) > 1= (4)
for all ¢ > 0.
o This inequality says that the ellipsoid
E.={xeR:(x—p)Vix—p)<el (5)

contains at least the 100(1 — k/<)% of the population.
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The multivariate Chebyshev's inequality.

o The inequality in (3) can also be written as

k
Pr((X = p) V(X —p) <e) > 1= (4)
for all ¢ > 0.
o This inequality says that the ellipsoid
E.={xeR:(x—p)Vix—p)<el (5)

contains at least the 100(1 — k/<)% of the population.
o The inequality can also be written as

Pr(Ay(X, ) < r) > 1— r_k2 (6)
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The multivariate Chebyshev's inequality.

@ The inequality in (3) can also be written as

k
Pr((X — )V (X —p) <) 21—~ (4)
for all ¢ > 0.
o This inequality says that the ellipsoid
E.={xeR:(x—p)Vix—p)<el (5)

contains at least the 100(1 — k/<)% of the population.
o The inequality can also be written as

k
Pr(Ay(X,p) <r)>1-— 3 (6)
@ Hence (6) gives a lower bound for the percentage of points
from X in spheres “around” the mean p in the Mahalanobis
distance based on V.
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A very short proof.

o Let us consider the random variable

Z=(X—p)VHX~-p).

016, Piraeus, Greece J. Navarro, E-mail



Main results The univariate Chebyshev's inequality
The multivariate Chebyshev's inequality
The bounds are sharp

A very short proof.

o Let us consider the random variable
Z=(X—p)VHX~-p).

o As V is positive definite, then Z > 0.

2016, Piraeus, Greece J. Navarro, E-mail: jorgenav@um.es



Main results The univariate Chebyshev's inequality
The multivariate Chebyshev's inequality
The bounds are sharp

A very short proof.

o Let us consider the random variable
Z=(X—p)VHX~-p).

o As V is positive definite, then Z > 0.

o Moreover, there exist symmetric matrices V1/2 and V
such that V1/2v1/2 = v v=1/2y=1/2 — y~1 5pd
vi2y-1/2 — y-1/2 Vl/2 = Ix, where I is the identity matrix

of dimension k.

~1/2
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A very short proof.

o Let us consider the random variable
Z=(X—p)VHX~-p).

o As V is positive definite, then Z > 0.

o Moreover, there exist symmetric matrices V1/2 and V
such that V1/2v1/2 = v v=1/2y=1/2 — y~1 5pd
vi2y-1/2 — y-1/2 Vl/2 = Ix, where I is the identity matrix
of dimension k.

o Therefore

~1/2

= (X —p)VVRVTVA(X - p) = Y'Y,
where Y = (Yq,..., i) = V7 V3(X — p).

0SD2016, Piraeus, Greece J. Navarro, E-mail: jorgenav@um.es



Main results The univariate Chebyshev's inequality
The multivariate Chebyshev's inequality
The bounds are sharp

A very short proof.

o Let us consider the random variable
Z=(X—p)VHX~-p).

o As V is positive definite, then Z > 0.

o Moreover, there exist symmetric matrices V1/2 and V'~
such that V/2V1/2 = v v=1/2y=1/2 = y=1 and

vi2y-1/2 — y-1/2 Vl/2 = Ix, where I is the identity matrix

of dimension k.
o Therefore

Z=X—-p)V2v2(X—p)=Y'Y,

where Y = (Y1,..., i) = V12(X — p).
@ Hence E(Y) =0 and

Cov(Y) = V2Cov(X)V 12 = y12yy—1/2 —
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A very short proof.

@ Therefore E(Y;) =0, Var(Y;) =1 and

k k k
E(Z)=E(Y'Y)=E <Z Y,-2) =Y E(Y)) =) Var(Yi) =k
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A very short proof.

@ Therefore E(Y;) =0, Var(Y;) =1 and

k k k
E(Z)=E(Y'Y)=E <Z Y,?) =Y E(Y)) =) Var(Yi) =k

o Hence, from Markov's inequality (1), we get

PH(Z 2 2) = Pr((X— p)' VI (X —p) 2 ) < =2 =

E(Z)

and therefore (3) holds for all ¢ > 0.
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@ That's all, thank you for your attention!!
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The multivariate Chebyshev's inequality
The bounds are sharp

@ That's all, thank you for your attention!!

o It's a joke, let's see something more (if you want).

016, Piraeus, Greece J. Navarro, E-mail



Main results The univariate Chebyshev's inequality
The multivariate Chebyshev's inequality
The bounds are sharp

Another short proof.

o Let us consider the random variable

Z=(X-p)V I X-p)=>0
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Another short proof.

o Let us consider the random variable
Z=(X-p)V I X-p)=>0

o As V is positive definite and symmetric, there exists an
ortogonal matrix T such that TT' = T'T = I, and
T'VT = D and D = diag(\1, ..., \k) is the diagonal matrix
with the ordered eigenvalues \; > --- > A\ > 0.
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Another short proof.

o Let us consider the random variable
Z=(X-p)V I X-p)=>0
o As V is positive definite and symmetric, there exists an
ortogonal matrix T such that TT' = T'T = I, and
T'VT =D and D = diag(M1, ..., Ax) is the diagonal matrix

with the ordered eigenvalues \; > --- > A\ > 0.
o Then V=TDT  and V-1 = TD~ 1T’
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Another short proof.

o Let us consider the random variable
Z=(X-p)V I X-p)=>0

o As V is positive definite and symmetric, there exists an
ortogonal matrix T such that TT' = T'T = I, and
T'VT = D and D = diag(A1, ..., Ax) is the diagonal matrix
with the ordered eigenvalues \; > --- > A\ > 0.

o Then V= TDT' and V™1 = TD~ 1T’

o Therefore

Z=X-p)TD T (X - p)
= [DPT/(X = W] [D2T(X = )]
=2'Z,
where Z = (Zy,...,2Z,) = D™Y2T'(X — ) and

D12 = diag(\{ /%, .. AP,
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Another short proof.

o The random vector Z satisfies E(Z) = 04 and

Cov(Z) = Cov(D™Y2T'(X—p)) = D~YV2T'vTDY2 = p~Y/2pp=1/2 — .
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Another short proof.

o The random vector Z satisfies E(Z) = 04 and
Cov(Z) = Cov(D™Y?T'(X—p)) = D2 T'VTD™? = D~12DD /% = .

o Therefore E(Z;) =0, Var(Z;) =1 and

k k
E(Z) = <Z 22) =Y E(Z})=)_ Var(Z
i=1 i=1
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Another short proof.

o The random vector Z satisfies E(Z) = 04 and
Cov(Z) = Cov(D™Y2T'(X—p)) = D~Y2T'vTDY/2 = p~12pp~1/2 — |
o Therefore E(Z;) =0, Var(Z;) =1 and

k k
E(Z) = <Z 22) =Y E(Z})=)_ Var(Z
i=1 i=1

@ Hence, from Markov's inequality (1), we get

for all e > 0.
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Bounds for singular covariance matrices.

o Z=D"Y2T/(X — p) is the vector of the standardized
principal components of X.
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Bounds for singular covariance matrices.

o Z=D"Y2T/(X — p) is the vector of the standardized
principal components of X.
o Then (3) can be written as

Pr(ZZ<c)>1- %
g

k
where Z'Z = Y | Z2.
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Bounds for singular covariance matrices.

o Z=D"Y2T/(X — p) is the vector of the standardized
principal components of X.
o Then (3) can be written as

Pr(ZZ<c)>1- % (7)
g

where Z'Z = YK | 72,
o If Vissingular, then A\y > - > An > App1 = = A =
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Bounds for singular covariance matrices.

o Z=D"Y2T/(X — p) is the vector of the standardized
principal components of X.
o Then (3) can be written as

k
Pr(Zz<e)>1- - (7)

where Z'Z = YK | 72,
o If Vissingular, then Ay > -+ > Ay > A1 = -+ = A
o Then (7) can be replaced with

m
5 m
Pr(ZZi<a>Zl—€ (8)
i=1
for all £ > 0, where Z; = A "/?t/(X — pu) is the ith
standardized principal components of X and t; is the
normalized eigenvector associated with the eigenvalue J;.
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An example.

o (X1, X3, X3) = Multinomial(py = 1/3,p2 =1/3,p3 =1/3,n).
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An example.

o (X1, X3, X3) = Multinomial(py = 1/3,p2 =1/3,p3 =1/3,n).
o Then u= E(X) = (n/3,n/3,n/3) and
n 2 -1 -1
V = 9 -1 2 -1
-1 -1 2
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An example.

o (X1, X3, X3) = Multinomial(py = 1/3,p2 =1/3,p3 =1/3,n).
o Then u= E(X) = (n/3,n/3,n/3) and
n 2 -1 -1
V = 9 -1 2 -1
-1 -1 2

o As Xj + X + X3 = n, we of course have |V| =0,
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An example.

o (X1, X3, X3) = Multinomial(py = 1/3,p2 =1/3,p3 =1/3,n).
o Then u= E(X) = (n/3,n/3,n/3) and
n 2 -1 -1
v=gl| -1 2 -1
-1 -1 2
o As Xj + X + X3 = n, we of course have |V| =0,
@ The eigenvalues are Ay = A = n/3 and A3 = 0.
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An example.

o (X1, X3, X3) = Multinomial(py = 1/3,p2 =1/3,p3 =1/3,n).
o Then u= E(X) = (n/3,n/3,n/3) and
N 2 -1 -1
V = 9 -1 2 -1
-1 -1 2
o As Xj + X + X3 = n, we of course have |V| =0,
@ The eigenvalues are Ay = A = n/3 and A3 = 0.
@ Some two first standardized principal components are
7X1—X2 7X1+X2—2X3

and the multivariate Chebyshev's inequality given in (8) gives
4n
352

V4l

Pr <\/(X1 — X2)?2 + (X1 4+ Xo — 2X3)?/3 < 5> >1-
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The bounds are sharp.

Theorem (Navarro SPL 2014)

Let X = (Xi,...,Xx) be a random vector with finite mean vector
= E(X) and positive definite covariance matrix V = Cov(X) and
let £ > k. Then there exists a sequence X(") = (Xl("), . ,X,E"))’ of

random vectors with mean vector p and covariance matrix V' such

that

lim Pr((X(" — ) V=YX — ) > ) = k| (9)

n—o00 e

v
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The bounds are sharp (proof).

o For € > k, let us consider

VZ,+¢  with probability (p —1/n)/2

D,=4{ —+/Z,+¢c with probability (p —1/n)/2
0 with probability 1 — p+1/n

for n > ¢/k, where p=k/c <1 and

Zy = Bxplpn = 5240 > 0).
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The bounds are sharp (proof).

o For € > k, let us consider

VZ,+¢  with probability (p —1/n)/2

D,=4{ —+/Z,+¢c with probability (p —1/n)/2
0 with probability 1 — p+1/n

for n > ¢/k, where p=k/c <1 and

Zn = Bxplpn = 547 > 0).

o Note that Pr(D? > ¢) = p—1/n.
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The bounds are sharp (proof).

o For € > k, let us consider

VZ,+¢  with probability (p —1/n)/2

D,=4{ —+/Z,+¢c with probability (p —1/n)/2
0 with probability 1 — p+1/n

for n > ¢/k, where p=k/c <1 and
Zy = Expliun = 522 > 0)
o Note that Pr(D2 >¢)=p—1/n.

o E(D,) = B XN E (yZ,¥e) - BNE (yZ,F¢) =0
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The bounds are sharp (proof).

o For € > k, let us consider

VZ,+¢  with probability (p —1/n)/2

D,=4{ —+/Z,+¢c with probability (p —1/n)/2
0 with probability 1 — p+1/n

for n > ¢/k, where p=k/c <1 and
Z,= Exliin = 11 >0)
o Note that Pr(D2 >¢)=p—1/n.
o E(D,) =N E (yZ,F¢) - CHNE (yZ, &) =0.

o E(D2) = (p—1/n)E(Z,+¢€) = (p—1/n) <p5/1n/n ) — k.
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The bounds are sharp (proof).

o Let U, be a r.v., independent of Z,, with a uniform
distribution over {1,..., k}.
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The bounds are sharp (proof).

o Let U, be a r.v., independent of Z,, with a uniform
distribution over {1,..., k}.

o Let Y = (v{" . ¥{"Y defined by Y™ = D, and
Y =0forj=1,....i—1,i+1,... kwhen Uy=1i.
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The bounds are sharp (proof).

o Let U, be a r.v., independent of Z,, with a uniform
distribution over {1,... k}.

o Let Y = (v{" . ¥{"Y defined by Y™ = D, and
j():Oforj:1,...,i—1,i+1,...,kwhen Up=i.
o Hence E(Y,.(")) = +E(D,) =0 and

Var(Y{) = E(v{") = LE(D}) =1
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The bounds are sharp (proof).

The univariate Chebyshev's inequality
The multivariate Chebyshev’s inequality
The bounds are sharp

o Let U, be a r.v., independent of Z,, with a uniform

distribution over {1,..., k}.

o Let YO = (v{" . ¥y defined by ") =
YW =0forj=1,....i—-1i+1,...,

D, and
k when U, = I.

o Hence E(Y,.(")) = +E(D,) =0 and

Var(Y{") = E((Y")?) = kE(D2)

o Moreover, Y,-(n) Yj(") 0 and E(Y; v (n)) =0 for all i # j.
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The bounds are sharp (proof).

o Let U, be a r.v., independent of Z,, with a uniform
distribution over {1,... k}.

Let YOO = (Y{", ..., Y{"Y defined by Y{" = D, and
j():Oforj:1,...,i—1,i+1,...,kwhen Up=i.
Hence E(Y,.(")) = +E(D,) =0 and

(+]

(]

Var(Y{") = E((Y")?) = kE(D2)

(+]

Moreover, YI-(") Yj(") 0 and E(Y; v (")) =0 for all i #j.
Y)Y =

Then E(Y(") =0, and Cov(Y )) k.

(]
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The bounds are sharp (proof).

o Let U, be a r.v., independent of Z,, with a uniform
distribution over {1,... k}.

o Let Y = (Y . y["Y defined by Y™ = D, and
Yj():OforJ:1,...,i—1,i+1,...,kwhen Up=i.
o Hence E(Y") = LE(D,) = 0 and

Var(Y{) = E(v{") = LE(D}) =1
o Moreover, Y,-(n) Yj(") =0 and E(Yi(") Yj(")) =0 for all i # j.

o Then E(Y() =0, and Cov(Y) = |.
o Then X" =y + V1/2¥(") has mean E(X(M) = 4 and

COV(X(n)) = COV( V1/2Y(”)) — V1/2 V1/2 -V
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Main results The univariate Chebyshev's inequality
The multivariate Chebyshev’s inequality
The bounds are sharp

The bounds are sharp (proof).

@ Moreover,

Pr((X — ) VX — ) > <)
= Pr((V2Y(y vl (v2y () > ¢
— Pr((Y(MY v2y-lylzy () > ()
= Pr((YYY() > ¢)

:P(D22 €)
1
:p—;—>p: , as n— o0
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Case k = 2.
Applications Order statistics
Data sets

Applications. Case k = 2.

Theorem

(X, Y) with E(X) = ux, E(Y) = py, Var(X) = 0% >0,
Var(Y) = 0% >0 and p = Cor(X,Y) € (—1,1). Then

2

Pr((X* — Y*)2 4+ 2(1 = p)X*Y* < §) > 1— 22 ()

for all 6 > 0, where X* = (X — ux)/ox and Y* = (X — uy)/oy.
Zi=(X*+Y9/\/2(1+p), Zo=(X*—Y*)//2(1 - p) and

(e g <o) E W

()
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Case k = 2.
Applications Order statistics
Data sets

An example

o (X,Y) with E(X)=E(Y)=1, Var(X) = Var(Y) =1 and
p= Cor(X,Y)=0.9. Then

Pr(5(X — Y)?+ (X —1)(Y —1) <55) > 1— 20'719,

that is,

1.
Pr(5X2—9XY+5Y2—X—Y+1<5)21——9
9

for all e > 1.9.

@ The distribution-free confidence regions for ¢ = 3,4,5,10
containing respectively at least the 36.6666%, 52.5%, 62%
and the 81% of the values of (X, Y) can be seen in the
following figure.
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Case k = 2.
Applications Order statistics
Data sets

Figure: Confidence regions for € = 3, 4,5, 10 containing at least the
36.66%, 52.5%, 62% and the 81% of the values of (X, Y).
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Case k = 2.
Applications Order statistics
Data sets

Order statistics

o Let Xqi.k,..., Xk, be the OS from (Xl, e ,Xk).
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Case k = 2.
Applications Order statistics
Data sets

Order statistics

o Let Xqi.k,..., Xk, be the OS from (Xl, e ,Xk).

o For k = 2 we have

9102 1~ p12)(He — P12
P1,2:2 = Cor(X]_;z,XQQ) =p + (M H )( )’
01:201:2 01:201:2

where p1; = E(X;), pia = E(Xj2), 0% = Var(X),
a%z = Var(Xi.2), for i = 1,2, and p = Cor(Xy, X2).
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Case k = 2.
Applications Order statistics
Data sets

Order statistics

o Let Xqi.k,..., Xk, be the OS from (Xl, e ,Xk).

o For k = 2 we have

9102 1~ p12)(He — P12
P1,2:2 = Cor(X]_;z,XQQ) =p + (M H )( )’
01:201:2 01:201:2

where i = E(X,'), Mi2 = E(X,':g), O',-2 = Var(X,-),
a%z = Var(Xi.2), for i = 1,2, and p = Cor(Xy, X2).
o Then
* * \2 * * 1— p%,2!2
Pr((Xz2—X12)"+2(1—p1,2:2) X5:2X1:p < 0) = 1-2—7==,
(12)
where Xif2 = (X,':g — ,u,':g)/o‘;:z, I = ]., 2.
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 1.

o (Xi,X2) has a Pareto distribution with
Flx,y) =Pr(X1 > x, X2 > y) = (1 4+ x + Ay)™?

for x,y > 0, where A >0 and 6 > 2.
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 1.

o (Xi,X2) has a Pareto distribution with
Flx,y) =Pr(X1 > x, X2 > y) = (1 4+ x + Ay)™?
for x,y > 0, where A >0 and 6 > 2.
o Then u=1/(N — ), 0® = ?/(1L - 2p), p=1/0,
p12 = /2, po2 = 3p/2
2 2 _ (6+3p) g = 120
B2a(1—-2p) P2 a(1-2p)" TV \B+3p
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 1.

o (Xi,X2) has a Pareto distribution with
F(x,y) =Pr(Xy > x,Xo > y) = (1 + Ax + Ay)™?
for x,y > 0, where A >0 and 6 > 2.
o Then u=1/(N — ), 0® = ?/(1L - 2p), p=1/0,
p12 = /2, po2 = 3p/2
2 2 _ (6+3p) g = 120
B2Ta(1-2p) P2 41-2p)7 7 6+3p
e lf A\=05and =3, thenu=1,p=1/3, u12=1/2,
po2 = 3/2, 01.20 = 0.866, 020 = 2.291 p1 2.0 = 0.6299 and
2

3 1
Xop—35 Xi2—3 074

2201  0.866

Xoo — 3 X12— 3 1.206
o)l >1———.
2201 0866 |~ 5
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Case k = 2.
Applications Order statistics
Data sets

Figure: Confidence regions for 6 = 2,4,6 containing at least the 39.68%,
the 69.84% and the 79.89% of the values of (X1.2, X2:2).
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 2.

° Xi,..., Xk iid Exp(u = 1), then

and
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 2.

° Xi,..., Xk iid Exp(u = 1), then

and

pijik = Cor(Xip, Xjk) = —%, 1<i<j<k

o If k=3,i=2andj =3, then up3 =5/6, usz.3 = 11/6,
02:3 = 0.6009, 03:3 = 1.1667, and P23:3 = 0.5151.
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 2.

° Xi,..., Xk iid Exp(u = 1), then

and

pijik = Cor(Xip, Xjk) = —%, 1<i<j<k

o If k=3,i=2andj =3, then up3 =5/6, usz.3 = 11/6,
02:3 = 0.6009, 03:3 = 1.1667, and P23:3 = 0.5151.

o Hence
2
X33 — %  Xoz—2 X33 — g Xo3— 2 1.469
P - 0.969 S R
' 1.1667 0.6009 + 1.1667 0.6009 - )
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Case k = 2.
Applications Order statistics
Data sets

|

X  mean
o Rl ST
| | | T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
X 2:3

Figure: Confidence regions for § = 2,3, 4 containing at least 63.26%, the
75.51% and the 81.63% of the values of (Xa.3, X3:3).

0SD2016, Piraeus, Greece J. Navarro, E-mail: jorgenav@um.es



Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 2.

o For (X1.3, X2:3, X3:3)" we obtain the confidence region
Re = {(x,y,2) : 1.444x°~1.602xy+1.805y*~1.402yz+1.3612% < ¢}

containing (Xj'3, X33, X3:3)" with a probability greater than
1—3/e, where X, = (Xj.k — pi:k)/0ik for i =1,2,3.
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 2.

o For (X1.3, X2:3, X3:3)" we obtain the confidence region
R. = {(x,y,z) : 1.444x>—1.602xy+1.805y°—1.402yz+1.3612° < ¢}

containing (Xj'3, X33, X3:3)" with a probability greater than
1—3/e, where X, = (Xj.k — pi:k)/0ik for i =1,2,3.
o If we use the two principal components

Y7 Y3
P >1-—
' <1.9129431 + 077153779 © 5) =

for all € > 0, where

o 1TN

(13)

Y; = 0.5548133X; 5 + 0.6382230X5 5 + 0.5337169X3 5

and

Y, = 0.66914423X; 5 + 0.03890251X3 5 — 0.7421136X5 5.
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Case k = 2.
Applications Order statistics
Data sets

Figure: Confidence regions for € = 4,6, 8 containing at least the 50%,
the 66.6667% and the 75% of the scores of (Xi.3, X2.3, X3.3).
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Case k = 2.
Applications Order statistics
Data sets

Data sets.

o If we have a data set O; = (X;, Y;), i =1,...,n, the mean is

0-1%"0,=(xv)
3
and its covariance matrix is
~ 1< _ _ ~
V=" (0n—0)(0n—0) = (Vi)
m=1
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Case k = 2.
Applications Order statistics
Data sets

Data sets.

o If we have a data set O; = (X;, Y;), i =1,...,n, the mean is

0-1%"0,=(xv)
3
and its covariance matrix is
~ 1< _ _ ~
V=" (0n—0)(0n—0) = (Vi)
m=1

o The correlation is r = V4 5/4/ V11 V2, and

1—1r2

Pr((X; — Y72 +2(1 - nNX'Y) <) >1-2

, (14)

where X = (X; = X)/\/ Vi1, Yi = (Y1 = Y)/y/ Va2 and
I = i with probability 1/n.
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Case k = 2.
Applications Order statistics
Data sets

Data sets.

o Then, by taking § = 4(1 — r?)
Ri={(x,y) €R*: (x" = y*)* + 21— x"y* < 41 - )},

contains (for sure) at least the 50% of the data.
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Case k = 2.
Applications Order statistics
Data sets

Data sets.

o Then, by taking § = 4(1 — r?)
Ri={(x,y) €R*: (x" = y*)* + 21— x"y* < 41 - )},

contains (for sure) at least the 50% of the data.
o By taking 6 = 8(1 — r?)

Ro={lxy) €R%: (" = y" ) +2(1 = )x'y" < 8(1 =)},

contains (for sure) at least the 75% of the data and the
complementary region

Ra={(x.y) € B2: (x" =y P +2(1 = x'y" = 81— )},

contains (for sure) at most the 25% of the data.
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Case k = 2.
Applications Order statistics
Data sets

Data sets.

o Then, by taking § = 4(1 — r?)
Ri={(x,y) €R*: (x" = y*)* + 21— x"y* < 41 - )},

contains (for sure) at least the 50% of the data.
o By taking 6 = 8(1 — r?)

Ro={lxy) €R%: (" = y" ) +2(1 = )x'y" < 8(1 =)},

contains (for sure) at least the 75% of the data and the
complementary region

Ra={(x.y) € B2: (x" =y P +2(1 = x'y" = 81— )},

contains (for sure) at most the 25% of the data.
o These regions are similar to (univariate) box plots.
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Case k = 2.
Applications Order statistics
Data sets

Data sets. An example.

o Consider in the data set “iris” from R (Fisher, 1936), the
variables X = Petal.Length and Y = Petal Width.
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Case k = 2.
Applications Order statistics
Data sets

Data sets. An example.

o Consider in the data set “iris” from R (Fisher, 1936), the
variables X = Petal.Length and Y = Petal Width.

o We obtain r = 0.9628654 and R; and R, determined by

x—3.758 y —1.199\? x —3.758 y — 1.199
- 2(1— 292
( 1.759 0.759 ) 207759 o750 0%
and
x —3.758 y—1.199\? x —3.758 y — 1.199
- 2(1— :
( 1.759 0.759 ) 207759 o750 < 0%

respectively.
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Case k = 2.
Applications Order statistics
Data sets

Data sets. An example.

o Consider in the data set “iris” from R (Fisher, 1936), the
variables X = Petal.Length and Y = Petal.Width.

o We obtain r = 0.9628654 and R; and R, determined by

< 0.292

x—3.758 y—1.199 2+2(1 0o 3.758 y — 1.199
1.759 0.759 1.759  0.759

and

- 3. —1.1 — 3. —1.1
(X 3.758 y 99 x —3.758 y 99<0.583,

2
2(1—
1.759 0.759 >+( 1750 0759

respectively.

@ These regions contain more than the 50% and the 75% of the
data (i.e. more than 75 and 113 data in this case).
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Case k = 2.
Applications Order statistics
Data sets

3.0

Petal.Width
2.0
I

1.0

0.0

0 2 4 6 8
Petal.Length

Figure: Regions Ry and R, containing (for sure) at least the 50% and
75% of the data from X = Petal.Length and Y = Petal.Width.
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Case k = 2.
Applications Order statistics
Data sets

o |
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o
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o | + vir
o

Petal.Length

Figure: Regions Ry and R; by species containing (for sure) at least the
50% and 75% of the data from X = Petal.Length and Y = Petal.Width.
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Case k = 2.
Applications Order statistics
Data sets

Data sets. An example.

@ The two first principal components Y7 and Y5 of the four
variables in this data set are

Y1 = 0.521X] — 0.269.X5 + 0.580X3 + 0.565.X;
and

Ys = —0.377X; — 0.923X} — 0.025X; — 0.067X;,

where X* = (X; — X;)/\/Vii, i = 1,2,3,4.
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Case k = 2.
Applications Order statistics
Data sets

Data sets. An example.

@ The two first principal components Y7 and Y5 of the four
variables in this data set are

Yy = 0.521X; — 0.269X; + 0.580X3 + 0.565X;
and
Y, = —0.377X; — 0.923X; — 0.025X5 — 0.067.X;,
where X* = (X; — X;)/\/Vii, i = 1,2,3,4.

o In this case, Y1 = Y, =0 and r = 0 and hence
2 2

x y
= : 4
Ru={(x¥) 5918 * 0.01a <4
and ) )
_ S y
Ro=1(x¥) 5518 T 0012 <8
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Case k = 2.

Applications Order statistics
Data sets
= = o setosa
& versicolor
i et
& - virginica
v—_—
Q o
S, O
2 sl
|
o
|
o - 2
"IJ . Sepal Width
T T I T T
-4 -2 0 2 4
y1

Figure: Regions Ry and R, for the scores in the two first principal
components containing (for sure) at least the 50% and 75% of the data
scores.
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