Conference 1: Distorted models

Jorge Navarro¹ Universidad de Murcia, Spain. E-mail: jorgenav@um.es.

¹Supported by Ministerio de Ciencia e Innovación of Spain under grant PID2019-108079GB-C22/AEI/10.13039/501100011033.

References

The conference is based mainly on the following references:

- Navarro, del Águila, Sordo and Suárez-Llorens (2013).
- Navarro, del Águila, Sordo and Suárez-Llorens (2014).
- Navarro, del Águila, Sordo and Suárez-Llorens (2016).
- Navarro (2016).
- Navarro and Gomis (2016).
- Navarro and del Águila (2017).

Outline

Distorted distributions

Definitions

Examples

Copulas

Series and parallel systems

Stochastic comparisons

Main stochastic orders

Comparisons of distorted distributions

Comparisons of generalized distorted distributions

Preservation of aging classes

Main aging classes

Preservation of aging classes in DD

Preservation of aging classes in GDD

Definitions
Examples
Copulas
Series and parallel systems

Notation

ightharpoonup X random variable (lifetime) over $(\Omega, \mathcal{S}, Pr)$.

- \triangleright X random variable (lifetime) over $(\Omega, \mathcal{S}, Pr)$.
- ▶ Distribution function (DF) $F(t) = Pr(X \le t)$.

- \triangleright X random variable (lifetime) over $(\Omega, \mathcal{S}, Pr)$.
- ▶ Distribution function (DF) $F(t) = Pr(X \le t)$.
- ▶ Reliability or survival function $\bar{F}(t) = \Pr(X > t) = 1 F(t)$.

- \triangleright X random variable (lifetime) over $(\Omega, \mathcal{S}, Pr)$.
- ▶ Distribution function (DF) $F(t) = Pr(X \le t)$.
- ▶ Reliability or survival function $\bar{F}(t) = \Pr(X > t) = 1 F(t)$.
- ▶ Probability density function (PDF) $f(t) = F'(t) = -\bar{F}'(t)$.

- \triangleright X random variable (lifetime) over $(\Omega, \mathcal{S}, Pr)$.
- ▶ Distribution function (DF) $F(t) = Pr(X \le t)$.
- ▶ Reliability or survival function $\bar{F}(t) = \Pr(X > t) = 1 F(t)$.
- ▶ Probability density function (PDF) $f(t) = F'(t) = -\bar{F}'(t)$.
- Mean, expected lifetime or mean time to failure (MTTF):

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} \bar{F}(x) dx - \int_{-\infty}^{0} F(x) dx.$$

- \triangleright X random variable (lifetime) over $(\Omega, \mathcal{S}, Pr)$.
- ▶ Distribution function (DF) $F(t) = Pr(X \le t)$.
- ▶ Reliability or survival function $\bar{F}(t) = \Pr(X > t) = 1 F(t)$.
- ▶ Probability density function (PDF) $f(t) = F'(t) = -\bar{F}'(t)$.
- Mean, expected lifetime or mean time to failure (MTTF):

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} \bar{F}(x) dx - \int_{-\infty}^{0} F(x) dx.$$

▶ Hazard rate (HR) or failure rate (FR) function $h(t) = f(t)/\bar{F}(t)$, when $\bar{F}(t) > 0$.

Definitions
Examples
Copulas
Series and parallel systems

Distorted distributions

► The distorted distributions were introduced by Wang (1996) and Yaari (1987) in the context of theory of choice under risk.

Distorted distributions

- ► The distorted distributions were introduced by Wang (1996) and Yaari (1987) in the context of theory of choice under risk.
- ► The purpose was to allow a "distortion" (a change) of the initial (or past) risk distribution function.

Distorted distributions

- ► The distorted distributions were introduced by Wang (1996) and Yaari (1987) in the context of theory of choice under risk.
- ► The purpose was to allow a "distortion" (a change) of the initial (or past) risk distribution function.

Definition

The distorted distribution (DD) associated to a distribution function (DF) F and to an increasing continuous distortion function $q:[0,1]\to[0,1]$ such that q(0)=0 and q(1)=1, is given by

$$F_q(t) = q(F(t)), \text{ for all } t \in \mathbb{R}.$$
 (1.1)

If q is a distortion function, then F_q is a proper distribution function for all distribution functions F.

- If q is a distortion function, then F_q is a proper distribution function for all distribution functions F.
- ▶ If q is an strictly increasing distortion function, then F_q has the same support of F.

- If q is a distortion function, then F_q is a proper distribution function for all distribution functions F.
- ▶ If q is an strictly increasing distortion function, then F_q has the same support of F.
- lacktriangle From (1.1), $ar{F}=1-F$ and $ar{F}_q=1-F_q$ satisfy

$$ar{\mathcal{F}}_q(t) = ar{q}(ar{\mathcal{F}}(t)), \text{ for all } t \in \mathbb{R},$$
 (1.2)

where $\bar{q}(u) := 1 - q(1 - u)$ is called the *dual distortion* function in Hürlimann (2004).

- ▶ If q is a distortion function, then F_q is a proper distribution function for all distribution functions F.
- ▶ If q is an strictly increasing distortion function, then F_q has the same support of F.
- From (1.1), $ar{F}=1-F$ and $ar{F}_q=1-F_q$ satisfy

$$ar{\mathcal{F}}_q(t) = ar{q}(ar{\mathcal{F}}(t)), \text{ for all } t \in \mathbb{R},$$
 (1.2)

where $\bar{q}(u) := 1 - q(1 - u)$ is called the *dual distortion* function in Hürlimann (2004).

▶ (1.1) and (1.2) are equivalent.

▶ The PDF of F_q is

$$f_q(t) = q'(F(t))f(t) = \bar{q}'(\bar{F}(t))f(t).$$

▶ The PDF of F_q is

$$f_q(t) = q'(F(t))f(t) = \bar{q}'(\bar{F}(t))f(t).$$

▶ The hazard rate of F_q is

$$h_q(t) = \frac{\bar{q}'(\bar{F}(t))}{\bar{q}(\bar{F}(t))} f(t) = \alpha(\bar{F}(t)) h(t),$$

where h is the hazard rate of F and

$$\alpha(u) = \frac{u\bar{q}'(u)}{\bar{q}(u)}, \ u \in [0,1].$$

Definitions
Examples
Copulas
Series and parallel systems

Generalized distorted distributions

The concept of distorted distributions was extended in Navarro, del Águila, Sordo and Suárez-Llorens (2016) as follows.

Generalized distorted distributions

The concept of distorted distributions was extended in Navarro, del Águila, Sordo and Suárez-Llorens (2016) as follows.

Definition

The generalized distorted distribution (GDD) associated to n distribution functions F_1, \ldots, F_n and to an increasing continuous distortion function $Q: [0,1]^n \to [0,1]$ such that $Q(0,\ldots,0)=0$ and $Q(1,\ldots,1)=1$, is given by

$$F_Q(t) = Q(F_1(t), \dots, F_n(t)), \text{ for all } t \in \mathbb{R}.$$
 (1.3)

Definitions
Examples
Copulas
Series and parallel systems

Properties

▶ If Q is a distortion function, then F_Q is a proper distribution function for all distribution functions F_1, \ldots, F_n .

- ▶ If Q is a distortion function, then F_Q is a proper distribution function for all distribution functions F_1, \ldots, F_n .
- From (1.3), $\bar{F}_i = 1 F_i$ and $\bar{F}_Q = 1 F_Q$ satisfy

$$ar{F}_Q(t) = ar{Q}(ar{F}_1(t), \dots, ar{F}_n(t)), ext{ for all } t \in \mathbb{R},$$
 (1.4)

where $\bar{Q}(u_1, \ldots, u_n) := 1 - Q(1 - u_1, \ldots, 1 - u_n)$ is called the dual distortion function.

- ▶ If Q is a distortion function, then F_Q is a proper distribution function for all distribution functions F_1, \ldots, F_n .
- From (1.3), $\bar{F}_i = 1 F_i$ and $\bar{F}_Q = 1 F_Q$ satisfy

$$ar{\mathcal{F}}_Q(t) = ar{Q}(ar{\mathcal{F}}_1(t), \dots, ar{\mathcal{F}}_n(t)), ext{ for all } t \in \mathbb{R},$$
 (1.4)

where $\bar{Q}(u_1, \ldots, u_n) := 1 - Q(1 - u_1, \ldots, 1 - u_n)$ is called the dual distortion function.

▶ (1.3) and (1.4) are equivalent.

Definitions
Examples
Copulas
Series and parallel systems

Properties

▶ The PDF of F_Q is

$$f_Q(t) = \sum_{i=1}^n f_i(t) \partial_i Q(F_1(t), \dots, F_n(t)) = \sum_{i=1}^n f_i(t) \partial_i \bar{Q}(\bar{F}_1(t), \dots, \bar{F}_n(t)).$$

▶ The PDF of F_Q is

$$f_Q(t) = \sum_{i=1}^n f_i(t) \partial_i Q(F_1(t), \dots, F_n(t)) = \sum_{i=1}^n f_i(t) \partial_i \bar{Q}(\bar{F}_1(t), \dots, \bar{F}_n(t)).$$

▶ The hazard rate of F_q is

$$h_Q(t) = \sum_{i=1}^n \frac{\partial_i \bar{Q}(\bar{F}_1(t), \dots, \bar{F}_n(t))}{\bar{Q}(\bar{F}_1(t), \dots, \bar{F}_n(t))} f_i(t) = \sum_{i=1}^n \alpha_i(\bar{F}_1(t), \dots, \bar{F}_n(t)) h_i(t),$$

where h_i is the hazard rate of F_i and

$$\alpha_i(u) = \frac{u_i \partial_i \bar{Q}(u_1, \ldots, u_n)}{\bar{Q}(u_1, \ldots, u_n)}, \ u_i \in [0, 1], i = 1, \ldots, n.$$

Proportional Hazard Rate (PHR) Cox model

$$ar{F}_{ heta}(t) = ar{F}^{ heta}(t), t \in \mathbb{R},$$

where $\theta > 0$ is a risk (hazard) measure.

Proportional Hazard Rate (PHR) Cox model

$$ar{\mathcal{F}}_{ heta}(t) = ar{\mathcal{F}}^{ heta}(t), t \in \mathbb{R},$$

where $\theta > 0$ is a risk (hazard) measure.

It is a distorted distribution with $\bar{q}(u) = u^{\theta}$ and $q(u) = 1 - (1 - u)^{\theta}$ for $u \in [0, 1]$.

Proportional Hazard Rate (PHR) Cox model

$$ar{\mathcal{F}}_{ heta}(t) = ar{\mathcal{F}}^{ heta}(t), t \in \mathbb{R},$$

where $\theta > 0$ is a risk (hazard) measure.

- It is a distorted distribution with $\bar{q}(u) = u^{\theta}$ and $q(u) = 1 (1 u)^{\theta}$ for $u \in [0, 1]$.
- Its PDF is $f_{\theta}(t) = \theta \bar{F}^{\theta-1}(t) f(t)$.

Proportional Hazard Rate (PHR) Cox model

$$ar{F}_{ heta}(t) = ar{F}^{ heta}(t), t \in \mathbb{R},$$

where $\theta > 0$ is a risk (hazard) measure.

- It is a distorted distribution with $\bar{q}(u) = u^{\theta}$ and $q(u) = 1 (1 u)^{\theta}$ for $u \in [0, 1]$.
- lts PDF is $f_{\theta}(t) = \theta \bar{F}^{\theta-1}(t) f(t)$.
- Its hazard rate is

$$h_{ heta}(t) = heta rac{ar{F}^{ heta-1}(t)}{ar{F}^{ heta}(t)} f(t) = heta h(t),$$

that is, $\alpha_{\theta}(u) = \theta$ for $u \in [0, 1]$.

Proportional Reversed Hazard Rate (PRHR) model

$$F_{\theta}(t) = F^{\theta}(t), t \in \mathbb{R}, \ \theta > 0.$$

Proportional Reversed Hazard Rate (PRHR) model

$$F_{\theta}(t) = F^{\theta}(t), t \in \mathbb{R}, \ \theta > 0.$$

It is a distorted distribution with $q(u) = u^{\theta}$ and $\bar{q}(u) = 1 - (1 - u)^{\theta}$ for $u \in [0, 1]$.

Proportional Reversed Hazard Rate (PRHR) model

$$F_{\theta}(t) = F^{\theta}(t), t \in \mathbb{R}, \ \theta > 0.$$

- It is a distorted distribution with $q(u) = u^{\theta}$ and $\bar{q}(u) = 1 (1 u)^{\theta}$ for $u \in [0, 1]$.
- Its PDF is $f_{\theta}(t) = \theta F^{\theta-1}(t) f(t)$.

Proportional Reversed Hazard Rate (PRHR) model

$$F_{\theta}(t) = F^{\theta}(t), t \in \mathbb{R}, \ \theta > 0.$$

- It is a distorted distribution with $q(u) = u^{\theta}$ and $\bar{q}(u) = 1 - (1 - u)^{\theta}$ for $u \in [0, 1]$.
- lts PDF is $f_{\theta}(t) = \theta F^{\theta-1}(t) f(t)$.
- Its hazard rate is

$$h_{\theta}(t) = \frac{\theta F^{\theta-1}(t)}{1 - (1 - \bar{F}(t))^{\theta}} f(t) = \alpha_{\theta}(\bar{F}(t)) h(t),$$

that is,
$$\alpha_{\theta}(u) = \frac{\theta u(1-u)^{\theta-1}}{1-(1-u)^{\theta}}$$
 for $u \in [0,1]$.

Proportional Reversed Hazard Rate (PRHR) model

$$F_{\theta}(t) = F^{\theta}(t), t \in \mathbb{R}, \ \theta > 0.$$

- ▶ It is a distorted distribution with $q(u) = u^{\theta}$ and $\bar{q}(u) = 1 - (1 - u)^{\theta}$ for $u \in [0, 1]$.
- lts PDF is $f_{\theta}(t) = \theta F^{\theta-1}(t) f(t)$.
- Its hazard rate is

$$h_{\theta}(t) = \frac{\theta F^{\theta-1}(t)}{1 - (1 - \bar{F}(t))^{\theta}} f(t) = \alpha_{\theta}(\bar{F}(t)) h(t),$$

that is,
$$\alpha_{\theta}(u) = \frac{\theta u(1-u)^{\theta-1}}{1-(1-u)^{\theta}}$$
 for $u \in [0,1]$.

Its reversed hazard rate is

$$ar{h}_{ heta}(t) = rac{f_{ heta}(t)}{F_{ heta}(t)} = heta ar{h}(t).$$

Examples of distorted distributions: Order statistics.

▶ Sample: $X_1, ..., X_n$ IID with distribution F.

Examples of distorted distributions: Order statistics.

- ▶ Sample: $X_1, ..., X_n$ IID with distribution F.
- \triangleright $X_{1:n}, \dots X_{n:n}$ the ordered values.

- ▶ Sample: $X_1, ..., X_n$ IID with distribution F.
- \triangleright $X_{1:n}, \dots X_{n:n}$ the ordered values.
- Then

$$\bar{F}_{i:n}(t) = \sum_{j=0}^{n-1} \binom{n}{j} F^j(t) \bar{F}^{n-j}(t).$$

- ▶ Sample: $X_1, ..., X_n$ IID with distribution F.
- $X_{1:n}, \dots X_{n:n}$ the ordered values.
- ► Then

$$\bar{F}_{i:n}(t) = \sum_{j=0}^{i-1} \binom{n}{j} F^j(t) \bar{F}^{n-j}(t).$$

It is a distorted distribution with

$$\bar{q}_{i:n}(u) = \sum_{j=0}^{i-1} \binom{n}{j} (1-u)^j u^{n-j}$$

and

$$q_{i:n}(u) = \sum_{i=1}^{n} {n \choose j} u^{j} (1-u)^{n-j}.$$

- ▶ Sample: $X_1, ..., X_n$ IID with distribution F.
- $X_{1:n}, \dots X_{n:n}$ the ordered values.
- ► Then

$$\bar{F}_{i:n}(t) = \sum_{j=0}^{i-1} \binom{n}{j} F^j(t) \bar{F}^{n-j}(t).$$

It is a distorted distribution with

$$\bar{q}_{i:n}(u) = \sum_{j=0}^{i-1} \binom{n}{j} (1-u)^j u^{n-j}$$

and

$$q_{i:n}(u) = \sum_{i=j}^{n} {n \choose j} u^{j} (1-u)^{n-j}.$$

Note that both are polynomials.

<ロト <回 > < 直 > < 直 > < 直 > の

Particular cases:

- Particular cases:
- $X_{1:n} = \min(X_1, \ldots, X_n)$ with

$$\bar{F}_{1:n}(t) = \binom{n}{0} F^0(t) \bar{F}^{n-0}(t) = \bar{F}^n(t)$$

for n = 1, ..., n which belongs to the PHR model.

- Particular cases:
- $X_{1:n} = \min(X_1, \dots, X_n)$ with

$$ar{F}_{1:n}(t) = inom{n}{0} F^0(t) ar{F}^{n-0}(t) = ar{F}^n(t)$$

for n = 1, ..., n which belongs to the PHR model.

lts hazard rate is $h_{1:n}(t) = nh(t)$.

- Particular cases:
- $X_{1:n} = \min(X_1, ..., X_n)$ with

$$ar{F}_{1:n}(t) = inom{n}{0} F^0(t) ar{F}^{n-0}(t) = ar{F}^n(t)$$

for n = 1, ..., n which belongs to the PHR model.

- lts hazard rate is $h_{1:n}(t) = nh(t)$.
- $X_{n:n} = \max(X_1, \dots, X_n)$ with

$$F_{n:n}(t) = \binom{n}{n} F^n(t) \bar{F}^{n-n}(t) = F^n(t)$$

for n = 1, ..., n which belongs to the PRHR model.

► The arithmetic mean or average distribution

$$F_a(t) = \frac{F_1(t) + \cdots + F_n(t)}{n}, t \in \mathbb{R}.$$

► The arithmetic mean or average distribution

$$F_a(t) = \frac{F_1(t) + \cdots + F_n(t)}{n}, t \in \mathbb{R}.$$

Then

$$\bar{F}_a(t) = \frac{\bar{F}_1(t) + \cdots + \bar{F}_n(t)}{n}, t \in \mathbb{R}.$$

▶ The arithmetic mean or average distribution

$$F_a(t) = \frac{F_1(t) + \cdots + F_n(t)}{n}, t \in \mathbb{R}.$$

Then

$$\bar{F}_a(t) = \frac{\bar{F}_1(t) + \cdots + \bar{F}_n(t)}{n}, t \in \mathbb{R}.$$

It is a generalized distorted distribution with

$$Q(u_1,\ldots,u_n) = \bar{Q}(u_1,\ldots,u_n) = \frac{u_1+\cdots+u_n}{n}, \ u_1,\ldots,u_n \in [0,1].$$

Its PDF is

$$f_a(t) = \frac{f_1(t) + \cdots + f_n(t)}{n}, t \in \mathbb{R}.$$

Examples of generalized distorted distributions: Geometric mean.

▶ The geometric mean distribution

$$F_{gmd}(t) = (F_1(t) \dots F_n(t))^{1/n}, t \in \mathbb{R}.$$

Examples of generalized distorted distributions: Geometric mean.

► The geometric mean distribution

$$F_{gmd}(t) = (F_1(t) \dots F_n(t))^{1/n}, t \in \mathbb{R}.$$

The geometric mean reliability

$$ar{F}_{gmr}(t) = \left(ar{F}_1(t) \dots ar{F}_n(t)\right)^{1/n}, t \in \mathbb{R}.$$

Examples of generalized distorted distributions: Geometric mean.

► The geometric mean distribution

$$F_{gmd}(t) = (F_1(t) \dots F_n(t))^{1/n}, t \in \mathbb{R}.$$

The geometric mean reliability

$$ar{F}_{gmr}(t) = \left(ar{F}_1(t) \dots ar{F}_n(t)\right)^{1/n}, t \in \mathbb{R}.$$

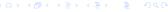
They are generalized distorted distribution with

$$Q_{gmd}(u_1,\ldots,u_n)=(u_1\ldots u_n)^{1/n},\ u_1,\ldots,u_n\in[0,1]$$

and

$$\bar{Q}_{gmr}(u_1,\ldots,u_n)=(u_1\ldots u_n)^{1/n},\ u_1,\ldots,u_n\in[0,1],$$

respectively.



▶ The mixture distribution

$$F_{\mathbf{p}}(t)=p_1F_1(t)+\cdots+p_nF_n(t), t\in\mathbb{R},$$
 where $\mathbf{p}=(p_1,\ldots,p_n),\ p_i\geq 0$ and $p_1+\cdots+p_n=1.$

The mixture distribution

$$F_{\mathbf{p}}(t) = p_1 F_1(t) + \cdots + p_n F_n(t), t \in \mathbb{R},$$

where
$$\mathbf{p}=(p_1,\ldots,p_n),\ p_i\geq 0$$
 and $p_1+\cdots+p_n=1.$

Then

$$\bar{F}_{\mathbf{p}}(t) = p_1 \bar{F}_1(t) + \cdots + p_n \bar{F}_n(t), t \in \mathbb{R}.$$

The mixture distribution

$$F_{\mathbf{p}}(t) = p_1 F_1(t) + \cdots + p_n F_n(t), t \in \mathbb{R},$$

where
$$\mathbf{p}=(p_1,\ldots,p_n),\ p_i\geq 0$$
 and $p_1+\cdots+p_n=1$.

► Then

$$\bar{F}_{\mathbf{p}}(t) = p_1 \bar{F}_1(t) + \cdots + p_n \bar{F}_n(t), t \in \mathbb{R}.$$

It is a generalized distorted distribution with

$$Q(u_1,\ldots,u_n) = \bar{Q}(u_1,\ldots,u_n) = p_1u_1 + \cdots + p_nu_n, \ u_i \in [0,1].$$

The mixture distribution

$$F_{\mathbf{p}}(t) = p_1 F_1(t) + \cdots + p_n F_n(t), t \in \mathbb{R},$$

where
$$\mathbf{p}=(p_1,\ldots,p_n),\ p_i\geq 0$$
 and $p_1+\cdots+p_n=1$.

Then

$$\bar{F}_{\mathbf{p}}(t) = p_1 \bar{F}_1(t) + \cdots + p_n \bar{F}_n(t), t \in \mathbb{R}.$$

It is a generalized distorted distribution with

$$Q(u_1,\ldots,u_n) = \bar{Q}(u_1,\ldots,u_n) = p_1u_1 + \cdots + p_nu_n, \ u_i \in [0,1].$$

▶ Its PDF is $f_{\mathbf{p}}(t) = p_1 f_1(t) + \cdots + p_n f_n(t), t \in \mathbb{R}$.

The mixture distribution

$$F_{\mathbf{p}}(t) = p_1 F_1(t) + \cdots + p_n F_n(t), t \in \mathbb{R},$$

where
$$\mathbf{p}=(p_1,\ldots,p_n),\ p_i\geq 0$$
 and $p_1+\cdots+p_n=1$.

Then

$$ar{\mathcal{F}}_{\mathbf{p}}(t) =
ho_1 ar{\mathcal{F}}_1(t) + \cdots +
ho_n ar{\mathcal{F}}_n(t), t \in \mathbb{R}.$$

It is a generalized distorted distribution with

$$Q(u_1,\ldots,u_n) = \bar{Q}(u_1,\ldots,u_n) = p_1u_1 + \cdots + p_nu_n, \ u_i \in [0,1].$$

- Its PDF is $f_{\mathbf{n}}(t) = p_1 f_1(t) + \cdots + p_n f_n(t), t \in \mathbb{R}$.
- Its HR is

$$h_{\mathbf{p}}(t) = w_1(t)h_1(t) + \cdots + w_n(t)h_n(t), \ w_i(t) = \frac{p_iF_i(t)}{\bar{F}_{\mathbf{p}}(t)} \geq 0.$$

▶ The generalized proportional hazard rate (GPHR) model

$$ar{F}_{\mathbf{p}}(t) = ar{F}_1^{
ho_1}(t) \dots ar{F}_n^{
ho_n}(t), t \in \mathbb{R},$$

where
$$\mathbf{p}=(p_1,\ldots,p_n),\ p_i\geq 0.$$

▶ The generalized proportional hazard rate (GPHR) model

$$ar{\mathcal{F}}_{\mathbf{p}}(t) = ar{\mathcal{F}}_1^{p_1}(t) \dots ar{\mathcal{F}}_n^{p_n}(t), t \in \mathbb{R},$$

where
$$\mathbf{p}=(p_1,\ldots,p_n),\ p_i\geq 0.$$

It is a generalized distorted distribution with

$$\bar{Q}(u_1,\ldots,u_n)=u_1^{p_1}\ldots u_n^{p_n},\ u_i\in[0,1].$$

▶ The generalized proportional hazard rate (GPHR) model

$$ar{\mathcal{F}}_{\mathbf{p}}(t) = ar{\mathcal{F}}_1^{p_1}(t) \dots ar{\mathcal{F}}_n^{p_n}(t), t \in \mathbb{R},$$

where
$$\mathbf{p} = (p_1, ..., p_n), p_i \ge 0.$$

It is a generalized distorted distribution with

$$\bar{Q}(u_1,\ldots,u_n)=u_1^{p_1}\ldots u_n^{p_n},\ u_i\in[0,1].$$

The generalized proportional reversed hazard rate (GPRHR) model

$$F_{\mathbf{p}}(t) = F_1^{p_1}(t) \dots F_n^{p_n}(t), t \in \mathbb{R},$$
 where $\mathbf{p} = (p_1, \dots, p_n), p_i > 0.$

▶ The generalized proportional hazard rate (GPHR) model

$$ar{\mathcal{F}}_{\mathbf{p}}(t) = ar{\mathcal{F}}_1^{p_1}(t) \dots ar{\mathcal{F}}_n^{p_n}(t), t \in \mathbb{R},$$

where
$$\mathbf{p} = (p_1, ..., p_n), p_i \ge 0.$$

It is a generalized distorted distribution with

$$\bar{Q}(u_1,\ldots,u_n)=u_1^{p_1}\ldots u_n^{p_n},\ u_i\in[0,1].$$

The generalized proportional reversed hazard rate (GPRHR) model

$$F_{\mathbf{p}}(t) = F_1^{\rho_1}(t) \dots F_n^{\rho_n}(t), t \in \mathbb{R},$$

where
$$\mathbf{p} = (p_1, ..., p_n), p_i \ge 0.$$

It is a generalized distorted distribution with

$$Q(u_1,\ldots,u_n)=u_1^{p_1}\ldots u_n^{p_n},\ u_i\in[0,1].$$

 (X_1, \ldots, X_n) random vector with joint distribution

$$F(x_1,\ldots,x_n)=\Pr(X_1\leq x_1,\ldots,X_n\leq x_n).$$

 (X_1, \ldots, X_n) random vector with joint distribution

$$F(x_1,\ldots,x_n)=\Pr(X_1\leq x_1,\ldots,X_n\leq x_n).$$

Marginal distributions

$$F_i(x_i) = \Pr(X_i \leq x_i) = \lim_{x_j \to \infty, \ \forall j \neq i} \mathbf{F}(x_1, \dots, x_n).$$

 (X_1, \ldots, X_n) random vector with joint distribution

$$\mathbf{F}(x_1,\ldots,x_n)=\Pr(X_1\leq x_1,\ldots,X_n\leq x_n).$$

Marginal distributions

$$F_i(x_i) = \Pr(X_i \leq x_i) = \lim_{x_j \to \infty, \ \forall j \neq i} \mathbf{F}(x_1, \dots, x_n).$$

▶ **Sklar's theorem**: There exist a copula *C* such that

$$F(x_1,...,x_n) = C(F_1(x_1),...,F_n(x_n)), x_1,...,x_n \in \mathbb{R}.$$

Moreover, if F_1, \ldots, F_n are continuous, then C is unique.

 (X_1, \ldots, X_n) random vector with joint distribution

$$F(x_1,\ldots,x_n)=\Pr(X_1\leq x_1,\ldots,X_n\leq x_n).$$

Marginal distributions

$$F_i(x_i) = \Pr(X_i \leq x_i) = \lim_{x_j \to \infty, \ \forall j \neq i} \mathbf{F}(x_1, \dots, x_n).$$

▶ Sklar's theorem: There exist a copula C such that

$$F(x_1,...,x_n) = C(F_1(x_1),...,F_n(x_n)), x_1,...,x_n \in \mathbb{R}.$$

Moreover, if F_1, \ldots, F_n are continuous, then C is unique.

A copula C is a multivariate distribution function with uniform marginals over the interval (0,1).

 (X_1, \ldots, X_n) random vector with joint distribution

$$\mathbf{F}(x_1,\ldots,x_n)=\Pr(X_1\leq x_1,\ldots,X_n\leq x_n).$$

Marginal distributions

$$F_i(x_i) = \Pr(X_i \leq x_i) = \lim_{x_j \to \infty, \ \forall j \neq i} \mathbf{F}(x_1, \dots, x_n).$$

▶ Sklar's theorem: There exist a copula C such that

$$F(x_1,...,x_n) = C(F_1(x_1),...,F_n(x_n)), x_1,...,x_n \in \mathbb{R}.$$

Moreover, if F_1, \ldots, F_n are continuous, then C is unique.

- ▶ A copula *C* is a multivariate distribution function with uniform marginals over the interval (0,1).
- Note that we just need C in $[0,1]^n$.

 (X_1, \ldots, X_n) with joint reliability (survival) function

$$\overline{\mathsf{F}}(x_1,\ldots,x_n)=\mathsf{Pr}(X_1>x_1,\ldots,X_n>x_n).$$

 (X_1, \ldots, X_n) with joint reliability (survival) function

$$\overline{\mathbf{F}}(x_1,\ldots,x_n)=\Pr(X_1>x_1,\ldots,X_n>x_n).$$

Marginal reliability functions

$$\bar{F}_i(x_i) = \Pr(X_i > x_i) = \lim_{x_i \to -\infty, \ \forall j \neq i} \overline{F}(x_1, \dots, x_n).$$

 (X_1, \ldots, X_n) with joint reliability (survival) function

$$\overline{\mathbf{F}}(x_1,\ldots,x_n)=\Pr(X_1>x_1,\ldots,X_n>x_n).$$

Marginal reliability functions

$$\overline{F}_i(x_i) = \Pr(X_i > x_i) = \lim_{x_j \to -\infty, \ \forall j \neq i} \overline{F}(x_1, \dots, x_n).$$

Sklar's theorem: There exist a copula \widehat{C} (called survival copula) such that

$$\overline{\mathbf{F}}(x_1,\ldots,x_n)=\widehat{C}(\overline{F}_1(x_1),\ldots,\overline{F}_n(x_n)),\ x_1,\ldots,x_n\in\mathbb{R}.$$

Moreover, if $\bar{F}_1, \dots, \bar{F}_n$ are continuous, then \hat{C} is unique.

 (X_1, \ldots, X_n) with joint reliability (survival) function

$$\overline{\mathbf{F}}(x_1,\ldots,x_n)=\Pr(X_1>x_1,\ldots,X_n>x_n).$$

Marginal reliability functions

$$\overline{F}_i(x_i) = \Pr(X_i > x_i) = \lim_{x_j \to -\infty, \ \forall j \neq i} \overline{F}(x_1, \dots, x_n).$$

Sklar's theorem: There exist a copula \widehat{C} (called survival copula) such that

$$\overline{\mathbf{F}}(x_1,\ldots,x_n)=\widehat{C}(\bar{F}_1(x_1),\ldots,\bar{F}_n(x_n)),\ x_1,\ldots,x_n\in\mathbb{R}.$$

Moreover, if $\bar{F}_1, \ldots, \bar{F}_n$ are continuous, then \widehat{C} is unique.

 $ightharpoonup \widehat{C}$ is a copula (distribution), not a survival function.

▶ Lifetime of a parallel system $X_{n:n} = \max(X_1, ..., X_n)$.

- ▶ Lifetime of a parallel system $X_{n:n} = \max(X_1, ..., X_n)$.
- Its distribution function is

$$F_{n:n}(t) = \Pr(X_{n:n} \leq t) = \Pr(X_1 \leq t, \dots, X_n \leq t) = \mathbf{F}(t, \dots, t).$$

- ▶ Lifetime of a parallel system $X_{n:n} = \max(X_1, \dots, X_n)$.
- Its distribution function is

$$F_{n:n}(t) = \Pr(X_{n:n} \leq t) = \Pr(X_1 \leq t, \dots, X_n \leq t) = \mathbf{F}(t, \dots, t).$$

Then

$$F_{n:n}(t) = C(F_1(t), \ldots, F_n(t)), t \in \mathbb{R}.$$

- Lifetime of a parallel system $X_{n:n} = \max(X_1, \dots, X_n)$.
- Its distribution function is

$$F_{n:n}(t) = \Pr(X_{n:n} \leq t) = \Pr(X_1 \leq t, \dots, X_n \leq t) = \mathbf{F}(t, \dots, t).$$

Then

$$F_{n:n}(t) = C(F_1(t), \ldots, F_n(t)), t \in \mathbb{R}.$$

It is a generalized distorted distribution from F_1, \ldots, F_n with $Q_{n:n} = C$.

- Lifetime of a parallel system $X_{n:n} = \max(X_1, \dots, X_n)$.
- Its distribution function is

$$F_{n:n}(t) = \Pr(X_{n:n} \leq t) = \Pr(X_1 \leq t, \dots, X_n \leq t) = \mathbf{F}(t, \dots, t).$$

Then

$$F_{n:n}(t) = C(F_1(t), \ldots, F_n(t)), t \in \mathbb{R}.$$

- It is a generalized distorted distribution from F_1, \ldots, F_n with $Q_{n:n} = C$.
- All the copulas are distortion functions.

Parallel systems

- Lifetime of a parallel system $X_{n:n} = \max(X_1, \dots, X_n)$.
- Its distribution function is

$$F_{n:n}(t) = \Pr(X_{n:n} \leq t) = \Pr(X_1 \leq t, \dots, X_n \leq t) = \mathbf{F}(t, \dots, t).$$

Then

$$F_{n:n}(t) = C(F_1(t), \ldots, F_n(t)), t \in \mathbb{R}.$$

- It is a generalized distorted distribution from F_1, \ldots, F_n with $Q_{n:n} = C$.
- All the copulas are distortion functions.
- The reverse is not true.

▶ Lifetime of a series system $X_{1:n} = \min(X_1, ..., X_n)$.

- ▶ Lifetime of a series system $X_{1:n} = \min(X_1, \dots, X_n)$.
- Its reliability function is

$$ar{\mathcal{F}}_{1:n}(t) = \mathsf{Pr}(X_{1:n} > t) = \mathsf{Pr}(X_1 > t, \dots, X_n > t) = \overline{\mathbf{F}}(t, \dots, t).$$

- ▶ Lifetime of a series system $X_{1:n} = \min(X_1, \dots, X_n)$.
- Its reliability function is

$$ar{\mathcal{F}}_{1:n}(t) = \mathsf{Pr}(X_{1:n} > t) = \mathsf{Pr}(X_1 > t, \dots, X_n > t) = \overline{\mathbf{F}}(t, \dots, t).$$

Then

$$ar{F}_{1:n}(t) = \widehat{C}(ar{F}_1(t), \ldots, ar{F}_n(t)), \ t \in \mathbb{R}.$$

- Lifetime of a series system $X_{1:n} = \min(X_1, \dots, X_n)$.
- Its reliability function is

$$ar{\mathcal{F}}_{1:n}(t) = \mathsf{Pr}(X_{1:n} > t) = \mathsf{Pr}(X_1 > t, \dots, X_n > t) = \overline{\mathbf{F}}(t, \dots, t).$$

► Then

$$ar{F}_{1:n}(t) = \widehat{C}(ar{F}_1(t), \ldots, ar{F}_n(t)), \ t \in \mathbb{R}.$$

It is a generalized distorted distribution from F_1, \ldots, F_n with $\bar{Q}_{1:n} = C$.

▶ Stochastic order: $X \leq_{ST} Y \Leftrightarrow \bar{F}_X(t) \leq \bar{F}_Y(t)$.

- ▶ Stochastic order: $X \leq_{ST} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$.
- ▶ Hazard rate order: $X \leq_{HR} Y \Leftrightarrow \bar{F}_Y/\bar{F}_X$ increases (or $h_X \geq h_Y$).

- ▶ Stochastic order: $X \leq_{ST} Y \Leftrightarrow \bar{F}_{X}(t) \leq \bar{F}_{Y}(t)$.
- ▶ Hazard rate order: $X \leq_{HR} Y \Leftrightarrow \bar{F}_Y/\bar{F}_X$ increases (or $h_X \geq h_Y$).
- $igwedge X \leq_{HR} Y \Leftrightarrow (X-t|X>t) \leq_{ST} (Y-t|Y>t) \text{ for all } t.$

- ▶ Stochastic order: $X \leq_{ST} Y \Leftrightarrow \bar{F}_X(t) \leq \bar{F}_Y(t)$.
- ▶ Hazard rate order: $X \leq_{HR} Y \Leftrightarrow \bar{F}_Y/\bar{F}_X$ increases (or $h_X \geq h_Y$).
- $X \leq_{HR} Y \Leftrightarrow (X t|X > t) \leq_{ST} (Y t|Y > t)$ for all t.
- Mean residual life order: $X \leq_{MRL} Y \Leftrightarrow E(X t | X > t) \leq E(Y t | Y > t)$ for all t.

- ▶ Stochastic order: $X \leq_{ST} Y \Leftrightarrow \bar{F}_X(t) \leq \bar{F}_Y(t)$.
- ▶ Hazard rate order: $X \leq_{HR} Y \Leftrightarrow \bar{F}_Y/\bar{F}_X$ increases (or $h_X \geq h_Y$).
- $X \leq_{HR} Y \Leftrightarrow (X t|X > t) \leq_{ST} (Y t|Y > t)$ for all t.
- Mean residual life order: $X \leq_{MRL} Y \Leftrightarrow E(X t | X > t) \leq E(Y t | Y > t)$ for all t.
- ▶ Likelihood ratio order: $X \leq_{LR} Y \Leftrightarrow f_Y(t)/f_X(t)$ increases.

- ▶ Stochastic order: $X \leq_{ST} Y \Leftrightarrow \bar{F}_X(t) \leq \bar{F}_Y(t)$.
- ► Hazard rate order: $X \leq_{HR} Y \Leftrightarrow \bar{F}_Y / \bar{F}_X$ increases (or $h_X > h_Y$).
- $X \leq_{HR} Y \Leftrightarrow (X t|X > t) \leq_{ST} (Y t|Y > t)$ for all t.
- Mean residual life order: $X \leq_{MRI} Y \Leftrightarrow E(X - t | X > t) \leq E(Y - t | Y > t)$ for all t.
- ▶ Likelihood ratio order: $X <_{IR} Y \Leftrightarrow f_Y(t)/f_X(t)$ increases.
- ▶ Reversed hazard rate order: $X <_{RHR} Y \Leftrightarrow F_Y(t)/F_X(t)$ increases.

- ▶ Stochastic order: $X \leq_{ST} Y \Leftrightarrow \bar{F}_X(t) \leq \bar{F}_Y(t)$.
- ► Hazard rate order: $X \leq_{HR} Y \Leftrightarrow \bar{F}_Y / \bar{F}_X$ increases (or $h_X > h_Y$).
- $X \leq_{HR} Y \Leftrightarrow (X t|X > t) \leq_{ST} (Y t|Y > t)$ for all t.
- Mean residual life order: $X \leq_{MRI} Y \Leftrightarrow E(X - t | X > t) \leq E(Y - t | Y > t)$ for all t.
- ▶ Likelihood ratio order: $X <_{IR} Y \Leftrightarrow f_Y(t)/f_X(t)$ increases.
- ▶ Reversed hazard rate order: $X <_{RHR} Y \Leftrightarrow F_Y(t)/F_X(t)$ increases
- $X \leq_{RHR} Y \Leftrightarrow (t X|X < t) >_{ST} (t Y|Y < t)$ for all t.

- ▶ Stochastic order: $X \leq_{ST} Y \Leftrightarrow \bar{F}_X(t) \leq \bar{F}_Y(t)$.
- ► Hazard rate order: $X \leq_{HR} Y \Leftrightarrow \bar{F}_Y / \bar{F}_X$ increases (or $h_X > h_Y$).
- $X \leq_{HR} Y \Leftrightarrow (X t|X > t) \leq_{ST} (Y t|Y > t)$ for all t.
- Mean residual life order: $X \leq_{MRI} Y \Leftrightarrow E(X - t | X > t) \leq E(Y - t | Y > t)$ for all t.
- ▶ Likelihood ratio order: $X <_{IR} Y \Leftrightarrow f_Y(t)/f_X(t)$ increases.
- ▶ Reversed hazard rate order: $X \leq_{RHR} Y \Leftrightarrow F_Y(t)/F_X(t)$ increases.
- $X \leq_{RHR} Y \Leftrightarrow (t X|X < t) \geq_{ST} (t Y|Y < t)$ for all t.
- Then

$$X \leq_{LR} Y \Rightarrow X \leq_{HR} Y \Rightarrow X \leq_{MRL} Y$$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
 $X \leq_{RHR} Y \Rightarrow X \leq_{ST} Y \Rightarrow_{LR} E(X) \leq E(Y)$

Theorem (Navarro, del Águila, Sordo and Suárez-Llorens (2013); Navarro and Gomis (2016))

If T_i has the DF $F_i(t) = q_i(F(t))$, i = 1, 2, then:

Theorem (Navarro, del Águila, Sordo and Suárez-Llorens (2013); Navarro and Gomis (2016))

If T_i has the DF $F_i(t) = q_i(F(t))$, i = 1, 2, then:

 $T_1 \leq_{ST} T_2$ for all F iff $\bar{q}_1 \leq \bar{q}_2$ (or $q_2 \leq q_1$) in (0,1).

Theorem (Navarro, del Águila, Sordo and Suárez-Llorens (2013); Navarro and Gomis (2016))

If T_i has the DF $F_i(t) = q_i(F(t))$, i = 1, 2, then:

- ▶ $T_1 \leq_{ST} T_2$ for all F iff $\bar{q}_1 \leq \bar{q}_2$ (or $q_2 \leq q_1$) in (0, 1).
- $ightharpoonup T_1 \leq_{HR} T_2$ for all F iff \bar{q}_2/\bar{q}_1 decreases in (0,1).

Theorem (Navarro, del Águila, Sordo and Suárez-Llorens (2013); Navarro and Gomis (2016))

If T_i has the DF $F_i(t) = q_i(F(t))$, i = 1, 2, then:

- $ightharpoonup T_1 \leq_{ST} T_2$ for all F iff $\bar{q}_1 \leq \bar{q}_2$ (or $q_2 \leq q_1$) in (0,1).
- ▶ $T_1 \leq_{HR} T_2$ for all F iff \bar{q}_2/\bar{q}_1 decreases in (0,1).
- ▶ $T_1 \leq_{RHR} T_2$ for all F iff q_2/q_1 increases in (0,1).

Theorem (Navarro, del Águila, Sordo and Suárez-Llorens (2013); Navarro and Gomis (2016))

If T_i has the DF $F_i(t) = g_i(F(t))$, i = 1, 2, then:

- ▶ $T_1 \leq_{ST} T_2$ for all F iff $\bar{q}_1 \leq \bar{q}_2$ (or $q_2 \leq q_1$) in (0, 1).
- $ightharpoonup T_1 \leq_{HR} T_2$ for all F iff \bar{q}_2/\bar{q}_1 decreases in (0,1).
- $ightharpoonup T_1 \leq_{RHR} T_2$ for all F iff q_2/q_1 increases in (0,1).
- $ightharpoonup T_1 \leq_{IR} T_2$ for all F iff \bar{q}_2'/\bar{q}_1' decreases in (0,1).

Theorem (Navarro, del Águila, Sordo and Suárez-Llorens (2013); Navarro and Gomis (2016))

If T_i has the DF $F_i(t) = q_i(F(t))$, i = 1, 2, then:

- ▶ $T_1 \leq_{ST} T_2$ for all F iff $\bar{q}_1 \leq \bar{q}_2$ (or $q_2 \leq q_1$) in (0, 1).
- $ightharpoonup T_1 \leq_{HR} T_2$ for all F iff \bar{q}_2/\bar{q}_1 decreases in (0,1).
- $ightharpoonup T_1 \leq_{RHR} T_2$ for all F iff q_2/q_1 increases in (0,1).
- $ightharpoonup T_1 \leq_{IR} T_2$ for all F iff \bar{q}_2'/\bar{q}_1' decreases in (0,1).
- $T_1 \leq_{MRI} T_2$ for all F such that $E(T_1) \leq E(T_2)$ if \bar{q}_2/\bar{q}_1 is bathtub in (0,1).

 \rightarrow $X_1, X_2 \text{ IID} \sim F$.

- \triangleright $X_1, X_2 \text{ IID} \sim F$.
- $X_{1:2} = \min(X_1, X_2)$ is a DD with $\bar{q}_{1:2}(u) = u^2$.

- \triangleright $X_1, X_2 \text{ IID} \sim F$.
- $X_{1:2} = \min(X_1, X_2)$ is a DD with $\bar{q}_{1:2}(u) = u^2$.
- $X_{2:2} = \max(X_1, X_2)$ is a DD with $\bar{q}_{2:2}(u) = 2u u^2$.

- \triangleright $X_1, X_2 \text{ IID} \sim F$.
- $X_{1:2} = \min(X_1, X_2)$ is a DD with $\bar{q}_{1:2}(u) = u^2$.
- $X_{2:2} = \max(X_1, X_2)$ is a DD with $\bar{q}_{2:2}(u) = 2u u^2$.
- $X_{1:2} \leq_{ST} X_i \leq_{ST} X_{2:2}$ holds for all F.

- \triangleright $X_1, X_2 \text{ IID} \sim F$.
- $X_{1:2} = \min(X_1, X_2)$ is a DD with $\bar{q}_{1:2}(u) = u^2$.
- $X_{2:2} = \max(X_1, X_2)$ is a DD with $\bar{q}_{2:2}(u) = 2u u^2$.
- $X_{1:2} \leq_{ST} X_i \leq_{ST} X_{2:2}$ holds for all F.
- $X_{1:2} \leq_{HR} X_i \leq_{HR} X_{2:2}$ holds for all F.

- $\triangleright X_1, X_2 \text{ IID} \sim F.$
- $X_{1:2} = \min(X_1, X_2)$ is a DD with $\bar{q}_{1:2}(u) = u^2$.
- $X_{2:2} = \max(X_1, X_2)$ is a DD with $\bar{q}_{2:2}(u) = 2u u^2$.
- $\triangleright X_{1\cdot 2} <_{ST} X_i <_{ST} X_{2\cdot 2}$ holds for all F.
- $\triangleright X_{1\cdot 2} <_{HR} X_i <_{HR} X_{2\cdot 2}$ holds for all F.
- $X_{1\cdot 2} <_{IR} X_i <_{IR} X_{2\cdot 2}$ holds for all abs. cont. F.

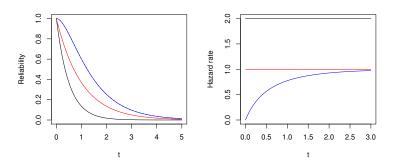


Figure: Reliability (left) and hazard rate (right) functions of $X_{1:2}$ (black), X_i (red) and $X_{2:2}$ (blue) for a standard exponential distribution.

R code

```
# Reliability functions
R<-function(t) exp(-t)
qIID<-function(u) u^ 2
G12<-function(t) qIID(R(t))
G22<-function(t) 2*R(t)-G12(t)
curve(G12(x),xlab='t',ylab='Reliability',0,5)
curve(G22(x),add=T,col='blue')
curve(R(x),add=T,col='red')</pre>
```

R code

```
#Hazard rate functions
f<-function(t) exp(-t)
qpIID<-function(u) 2*u
g12<-function(t) f(t)*qpIID(R(t))
g22 < -function(t) 2*f(t)-g12(t)
curve(g12(x)/G12(x),xlab='t',ylab='Hazard rate',0,3,
ylim=c(0,2)
curve(g22(x)/G22(x),add=T,col='blue')
curve(f(x)/R(x),add=T,col='red')
```

Theorem (Navarro, del Águila, Sordo and Suárez-Llorens (2016))

If T_i has DF $F_{T_i} = Q_i(F_1, \dots, F_n)$, i = 1, 2, then:

Theorem (Navarro, del Águila, Sordo and Suárez-Llorens (2016))

If T_i has DF $F_{T_i} = Q_i(F_1, \dots, F_n)$, i = 1, 2, then:

 $ightharpoonup T_1 \leq_{ST} T_2$ for all F_1, \ldots, F_n iff $\bar{Q}_1 \leq \bar{Q}_2$ in $[0,1]^n$.

Theorem (Navarro, del Águila, Sordo and Suárez-Llorens (2016))

If T_i has DF $F_{T_i} = Q_i(F_1, \dots, F_n)$, i = 1, 2, then:

- $ightharpoonup T_1 \leq_{ST} T_2$ for all F_1, \ldots, F_n iff $\bar{Q}_1 \leq \bar{Q}_2$ in $[0,1]^n$.
- $ightharpoonup T_1 \leq_{HR} T_2$ for all F_1, \ldots, F_n iff \bar{Q}_2/\bar{Q}_1 is decreasing in $(0,1)^n$.

Theorem (Navarro, del Águila, Sordo and Suárez-Llorens (2016))

If T_i has DF $F_{T_i} = Q_i(F_1, ..., F_n)$, i = 1, 2, then:

- $ightharpoonup T_1 \leq_{ST} T_2$ for all F_1, \ldots, F_n iff $\bar{Q}_1 \leq \bar{Q}_2$ in $[0,1]^n$.
- $ightharpoonup T_1 \leq_{HR} T_2$ for all F_1,\ldots,F_n iff \bar{Q}_2/\bar{Q}_1 is decreasing in $(0,1)^n$.
- ▶ $T_1 \leq_{RHR} T_2$ for all F_1, \ldots, F_n iff Q_2/Q_1 is increasing in $(0,1)^n$.

Theorem (Navarro and del Águila (2017))

If T_i has DF $F_{T_i} = Q_i(F_1, ..., F_n)$, i = 1, 2, then:

Theorem (Navarro and del Águila (2017))

If
$$T_i$$
 has DF $F_{T_i} = Q_i(F_1, \ldots, F_n)$, $i = 1, 2$, then:

▶
$$T_1 \leq_{ST} T_2$$
 for all $F_1 \geq_{ST} \cdots \geq_{ST} F_n$ iff $\bar{Q}_1 \leq \bar{Q}_2$ in $D = \{(u_1, \ldots, u_n) \in [0, 1]^n : u_1 \geq \cdots \geq u_n\};$

Theorem (Navarro and del Águila (2017))

If T_i has DF $F_{T_i} = Q_i(F_1, ..., F_n)$, i = 1, 2, then:

- ▶ $T_1 \leq_{ST} T_2$ for all $F_1 \geq_{ST} \cdots \geq_{ST} F_n$ iff $\bar{Q}_1 \leq \bar{Q}_2$ in $D = \{(u_1, \ldots, u_n) \in [0, 1]^n : u_1 \geq \cdots \geq u_n\};$
- ▶ $T_1 \leq_{HR} T_2$ for all $F_1 \geq_{HR} \cdots \geq_{HR} F_n$ iff the function

$$\bar{H}(v_1,\ldots,v_n) = \frac{\bar{Q}_2(v_1,v_1v_2,\ldots,v_1\ldots v_n)}{\bar{Q}_1(v_1,v_1v_2,\ldots,v_1\ldots v_n)}$$
(2.1)

is decreasing in $(0,1)^n$;

Theorem (Navarro and del Águila (2017))

If T_i has DF $F_{T_i} = Q_i(F_1, ..., F_n)$, i = 1, 2, then:

- ▶ $T_1 \leq_{ST} T_2$ for all $F_1 \geq_{ST} \cdots \geq_{ST} F_n$ iff $\bar{Q}_1 \leq \bar{Q}_2$ in $D = \{(u_1, \ldots, u_n) \in [0, 1]^n : u_1 \geq \cdots \geq u_n\};$
- ▶ $T_1 \leq_{HR} T_2$ for all $F_1 \geq_{HR} \cdots \geq_{HR} F_n$ iff the function

$$\bar{H}(v_1,\ldots,v_n) = \frac{\bar{Q}_2(v_1,v_1v_2,\ldots,v_1\ldots v_n)}{\bar{Q}_1(v_1,v_1v_2,\ldots,v_1\ldots v_n)}$$
(2.1)

is decreasing in $(0,1)^n$;

▶ $T_1 \leq_{RHR} T_2$ for all $F_1 \leq_{RHR} \cdots \leq_{RHR} F_n$ iff the function

$$H(v_1, \dots, v_n) = \frac{Q_2(v_1, v_1 v_2, \dots, v_1 \dots v_n)}{Q_1(v_1, v_1 v_2, \dots, v_1 \dots v_n)}$$
(2.2)

is increasing in $(0,1)^n$.

 X_1, X_2 independent (IND) $\sim F_1, F_2$.

- ▶ X_1, X_2 independent (IND) $\sim F_1, F_2$.
- $X_{1:2} = \min(X_1, X_2)$ is a GDD with $\bar{Q}_{1:2}(u_1, u_2) = u_1 u_2$.

- ▶ X_1, X_2 independent (IND) $\sim F_1, F_2$.
- $X_{1:2} = \min(X_1, X_2)$ is a GDD with $\bar{Q}_{1:2}(u_1, u_2) = u_1 u_2$.
- $igwedge X_{2:2} = \max(X_1, X_2)$ is a GDD with $Q_{2:2}(u_1, u_2) = u_1 u_2$ and

$$\bar{Q}_{2:2}(u_1,u_2)=1-(1-u_1)(1-u_2)=u_1+u_2-u_1u_2.$$

- \triangleright X_1, X_2 independent (IND) $\sim F_1, F_2$.
- $X_{1:2} = \min(X_1, X_2)$ is a GDD with $\bar{Q}_{1:2}(u_1, u_2) = u_1 u_2$.
- $X_{2:2} = \max(X_1, X_2)$ is a GDD with $Q_{2:2}(u_1, u_2) = u_1 u_2$ and

$$\bar{Q}_{2:2}(u_1,u_2)=1-(1-u_1)(1-u_2)=u_1+u_2-u_1u_2.$$

▶ Does $X_{1:2} \leq_{ST} X_i \leq_{ST} X_{2:2}$ hold for all F_1, F_2 ?

- \triangleright X_1, X_2 independent (IND) $\sim F_1, F_2$.
- $X_{1:2} = \min(X_1, X_2)$ is a GDD with $\bar{Q}_{1:2}(u_1, u_2) = u_1 u_2$.
- $X_{2:2} = \max(X_1, X_2)$ is a GDD with $Q_{2:2}(u_1, u_2) = u_1 u_2$ and

$$\bar{Q}_{2:2}(u_1,u_2)=1-(1-u_1)(1-u_2)=u_1+u_2-u_1u_2.$$

- ▶ Does $X_{1:2} \leq_{ST} X_i \leq_{ST} X_{2:2}$ hold for all F_1, F_2 ?
- ▶ Does $X_{1\cdot 2} <_{HR} X_i <_{HR} X_{2\cdot 2}$ hold for all F_1, F_2 ?

- \triangleright X_1, X_2 independent (IND) $\sim F_1, F_2$.
- $X_{1:2} = \min(X_1, X_2)$ is a GDD with $\bar{Q}_{1:2}(u_1, u_2) = u_1 u_2$.
- $X_{2:2} = \max(X_1, X_2)$ is a GDD with $Q_{2:2}(u_1, u_2) = u_1 u_2$ and

$$\bar{Q}_{2:2}(u_1,u_2)=1-(1-u_1)(1-u_2)=u_1+u_2-u_1u_2.$$

- ▶ Does $X_{1\cdot 2} <_{ST} X_i <_{ST} X_{2\cdot 2}$ hold for all F_1, F_2 ?
- ▶ Does $X_{1:2} \le_{HR} X_i \le_{HR} X_{2:2}$ hold for all F_1, F_2 ?
- ightharpoonup Yes for $X_{1\cdot 2} <_{HR} X_i$ and $X_{1\cdot 2} <_{HR} X_{2\cdot 2}$ for all F_1, F_2 .

- \triangleright X_1, X_2 independent (IND) $\sim F_1, F_2$.
- $X_{1:2} = \min(X_1, X_2)$ is a GDD with $\bar{Q}_{1:2}(u_1, u_2) = u_1 u_2$.
- $X_{2:2} = \max(X_1, X_2)$ is a GDD with $Q_{2:2}(u_1, u_2) = u_1 u_2$ and

$$\bar{Q}_{2:2}(u_1,u_2)=1-(1-u_1)(1-u_2)=u_1+u_2-u_1u_2.$$

- ▶ Does $X_{1\cdot 2} <_{ST} X_i <_{ST} X_{2\cdot 2}$ hold for all F_1, F_2 ?
- ▶ Does $X_{1:2} \le_{HR} X_i \le_{HR} X_{2:2}$ hold for all F_1, F_2 ?
- ightharpoonup Yes for $X_{1\cdot 2} <_{HR} X_i$ and $X_{1\cdot 2} <_{HR} X_{2\cdot 2}$ for all F_1, F_2 .
- No for $X_i <_{HR} X_{2\cdot 2}$ and for all F_1, F_2 .

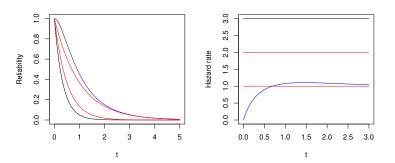


Figure: Reliability (left) and hazard rate (right) functions of $X_{1:2}$ (black), X_i (red) and $X_{2:2}$ (blue) for two exponential distributions.

R code

```
# Reliability functions
R1<-function(t) exp(-t)
R2<-function(t) exp(-2*t)
QIND<-function(u1,u2) u1*u2
G12<-function(t) QIND(R1(t),R2(t))
G22 \leftarrow function(t) R1(t) + R2(t) - G12(t)
curve(G12(x),xlab='t',ylab='Reliability',0,5)
curve(G22(x),add=T,col='blue')
curve(R1(x).add=T.col='red')
curve(R2(x),add=T,col='red')
```

R code

```
#Hazard rate
f1<-function(t) exp(-t)
f2<-function(t) 2*exp(-2*t)
Q1<-function(u,v) v
Q2<-function(u,v) u
g12 < -function(t)f1(t) *Q1(R1(t),R2(t)) + f2(t) *Q2(R1(t),R2(t))
g22 < -function(t) f1(t) + f2(t) - g12(t)
curve(g12(x)/G12(x),xlab='t',ylab='Hazard rate',0,3,
ylim=c(0,3)
curve(g22(x)/G22(x),add=T,col='blue')
curve(f1(x)/R1(x),add=T,col='red')
curve(f2(x)/R2(x).add=T.col='red')
```

▶ X_1, X_2 independent with $F_1 \ge_{HR} F_2$ (ordered components).

- X_1, X_2 independent with $F_1 \ge_{HR} F_2$ (ordered components).
- $X_{2:2} = \max(X_1, X_2)$ is a GDD with $Q_{2:2}(u_1, u_2) = u_1 u_2$ and

$$\bar{Q}_{2:2}(u_1,u_2)=u_1+u_2-u_1u_2.$$

- ▶ X_1, X_2 independent with $F_1 \ge_{HR} F_2$ (ordered components).
- $X_{2:2} = \max(X_1, X_2)$ is a GDD with $Q_{2:2}(u_1, u_2) = u_1 u_2$ and

$$\bar{Q}_{2:2}(u_1,u_2)=u_1+u_2-u_1u_2.$$

▶ Does $X_1 \leq_{HR} X_{2:2}$ hold for all $F_1 \geq_{HR} F_2$?

- ▶ X_1, X_2 independent with $F_1 \ge_{HR} F_2$ (ordered components).
- $X_{2:2} = \max(X_1, X_2)$ is a GDD with $Q_{2:2}(u_1, u_2) = u_1 u_2$ and

$$\bar{Q}_{2:2}(u_1,u_2)=u_1+u_2-u_1u_2.$$

- ▶ Does $X_1 \leq_{HR} X_{2:2}$ hold for all $F_1 \geq_{HR} F_2$?
- $\bar{H}(v_1, v_2) = \frac{\bar{Q}_{2:2}(v_1, v_1 v_2)}{\bar{Q}_1(v_1, v_1 v_2)}$

- ▶ X_1, X_2 independent with $F_1 \ge_{HR} F_2$ (ordered components).
- $X_{2:2} = \max(X_1, X_2)$ is a GDD with $Q_{2:2}(u_1, u_2) = u_1 u_2$ and

$$\bar{Q}_{2:2}(u_1,u_2)=u_1+u_2-u_1u_2.$$

- ▶ Does $X_1 \leq_{HR} X_{2:2}$ hold for all $F_1 \geq_{HR} F_2$?
- $\bar{H}(v_1,v_2) = \frac{\bar{Q}_{2:2}(v_1,v_1v_2)}{\bar{Q}_1(v_1,v_1v_2)}$
- ▶ Does $X_2 \leq_{HR} X_{2:2}$ hold for all $F_1 \geq_{HR} F_2$?

- ▶ X_1, X_2 independent with $F_1 \ge_{HR} F_2$ (ordered components).
- $X_{2:2} = \max(X_1, X_2)$ is a GDD with $Q_{2:2}(u_1, u_2) = u_1 u_2$ and

$$\bar{Q}_{2:2}(u_1,u_2)=u_1+u_2-u_1u_2.$$

- ▶ Does $X_1 \leq_{HR} X_{2:2}$ hold for all $F_1 \geq_{HR} F_2$?
- $\bar{H}(v_1, v_2) = \frac{\bar{Q}_{2:2}(v_1, v_1 v_2)}{\bar{Q}_1(v_1, v_1 v_2)}$
- ▶ Does $X_2 \leq_{HR} X_{2:2}$ hold for all $F_1 \geq_{HR} F_2$?
- $\bar{H}(v_1, v_2) = \frac{\bar{Q}_{2:2}(v_1, v_1 v_2)}{\bar{Q}_2(v_1, v_1 v_2)}$

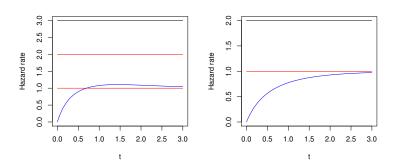


Figure: Hazard rate functions of $X_{1:2}$ (black), X_i (red) and $X_{2:2}$ (blue) for two exponential distributions with hazard rates 1, 2 (left) and 1, 1 (right).

- $X \ge 0$ (lifetime).
- $X_t = (X t | X > t)$ (residual lifetime) for $t \ge 0$.

- $X \ge 0$ (lifetime).
- $X_t = (X t | X > t)$ (residual lifetime) for $t \ge 0$.
- ▶ X is Increasing (Decreasing) Failure Rate, IFR (DFR), if $X_s \ge_{ST} X_t$ (\le_{ST}) for all $0 \le s \le t$ (or h_X increases).

- $X \ge 0$ (lifetime).
- $X_t = (X t | X > t)$ (residual lifetime) for $t \ge 0$.
- ▶ X is Increasing (Decreasing) Failure Rate, IFR (DFR), if $X_s \ge_{ST} X_t$ (\le_{ST}) for all $0 \le s \le t$ (or h_X increases).
- ▶ X is New Better (Worse) than Used, NBU (NWU), if $X \ge_{ST} X_t$ (\le_{ST}) for all $t \ge 0$.

- X ≥ 0 (lifetime).
- $X_t = (X t | X > t)$ (residual lifetime) for t > 0.
- X is Increasing (Decreasing) Failure Rate, IFR (DFR), if $X_s \ge_{ST} X_t \ (\le_{ST})$ for all $0 \le s \le t$ (or h_X increases).
- X is New Better (Worse) than Used, NBU (NWU), if $X>_{ST}X_t$ (\leq_{ST}) for all t>0.
- X is Increasing (Decreasing) Failure Rate Average, IFRA (DFRA), if $A(t) = \frac{1}{t} \int_0^t h(x) dx = -\frac{1}{t} \ln \bar{F}(t)$ is increasing (decreasing) (or $\bar{F}(ct) > \bar{F}^c(t)$, 0 < c < 1) for all t > 0.

- X ≥ 0 (lifetime).
- $X_t = (X t | X > t)$ (residual lifetime) for t > 0.
- X is Increasing (Decreasing) Failure Rate, IFR (DFR), if $X_s \ge_{ST} X_t \ (\le_{ST})$ for all $0 \le s \le t$ (or h_X increases).
- X is New Better (Worse) than Used, NBU (NWU), if $X>_{ST}X_t$ (\leq_{ST}) for all t>0.
- X is Increasing (Decreasing) Failure Rate Average, IFRA (DFRA), if $A(t) = \frac{1}{t} \int_0^t h(x) dx = -\frac{1}{t} \ln \bar{F}(t)$ is increasing (decreasing) (or $\bar{F}(ct) \ge \bar{F}^c(t)$, 0 < c < 1) for all $t \ge 0$.
- X is Increasing (Decreasing) Likelihood Ratio, ILR (DLR), if $X_s \ge_{LR} X_t \ (\le_{LR})$ for all $0 \le s \le t$ (or f is logconcave).

Preservation of aging classes in DD Preservation of aging classes in GDD

Main among the main aging classes

ILR
$$\Rightarrow$$
 IFR \Rightarrow IFRA \Rightarrow NBU

DIR \Rightarrow^* DFR \Rightarrow DFRA \Rightarrow NWU

Table: Relationships among the main aging classes (* when the support is (a, ∞) .).

Theorem

Let $F_q = q(F)$ and $\alpha(u) = u\bar{q}'(u)/\bar{q}(u)$. Then:

▶ The IFR (DFR) class is preserved by q iff α is decreasing (increasing) for $u \in (0,1)$.

Theorem

Let $F_q = q(F)$ and $\alpha(u) = u\bar{q}'(u)/\bar{q}(u)$. Then:

- ► The IFR (DFR) class is preserved by q iff α is decreasing (increasing) for $u \in (0,1)$.
- ► The NBU (NWU) class is preserved by q iff \(\bar{q}\) is submultiplicative (supermultiplicative), that is,

$$\bar{q}(uv) \le \bar{q}(u)\bar{q}(v), \ (\ge) \text{ for all } u,v \in [0,1].$$
 (3.1)

Theorem

Let $F_q = q(F)$ and $\alpha(u) = u\bar{q}'(u)/\bar{q}(u)$. Then:

- ► The IFR (DFR) class is preserved by q iff α is decreasing (increasing) for $u \in (0,1)$.
- ▶ The NBU (NWU) class is preserved by q iff \bar{q} is submultiplicative (supermultiplicative), that is,

$$\bar{q}(uv) \le \bar{q}(u)\bar{q}(v), \ (\ge) \text{ for all } u,v \in [0,1].$$
 (3.1)

▶ The IFRA (DFRA) class is preserved by q iff q̄ satisfies

$$\bar{q}(u^c) \ge (\bar{q}(u))^c, \ (\le) \text{ for all } u, c \in [0, 1].$$
 (3.2)

If F is absolutely continuous and ILR and there exists $u_0 \in [0,1]$ such that $\beta(u) = u\bar{q}''(u)/\bar{q}'(u)$ is non-negative and decreasing in $[0,u_0]$ and $\bar{\beta}(u) = (1-u)\bar{q}''(u)/\bar{q}'(u)$ is non-positive and decreasing in $[u_0,1]$, then F_q is ILR.

Reverse results: If F_q is IFR and α is increasing, then F is also IFR.

- Reverse results: If F_q is IFR and α is increasing, then F is also IFR.
- If both IFR and DFR classes are preserved, then α is constant in (0,1) and so $\bar{q}(u)=u^c$ holds for $u\in[0,1]$ and c>0.

- ▶ Reverse results: If F_q is IFR and α is increasing, then F is also IFR.
- ▶ If both IFR and DFR classes are preserved, then α is constant in (0,1) and so $\bar{q}(u) = u^c$ holds for $u \in [0,1]$ and c > 0.
- ▶ If α is increasing (or decreasing) but it is not constant, then just the DFR (IFR) class is preserved.

- ▶ Reverse results: If F_q is IFR and α is increasing, then F is also IFR.
- ▶ If both IFR and DFR classes are preserved, then α is constant in (0,1) and so $\bar{q}(u) = u^c$ holds for $u \in [0,1]$ and c > 0.
- ▶ If α is increasing (or decreasing) but it is not constant, then just the DFR (IFR) class is preserved.
- lacksquare If lpha is not monotone, then neither of them are preserved.

▶ If the IFR class is preserved, then the NBU class is also preserved.

- ▶ If the IFR class is preserved, then the NBU class is also preserved.
- ▶ If the DFR class is preserved, then the NWU class is also preserved.

- ▶ If the IFR class is preserved, then the NBU class is also preserved.
- ▶ If the DFR class is preserved, then the NWU class is also preserved.
- ▶ If the IFR class is preserved, then the IFRA class is also preserved.

- ▶ If the IFR class is preserved, then the NBU class is also preserved.
- ▶ If the DFR class is preserved, then the NWU class is also preserved.
- ▶ If the IFR class is preserved, then the IFRA class is also preserved.
- ▶ If the DFR class is preserved, then the DFRA class is also preserved.

- ▶ If the IFR class is preserved, then the NBU class is also preserved.
- ▶ If the DFR class is preserved, then the NWU class is also preserved.
- ▶ If the IFR class is preserved, then the IFRA class is also preserved.
- ▶ If the DFR class is preserved, then the DFRA class is also preserved.
- The conditions for the IFR/DFR classes are quite strong, while the conditions for the NBU/NWU and IFRA/DFRA classes a mild.

 $X_1, X_2 \text{ IID} \sim F$, $X_{1:2} = \min(X_1, X_2)$ and $X_{2:2} = \max(X_1, X_2)$.

- $X_1, X_2 \text{ IID} \sim F$, $X_{1:2} = \min(X_1, X_2)$ and $X_{2:2} = \max(X_1, X_2)$.
- ► Then $\bar{q}_{1:2}(u) = u^2$ for $u \in [0,1]$ and $\alpha_{1:2}(u) = 2$. Hence all the classes are preserved!

- $X_1, X_2 \text{ IID} \sim F$, $X_{1:2} = \min(X_1, X_2)$ and $X_{2:2} = \max(X_1, X_2)$.
- ► Then $\bar{q}_{1:2}(u) = u^2$ for $u \in [0,1]$ and $\alpha_{1:2}(u) = 2$. Hence all the classes are preserved!
- ► Then $\bar{q}_{2:2}(u) = 2u u^2$ for $u \in [0, 1]$ and

$$\alpha_{2:2}(u) = \frac{u\bar{q}'_{2:2}(u)}{\bar{q}_{2:2}(u)} = \frac{2-2u}{2-u}.$$

- $X_1, X_2 \text{ IID} \sim F, X_{1\cdot 2} = \min(X_1, X_2) \text{ and } X_{2\cdot 2} = \max(X_1, X_2).$
- ▶ Then $\bar{q}_{1\cdot 2}(u) = u^2$ for $u \in [0,1]$ and $\alpha_{1\cdot 2}(u) = 2$. Hence all the classes are preserved!
- ► Then $\bar{q}_{2,2}(u) = 2u u^2$ for $u \in [0,1]$ and

$$\alpha_{2:2}(u) = \frac{u\bar{q}'_{2:2}(u)}{\bar{q}_{2:2}(u)} = \frac{2-2u}{2-u}.$$

As $\alpha_{2\cdot 2}$ is strictly decreasing, then IFR, NBU and IFRA classes are preserved and DFR, NWU and DFRA are not.

Preservation of IFR/DFR. Example 1.

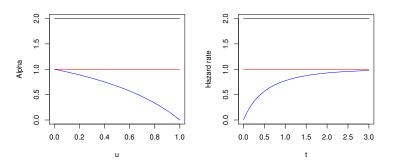


Figure: Alpha function (left) and hazard rate (right) functions of $X_{1:2}$ (black), X_i (red) and $X_{2:2}$ (blue) for a standard exponential distribution.

Theorem

Let
$$F_Q = Q(F_1, ..., F_n)$$
, $\mathbf{u} = (u_1, ..., u_n)$ and $\alpha_i(\mathbf{u}) = u_i \partial_i \bar{Q}(\mathbf{u}) / \bar{Q}(\mathbf{u})$. Then:

If $\alpha_1, \ldots, \alpha_n$ are decreasing (increasing) for $u_1, \ldots, u_n \in (0, 1)$ and $i = 1, \ldots, n$, then the IFR (DFR) class is preserved.

Theorem

Let
$$F_Q = Q(F_1, ..., F_n)$$
, $\mathbf{u} = (u_1, ..., u_n)$ and $\alpha_i(\mathbf{u}) = u_i \partial_i \bar{Q}(\mathbf{u}) / \bar{Q}(\mathbf{u})$. Then:

- If $\alpha_1, \ldots, \alpha_n$ are decreasing (increasing) for $u_1, \ldots, u_n \in (0,1)$ and $i = 1, \ldots, n$, then the IFR (DFR) class is preserved.
- ▶ The NBU (NWU) class is preserved by Q if \bar{Q} is submultiplicative (supermultiplicative), that is,

$$\bar{Q}(u_1v_1,\ldots,u_nv_n) \leq \bar{Q}(u_1,\ldots,u_n)\bar{Q}(v_1,\ldots,v_n), \ (\geq) \ u_i,v_i \in [0,1].$$

Theorem

Let
$$F_Q = Q(F_1, ..., F_n)$$
, $\mathbf{u} = (u_1, ..., u_n)$ and $\alpha_i(\mathbf{u}) = u_i \partial_i \bar{Q}(\mathbf{u}) / \bar{Q}(\mathbf{u})$. Then:

- If $\alpha_1, \ldots, \alpha_n$ are decreasing (increasing) for $u_1, \ldots, u_n \in (0,1)$ and $i = 1, \ldots, n$, then the IFR (DFR) class is preserved.
- ▶ The NBU (NWU) class is preserved by Q if \bar{Q} is submultiplicative (supermultiplicative), that is,

$$\bar{Q}(u_1v_1,\ldots,u_nv_n) \leq \bar{Q}(u_1,\ldots,u_n)\bar{Q}(v_1,\ldots,v_n), \ (\geq) \ u_i,v_i \in [0,1].$$

▶ The IFRA (DFRA) class is preserved by Q if \bar{Q} satisfies

$$\bar{Q}(u_1^c, \ldots, u_n^c) \ge (\bar{Q}(u_1, \ldots, u_n))^c, \ (\le) \ u_i, c \in [0, 1].$$

▶ If the IFR class is preserved, then the NBU class is also preserved.

- ▶ If the IFR class is preserved, then the NBU class is also preserved.
- ▶ If the DFR class is preserved, then the NWU class is also preserved.

- ▶ If the IFR class is preserved, then the NBU class is also preserved.
- ▶ If the DFR class is preserved, then the NWU class is also preserved.
- ▶ If the IFR class is preserved, then the IFRA class is also preserved.

- ▶ If the IFR class is preserved, then the NBU class is also preserved.
- ▶ If the DFR class is preserved, then the NWU class is also preserved.
- ▶ If the IFR class is preserved, then the IFRA class is also preserved.
- ▶ If the DFR class is preserved, then the DFRA class is also preserved.

- ▶ If the IFR class is preserved, then the NBU class is also preserved.
- ▶ If the DFR class is preserved, then the NWU class is also preserved.
- ▶ If the IFR class is preserved, then the IFRA class is also preserved.
- ▶ If the DFR class is preserved, then the DFRA class is also preserved.
- The conditions for the IFR/DFR classes are really strong, while the conditions for the NBU/NWU and IFRA/DFRA classes a mild.

 $X_1, X_2 \text{ IND} \sim F_1, F_2, X_{1:2} = \min(X_1, X_2).$

- $X_1, X_2 \text{ IND} \sim F_1, F_2, X_{1:2} = \min(X_1, X_2).$
- ▶ Then $\bar{Q}_{1:2}(u_1,u_2)=u_1u_2$ and

$$\alpha_1(u_1, u_2) = u_1 \frac{\partial_1 \bar{Q}_{1:2}(u_1, u_2)}{\bar{Q}_{1:2}(u_1, u_2)} = 1$$

and $\alpha_2(u_1, u_2) = 1$.

- $X_1, X_2 \text{ IND} \sim F_1, F_2, X_{1:2} = \min(X_1, X_2).$
- ▶ Then $\bar{Q}_{1:2}(u_1,u_2) = u_1u_2$ and

$$\alpha_1(u_1, u_2) = u_1 \frac{\partial_1 Q_{1:2}(u_1, u_2)}{\bar{Q}_{1:2}(u_1, u_2)} = 1$$

and $\alpha_2(u_1, u_2) = 1$.

As α_i are constant, all the aging classes IFR, NBU, IFRA, DFR, NWU, and DFRA are preserved.

- $X_1, X_2 \text{ IND} \sim F_1, F_2, X_{1:2} = \min(X_1, X_2).$
- ▶ Then $\bar{Q}_{1:2}(u_1,u_2) = u_1u_2$ and

$$\alpha_1(u_1, u_2) = u_1 \frac{\partial_1 Q_{1:2}(u_1, u_2)}{\bar{Q}_{1:2}(u_1, u_2)} = 1$$

and $\alpha_2(u_1, u_2) = 1$.

- As α_i are constant, all the aging classes IFR, NBU, IFRA, DFR, NWU, and DFRA are preserved.
- ▶ If $X_{2:2} = \max(X_1, X_2)$, then $Q_{2:2}(u_1, u_2) = u_1 + u_2 u_1 u_2$ and

$$\alpha_1(u_1, u_2) = u_1 \frac{\partial_1 \bar{Q}_{2:2}(u_1, u_2)}{\bar{Q}_{2:2}(u_1, u_2)} = \frac{u_1(1 - u_2)}{u_1 + u_2 - u_1 u_2}$$

is not monotone. IFR and DFR are not preserved because

Preservation of IFR/DFR. Example 2.

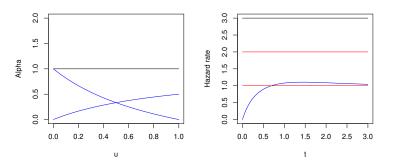


Figure: Alpha function $\alpha_1(0.5, u)$ and $\alpha_1(u, 0.5)$ (left) and hazard rate (right) functions of $X_{1:2}$ (black), X_i (red) and $X_{2:2}$ (blue) for two exponential distributions.

▶ The DFR class is preserved in mixtures.

- ▶ The DFR class is preserved in mixtures.
- ▶ However $\alpha_1, \ldots, \alpha_n$ are not monotone.

- The DFR class is preserved in mixtures.
- ▶ However $\alpha_1, \ldots, \alpha_n$ are not monotone.
- Therefore, some preservations are not detected by the above conditions.

- The DFR class is preserved in mixtures.
- ▶ However $\alpha_1, \ldots, \alpha_n$ are not monotone.
- Therefore, some preservations are not detected by the above conditions.
- For example, if $\bar{F}(t) = p\bar{F}_1(t) + (1-p)\bar{F}_2(t)$, with $\bar{F}_i(t) = \exp(-it)$ for $t \ge 0$ and i = 1, 2, then

$$h(t) = \frac{pe^{-t} + 2(1-p)e^{-2t}}{pe^{-t} + (1-p)e^{-2t}}, \ t \ge 0.$$

Preservation of IFR/DFR in Mixtures

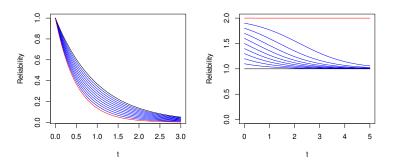


Figure: Reliability functions (left) and hazard rate (right) functions of a mixture of two exponential distributions with hazard rates 1 (black) and 2 (red) and $p = 0.1, \ldots, 0.9$ (blue).

References

- Navarro, J. (2016). Stochastic comparisons of generalized mixtures and coherent systems. *Test* 25, 150–169.
- Navarro, J. and del Águila, Y. (2017). Stochastic comparisons of distorted distributions, coherent systems and mixtures with ordered components. *Metrika* 80, 627-648
- Navarro, J., del Águila, Y., Sordo, M.A. and Suárez-Llorens, A. (2013). Stochastic ordering properties for systems with dependent identically distributed components. Applied Stochastic Models in Business and Industry 29, 264–278.
- Navarro, J., del Águila, Y., Sordo, M.A. and Suárez-Llorens, A. (2014).

 Preservation of reliability classes under the formation of coherent systems.

 Applied Stochastic Models in Business and Industry 30, 444–454.
- Navarro, J., del Águila, Y., Sordo, M.A. and Suárez-Llorens, A. (2016).

 Preservation of stochastic orders under the formation of generalized distorted distributions. Applications to coherent systems. Methodology and Computing in Applied Probability 18, 529–545.

- Navarro, J. and Gomis, M.C. (2016). Comparisons in the mean residual life order of coherent systems with identically distributed components. *Applied Stochastic Models in Business and Industry* 32, 33–47.
- Hürlimann, W. (2004). Distortion risk measures and economic capital. *North American Actuarial Journal* 8, 86–95.
- Wang, S. (1996). Premium calculation by transforming the layer premium density. Astin Bulletin 26, 71-92.
- Yaari, M.E. (1987). The dual theory of choice under risk. *Econometrica* 55, 95–115.

The slides and more references can be seen in my webpage:

https://webs.um.es/jorgenav/miwiki/doku.php

Exercises

- 1. Prove that if q is a distortion function, then F_q is a proper distribution function for all F.
- 2. Provide a valid distortion function of dimension 1.
- 3. Prove that if Q is a distortion function, then F_Q is a proper distribution function for all F.
- 4. Provide a valid distortion function of dimension n > 1.
- 5. Compute the distortion functions of the median $X_{2:3}$.
- 6. Compute the distortion function of a fifty-fifty mixture of \bar{F} and \bar{F}^2 .
- 7. Compute the distortion functions of the parallel system $X_{2:2} = \max(X_1, X_2)$ for a copula C. What happen if X_1 and X_2 are ID?

- 8. Find a distortion function that is not a copula.
- 9. Compare the order statistics $X_{2:3}$ and $X_{3:3}$ (IID case).
- 10. Study which aging classes are preserved by the median $X_{2\cdot3}$ (IID case).
- 11. Study which aging classes are preserved by a fifty-fifty mixture of \bar{F} and \bar{F}^2 .
- 12. Prove that the NBU class is preserved by $X_{2\cdot 2}$ in the IID case.
- 13. Prove that the NBU class is preserved by $X_{2\cdot 2}$ in the IND case.
- 14. Study which classes are preserved by $X_{2\cdot 2}$ in the ID case for a copula C.

Distorted distributions Stochastic comparisons Preservation of aging classes References

► That's all.

Distorted distributions Stochastic comparisons Preservation of aging classes References

- ▶ That's all.
- Thank you for your attention!!

Distorted distributions Stochastic comparisons Preservation of aging classes References

- ► That's all.
- Thank you for your attention!!
- Questions?