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v

Hazard rate (HR) or failure rate (FR) function
h(t) = f(t)/F(t), when F(t) > 0.
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Distorted distributions

» The distorted distributions were introduced by Wang (1996)
and Yaari (1987) in the context of theory of choice under risk.

» The purpose was to allow a “distortion” (a change) of the
initial (or past) risk distribution function.

» Definition
The distorted distribution (DD) associated to a distribution
function (DF) F and to an increasing continuous distortion function
q : [0,1] — [0, 1] such that g(0) =0 and g(1) =1, is given by

Fo(t) = q(F(t)), for all t € R. (1.1)
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Properties

» If g is a distortion function, then Fg is a proper distribution
function for all distribution functions F.

» If g is an strictly increasing distortion function, then Fg has
the same support of F.
» From (1.1), F=1—F and F, = 1 — F, satisfy

Fo(t) = G(F(t)), for all t € R, (1.2)

where g(u) :=1— q(1 — u) is called the dual distortion
function in Hiirlimann (2004).
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Properties

» If g is a distortion function, then Fg is a proper distribution
function for all distribution functions F.

» If g is an strictly increasing distortion function, then Fg has
the same support of F.

» From (1.1), F=1—F and F, = 1 — F, satisfy
Fq(t) = G(F(t)), for all t € R, (1.2)

where g(u) :=1— q(1 — u) is called the dual distortion
function in Hiirlimann (2004).

(1.1) and (1.2) are equivalent.

v

Jorge Navarro, SMCS 2021 Universidad de Murcia.  6/51



Distorted distributions Definitions
Examples
Copulas
Series and parallel systems

Properties

» The PDF of Fy is
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Properties

» The PDF of Fy is

fa(t) = g (F(1)f(t) = G (F(1))f(t).

» The hazard rate of Fy is

7(F(1))
a(F (1))

where h is the hazard rate of F and

hq(t) = f(t) = a(F(t))h(t),

 ug(w)
o) = 0w

, u€e0,1].
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Generalized distorted distributions

» The concept of distorted distributions was extended in
Navarro, del Aguila, Sordo and Suarez-Llorens (2016) as

follows.
» Definition
The generalized distorted distribution (GDD) associated to n
distribution functions F1,..., F, and to an increasing continuous

distortion function Q : [0,1]” — [0, 1] such that Q(0,...,0) =0
and Q(1,...,1) =1, is given by

Fo(t) = Q(Fi(t),. .., Fa(t)), for all t € R. (1.3)
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Properties

» If Q is a distortion function, then Fg is a proper distribution
function for all distribution functions Fy, ..., F,.

» From (1.3), F,=1—F; and I:_Q =1 — Fg satisfy
Fo(t) = Q(Fi(t),..., Fu(t)), forall t € R, (1.4)

where Q(ul, coytn) i =1—=Q(1—u1,...,1— up)is called the
dual distortion function.
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Properties

» The PDF of Fg is

fo(t) = > F(D0QFL(E), ... Fa(t)) = 3 K1) QFL(2), ..., Fal(1))-
i=1 i=1
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Properties

» The PDF of Fg is
fo(t) = Z fi(£)0;Q(Fi(t), ..., Fa(t)) = Z f(£)0iQ(Fi(t), ..., Fa(t)).
i=1 i=1

» The hazard rate of Fy is

n

R0 QR(), L Fa(t) L Nz = _
ho(t) = ; GG, - Py 0= ga,(ﬁ(t),-..,Fn(t))h,(t),

where h; is the hazard rate of F; and

u,-@,-C_)(ul,...,u,,)

— , upe0,1],i=1,...,n.
Q(u1,...,up) [0.1]

aj(u) =
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Examples of distorted distributions: PHR.

» Proportional Hazard Rate (PHR) Cox model
Fo(t) = FO(t),t € R,

where 6 > 0 is a risk (hazard) measure.
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Examples of distorted distributions: PHR.

» Proportional Hazard Rate (PHR) Cox model
Fo(t) = FO(t),t € R,

where 6 > 0 is a risk (hazard) measure.

» It is a distorted distribution with g(u) = u? and
q(u) =1— (1 —u)? for uc[0,1].

» Its PDF is fy(t) = OF91(t)f(¢).

» lIts hazard rate is

FO-1(¢)

hg(t) =0 F_a(t)

f(t) = 0h(t),

that is, ag(u) = 0 for u € [0, 1].
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Examples of distorted distributions: PRHR.

» Proportional Reversed Hazard Rate (PRHR) model
Fo(t) = FO(t),t € R, 6 > 0.
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Examples of distorted distributions: PRHR.

» Proportional Reversed Hazard Rate (PRHR) model
Fo(t) = FO(t),t € R, 6 > 0.
» It is a distorted distribution with g(u) = u’ and
g(u) =1— (1 —u)? for u € [0,1].
» Its PDF is fy(t) = OF01(t)f(¢).
» Its hazard rate is

_OF(1) B
ho(t) = Wf( ) = ap(F(t))h(t),
that is, ap(u) = % for u € [0,1].
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Examples of distorted distributions: PRHR.

» Proportional Reversed Hazard Rate (PRHR) model
Fo(t) = FO(t),t € R, 6 > 0.
» It is a distorted distribution with g(u) = u’ and
g(u) =1— (1 —u)? for u € [0,1].
» Its PDF is fy(t) = OF01(t)f(¢).
» Its hazard rate is

OF?~1(t)
h =—— 7’1 _f(t) = h(t
G(t) 1_ (1 _ F(t))0 ( ) Oég( (t)) ( )7
that is, ap(u) = % for u € [0,1].
> |ts reversed hazard rate is
N O
hy(t) = = 60h(t).
0( ) Fg(t) ( )
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» Sample: Xi,..., X, lID with distribution F.
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Examples of distorted distributions: Order statistics.

» Sample: Xi,..., X, lID with distribution F.
» Xi.n,...Xn.n the ordered values.
» Then

Fonlt) () Fiwric.
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Examples of distorted distributions: Order statistics.

» Sample: Xi,..., X, lID with distribution F.
» Xi.n,...Xn.n the ordered values.
» Then
B i1\
Fin(t) = Z ( ) FI(t)F"(t).
=0V
» It is a distorted distribution with
i-1
n . .
Gin) = 3 ( .)(1 oy
— \J
Jj=0
and
n n . .
qi:n\U) = (1= )"
=3 (7)wa-u
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Examples of distorted distributions: Order statistics.

» Sample: Xi,..., X, lID with distribution F.
» Xi.n,...Xn.n the ordered values.
» Then
B i1\
Fin(t) = Z ( ) FI(t)F"(t).
=0V
» It is a distorted distribution with
i-1
n . .
Gin) = 3 ( .)(1 oy
— \J
Jj=0
and
n n . .
qi:n\U) = (1= )"
=3 (7)wa-u

» Note that both are polynomials.
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» Particular cases:
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Examples of distorted distributions: Order statistics.

» Particular cases:
> X1;n = min(Xl, e ,Xn) with

n

Fr.a(t) = (0) FO(t)F=0(t) = F(¢)

for n=1,..., n which belongs to the PHR model.
» Its hazard rate is hy.,(t) = nh(t).
> Xp:n = max(Xy, ..., Xy,) with

Funlt) = (1) F(OF(0) = ()

for n=1,...,n which belongs to the PRHR model.
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Examples of generalized distorted distributions: Average.

» The arithmetic mean or average distribution

_R()+ o+ (1)

Fa(t) ,teR.
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» The arithmetic mean or average distribution

_ RO+ AR, e

Fa(t)

» Then _
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Examples of generalized distorted distributions: Average.

» The arithmetic mean or average distribution

R GESRE 10

,t € R.
» Then

_ =
Fa(t) = ,t € R.
> It is a generalized distorted distribution with

— u+...+u
Qui,...,un) = Quy, ... up) = ——"2" ... up € [0,1].

n
» lts PDF is
fi(t) 4 -+ fu(t)

n

fot) =

,teR.

Jorge Navarro, SMCS 2021 Universidad de Murcia.  15/51



Distorted distributions Definitions
Examples
Copulas
Series and parallel systems

Examples of generalized distorted distributions: Geometric
mean.

» The geometric mean distribution
Fema(t) = (Fi(t) ... Fa(t)Y" t € R.
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Examples of generalized distorted distributions: Geometric
mean.

» The geometric mean distribution
Fema(t) = (Fi(t) ... Fa(t)Y" t € R.

» The geometric mean reliability

Famr(t) = (Fa(t) ... Fa(t))"

,teR.
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Examples of generalized distorted distributions: Geometric
mean.

» The geometric mean distribution

Fema(t) = (Fi(t) ... Fa(t)Y" t € R.
» The geometric mean reliability

Femr(t) = (Fu(t)... Fa(t))
» They are generalized distorted distribution with

Un teR.

Qgmd(u1, ... up) = (ur... u,,)l/”, ui,...,up € [0,1]
and
ng,(ul, coyup) = (u1... u,,)l/", ui,...,un €[0,1],

respectively.
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Examples of generalized distorted distributions: Mixtures.

» The mixture distribution
Fp(t) = plFl(t) + o+ PnFn(t)7 teR,
where p = (p1,...,pn), pi > 0and py +--- 4 p, = 1.
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Examples of generalized distorted distributions: Mixtures.

» The mixture distribution
Fp(t) = plFl(t) + o+ PnFn(t)7 teR,

where p=(p1,...,pn), pi>0and p1 + -+ p, = 1.
» Then ) ) B
Fp(t)=p1F1(t)+"'+PnFn(t)7tGR-
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Examples of generalized distorted distributions: Mixtures.

» The mixture distribution
Fp(t) = plFl(t) + o+ pnFn(t)7 teR,

where p=(p1,...,pn), pi>0and p1 + -+ p, = 1.
» Then ) ) B
Fp(t):plFl(t)+"'+PnFn(t)7teR-

» |t is a generalized distorted distribution with

Q(ui,...,up) = Q(u1,...,up) = prui~+---+patn, u; €[0,1].
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Examples of generalized distorted distributions: Mixtures.

» The mixture distribution
Fp(t) = plFl(t) + o+ pnFn(t)7 teR,

where p = (p1,...,pn), pi > 0and py +--- 4 p, = 1.
» Then ) ) )
Fp(t) = plFl(t) + o+ PnFn(t)7 teR.
» |t is a generalized distorted distribution with

Q(u1,...,up) = Q(u1,...,un) = prur+---+pptp, u; €[0,1].
» Its PDF is fo(t) = p1fi(t) + -+ pafa(t), t € R.
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Examples of generalized distorted distributions: Mixtures.

» The mixture distribution
Fp(t) = plFl(t) + o+ pnFn(t)7 teR,

where p = (p1,...,pn), pi>0and py +-- -+ p, = 1.
Then

v

F_P(t) = plﬁl(t) +e +Pn,:_n(t)7 teR.

» |t is a generalized distorted distribution with

Qur,...,up) = Q(ur,...,up) = prur—+---+ppun, u; €[0,1].

» Its PDF is fy(t) = p1f(t) + -+ pafa(t), t € R.
» lts HR is
ho(t) = wi(t)he(t) + - + wa(t)ha(t), wi(t) = pﬁf(g) > 0.

Jorge Navarro, SMCS 2021 Universidad de Murcia.  17/51



Distorted distributions Definitions
Examples
Copulas
Series and parallel systems

Examples of generalized distorted distributions: GPHR.

» The generalized proportional hazard rate (GPHR) model
Fo(t) = FA(t)... FP"(t),t € R,
where p = (p1,...,pn), pi > 0.
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» The generalized proportional hazard rate (GPHR) model
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Examples of generalized distorted distributions: GPHR.

» The generalized proportional hazard rate (GPHR) model
Fo(t) = FA(t)... FP"(t),t € R,
where p = (p1,...,pn), pi > 0.
» It is a generalized distorted distribution with
Q(ur,...,up) =uf* .. uPr, v €0,1].
» The generalized proportional reversed hazard rate (GPRHR)

model
Fp(t) = ,_—1p1(t) ...FP(t),t eR,

where p = (p1,...,pn), pi > 0.
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Examples of generalized distorted distributions: GPHR.

» The generalized proportional hazard rate (GPHR) model
Fo(t) = FA(t)... FP"(t),t € R,

where p = (p1,...,pn), pi > 0.
» It is a generalized distorted distribution with

Q(ur,...,up) =uf* .. uPr, v €0,1].

» The generalized proportional reversed hazard rate (GPRHR)
model

Fo(t) = FP(t) ... FP2(t),t € R,

where p = (p1,...,pn), pi > 0.
» |t is a generalized distorted distribution with

Q(ut, ..., up) =uf* .. ub", u; €10,1].
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Copula representation

» (Xi,...,X,) random vector with joint distribution

F(x1,...,%xn) = Pr(X1 < xq,..., X5 < xp).
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Copulas
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Copula representation

» (Xi,...,X,) random vector with joint distribution
F(x1,...,%xn) = Pr(X1 < xq,..., X5 < xp).
» Marginal distributions

Fi(xi)=Pr(Xi < x;))= lim  F(x1,...,%n).

xj—r00, Vj#i
» Sklar’'s theorem: There exist a copula C such that
F(xi,...,xn) = C(F1(x1),. .., Fo(xn)), Xx1,-..,Xxn € R.

Moreover, if Fy,..., F, are continuous, then C is unique.

» A copula C is a multivariate distribution function with uniform
marginals over the interval (0, 1).

> Note that we just need C in [0, 1]".
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Survival copula representation

» (Xi,...,X,) with joint reliability (survival) function

F(x1,- -, %n) = Pr(X1 > x1,..., Xn > xp).
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Survival copula representation

» (Xi,...,X,) with joint reliability (survival) function
F(x1,- -, %n) = Pr(X1 > x1,..., Xn > xp).
» Marginal reliability functions

Fi(x;) = Pr(X; > x;) = lim  F(x1,..., %)

Xj——00, Vj#i

» Sklar's theorem: There exist a copula C (called survival
copula) such that

F(xt,...,%n) = C(FL(x1), - -, Fa(xn))s Xis-.-,%n € R.

Moreover, if F1,..., F, are continuous, then C is unique.
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Distorted distributions Definitions
Examples
Copulas
Series and parallel systems

Survival copula representation

» (Xi,...,X,) with joint reliability (survival) function
F(x1,- -, %n) = Pr(X1 > x1,..., Xn > xp).
» Marginal reliability functions

Fi(x;) = Pr(X; > x;) = lim  F(x1,..., %)

Xj——00, Vj#i

» Sklar's theorem: There exist a copula C (called survival
copula) such that

F(xt,...,%n) = C(FL(x1), - -, Fa(xn))s Xis-.-,%n € R.

Moreover, if Fi,. .., F, are continuous, then Cis unique.
» Cis a copula (distribution), not a survival function.
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» Lifetime of a parallel system Xp., = max(Xi, ..., Xy).
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Parallel systems

» Lifetime of a parallel system Xp., = max(Xi, ..., Xy).

» Its distribution function is

Fon(t) = Pr(Xnpn <t)=Pr(X1 <t,..., X, <t)=F(t,...,t).
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» lts distribution function is

Fon(t) = Pr(Xnpn <t)=Pr(X1 <t,..., X, <t)=F(t,...,t).
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Parallel systems

» Lifetime of a parallel system Xp., = max(Xi, ..., Xy).
» lts distribution function is

Fon(t) = Pr(Xnpn <t)=Pr(X1 <t,..., X, <t)=F(t,...,t).
» Then

Frn(t) = C(Fi(t), ..., Fa(t)), t €R.

» It is a generalized distorted distribution from Fy,..., F, with
Qn:n =C.

All the copulas are distortion functions.
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Distorted distributions Definitions
Examples
Copulas
Series and parallel systems

Parallel systems

» Lifetime of a parallel system Xp., = max(Xi, ..., Xy).

» lts distribution function is
Fon(t) = Pr(Xnpn <t)=Pr(X1 <t,..., X, <t)=F(t,...,t).

» Then
Frn(t) = C(Fi(t), ..., Fa(t)), t €R.
» It is a generalized distorted distribution from Fy,..., F, with
Qn:n = C.
» All the copulas are distortion functions.

» The reverse is not true.
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Series systems

» Lifetime of a series system Xi., = min(Xy, ..., X,).
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Distorted distributions Definitions
Examples
Copulas
Series and parallel systems

Series systems

» Lifetime of a series system Xi., = min(Xy, ..., X,).
> |ts reliability function is
Fin(t) =Pr( Xy, >1t) =Pr(Xy > t,..., X, > t) =F(t,...,t).
» Then B L )
Fi.n(t) = C(Fi(t), ..., Fa(t)), t € R.
> It is a generalized distorted distribution from Fi,. .., F, with

Ql:n = C.
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Main stochastic orders
Comparisons of distorted distributions
Comparisons of generalized distorted distributions

Stochastic comparisons

Main stochastic orderings

» Stochastic order: X <s7 Y < Fx(t) < Fy(t).
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Main stochastic orderings

» Stochastic order: X <s7 Y & l:')g(t)_g Fy(t).
» Hazard rate order: X <yr Y < Fy/Fx increases (or
hx > hy).
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Main stochastic orders
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Comparisons of generalized distorted distributions

Stochastic comparisons

Main stochastic orderings

» Stochastic order: X <s7 Y & l:')g(t)_g Fy(t).
» Hazard rate order: X <yr Y < Fy/Fx increases (or
hx > hy).

> X <pgr Y& (X =t X >t)<st (Y —t|Y >t) for all t.
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Main stochastic orders
Comparisons of distorted distributions
Comparisons of generalized distorted distributions

Stochastic comparisons

Main stochastic orderings

>

Stochastic order: X <s7 Y < Fx(t) < Fy(t).

Hazard rate order: X <yr Y < Fy/Fx increases (or

hx > hy).

X<HrY & (X —t|IX >t) <st (Y —t]Y >t) forall t.
Mean residual life order:

X<mre Y © E(X —t|X>1t) <E(Y—t|Y >t)forall ¢t.

v

vy
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Main stochastic orderings

» Stochastic order: X <s7 Y < Fx(t) < Fy(t).
» Hazard rate order: X <yr Y < Fy/Fx increases (or

hx > hy).
> X<purY e (X—t|X>t)<st (Y —t|Y >t)forall ¢t.
» Mean residual life order:

X<mre Y © E(X —t|X>1t) <E(Y—t|Y >t)forall ¢t.
» Likelihood ratio order: X <;g Y < fy(t)/fx(t) increases.
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Stochastic comparisons

Main stochastic orderings

» Stochastic order: X <s7 Y < Fx(t) < Fy(t).
» Hazard rate order: X <yr Y < Fy/Fx increases (or
hx > hy).
X<HrY & (X —t|IX >t) <st (Y —t]Y >t) forall t.
» Mean residual life order:
X<mre Y © E(X —t|X>1t) <E(Y—t|Y >t)forall ¢t.
» Likelihood ratio order: X <;g Y < fy(t)/fx(t) increases.
» Reversed hazard rate order: X <guyr Y < Fy(t)/Fx(t)
increases.
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Main stochastic orders
Comparisons of distorted distributions
Comparisons of generalized distorted distributions

Stochastic comparisons

Main stochastic orderings

» Stochastic order: X <s7 Y < Fx(t) < Fy(t).
» Hazard rate order: X <yr Y < Fy/Fx increases (or
hx > hy).
X<HrY & (X —t|IX >t) <st (Y —t]Y >t) forall t.
» Mean residual life order:

X<mre Y © E(X —t|X>1t) <E(Y—t|Y >t)forall ¢t.
» Likelihood ratio order: X <;g Y < fy(t)/fx(t) increases.
» Reversed hazard rate order: X <guyr Y < Fy(t)/Fx(t)
increases.
X<gpur Y & (t—X’X < t) >sT (t’— Y’Y < t) for all ¢.

v

v
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Main stochastic orders
Comparisons of distorted distributions
Comparisons of generalized distorted distributions

Stochastic comparisons

Main stochastic orderings

» Stochastic order: X <s7 Y < Fx(t) < Fy(t).
» Hazard rate order: X <yr Y < Fy/Fx increases (or
hx > hy).
> X<purY e (X—t|X>t)<st (Y —t|Y >t)forall ¢t.
» Mean residual life order:
X<mre Y © E(X —t|X>1t) <E(Y—t|Y >t)forall ¢t.
» Likelihood ratio order: X <;g Y < fy(t)/fx(t) increases.
» Reversed hazard rate order: X <guyr Y < Fy(t)/Fx(t)
increases.
» X <pur Y & (t—X’X < t) >sT (t’— Y’Y < t) for all ¢.
» Then
X<IRY = X<HRrY = X<ur Y
) ! 4
X<rurY = X<stY = EX)<EY)
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Comparisons of distorted distributions

Theorem (Navarro, del Aguila, Sordo and Suarez-Llorens
(2013); Navarro and Gomis (2016))

If T; has the DF Fi(t) = qi(F(t)), i = 1,2, then:

Jorge Navarro, SMCS 2021 Universidad de Murcia.  24/51



Main stochastic orders
Comparisons of distorted distributions
Comparisons of generalized distorted distributions

Stochastic comparisons

Comparisons of distorted distributions

Theorem (Navarro, del Aguila, Sordo and Suarez-Llorens
(2013); Navarro and Gomis (2016))

If T; has the DF Fi(t) = qi(F(t)), i = 1,2, then:

» T1 <st T forall Fiff g < g (or g2 < q1) in (0,1).
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Comparisons of distorted distributions

Theorem (Navarro, del Aguila, Sordo and Suarez-Llorens
(2013); Navarro and Gomis (2016))

If T; has the DF Fi(t) = qi(F(t)), i = 1,2, then:

» T1 <st T forall Fiff g < g (or g2 < q1) in (0,1).
» Ty <yr T, for all F iff go/g; decreases in (0,1).
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Theorem (Navarro, del Aguila, Sordo and Suarez-Llorens
(2013); Navarro and Gomis (2016))
If T; has the DF Fi(t) = qi(F(t)), i = 1,2, then:
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Theorem (Navarro, del Aguila, Sordo and Suarez-Llorens
(2013); Navarro and Gomis (2016))

If T; has the DF Fi(t) = qi(F(t)), i = 1,2, then:

» Ty <g7 Ty forall Fiff gt < g (or g2 <gqp)in(0,1).
» Ty <yr T, for all F iff go/g; decreases in (0,1).
» T1 <gur Tz for all F iff g2/q:1 increases in (0,1).
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Comparisons of distorted distributions

Theorem (Navarro, del Aguila, Sordo and Suarez-Llorens
(2013); Navarro and Gomis (2016))

If T; has the DF Fi(t) = qi(F(t)), i = 1,2, then:

» Ty <g7 Ty forall Fiff gt < g (or g2 <gqp)in(0,1).

» Ty <yr T, for all F iff go/g; decreases in (0,1).

» T1 <gur Tz for all F iff g2/q:1 increases in (0,1).

» T1 <ig T for all Fiff @/, decreases in (0,1).

» T1 <mrL T2 for all F such that E(T7) < E(T2) if §2/q1 is
bathtub in (0, 1).
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Main stochastic orders
Comparisons of distorted distributions
Comparisons of generalized distorted distributions

Stochastic comparisons

Comparisons of DD. Example 1.

> X1, X [ID~ F.
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Stochastic comparisons

Comparisons of DD. Example 1.

> Xy, X, IID~ F.
> X100 = min(Xl,Xg) is a DD with C_]1;2(U) = u.
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Comparisons of DD. Example 1.

» X1, X IID~ F.
» X1.2 = min(X1, X2) is a DD with g1.2(u) = v?.
» Xo.p = max(Xy, Xo) is a DD with ga.o(v) = 2u — v?.
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Comparisons of DD. Example 1.

>

X1, X5 lID~ F.

» X1.2 = min(X1, X2) is a DD with g1.2(u) = v?.

» Xo.p = max(Xy, Xo) is a DD with ga.o(v) = 2u — v?.
> X120 <s7 Xi <57 Xo.5 holds for all F.
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Main stochastic orders
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Stochastic comparisons

Comparisons of DD. Example 1.

>

Xy, X [ID~ F.

» X1.2 = min(X1, X2) is a DD with g1.2(u) = v?.

» Xo.p = max(Xy, Xo) is a DD with ga.o(v) = 2u — v?.
X1:2 <s17 Xi <51 Xo.5 holds for all F.

X1:2 <Hr Xi <Hr X2.2 holds for all F.

v

v
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Comparisons of DD. Example 1.

>

X1, X5 11D~ F.
» X1.2 = min(X1, X2) is a DD with g1.2(u) = v?.
» Xo.p = max(Xy, Xo) is a DD with ga.o(v) = 2u — v?.

> X1:2 SST X; SST X2:2 hOldS for aII F.
> X1;2 SHR X,' SHR X2;2 hOldS for aII F.
> X1 <ip Xi <1p X500 holds for all abs. cont. F.
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Comparisons of DD. Example 1.
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Figure: Reliability (left) and hazard rate (right) functions of Xi.» (black),
X; (red) and Xo.2 (blue) for a standard exponential distribution.
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# Reliability functions

R<-function(t) exp(-t)

qIID<-function(u) u” 2

G12<-function(t) qIID(R(t))

G22<-function(t) 2*R(t)-G12(t)

curve(G12(x) ,xlab="t’,ylab=’Reliability’,0,5)
curve (G22(x) ,add=T,col="blue’)

curve(R(x) ,add=T,col=’red’)
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#Hazard rate functions

f<-function(t) exp(-t)

gpIlID<-function(u) 2*u

gl2<-function(t) f(t)*qpIID(R(t))

g22<-function(t) 2*f(t)-gl2(t)

curve(gl2(x)/G12(x) ,xlab="t’,ylab="Hazard rate’,0,3,
ylim=c(0,2))

curve(g22(x) /G22(x) ,add=T,col="blue’)

curve (f (x) /R(x) ,add=T,col="red’)
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Comparisons of GDD

Theorem (Navarro, del Aguila, Sordo and Suarez-Llorens
(2016))

If T; has DF FT,- = Q;(Fl, RN F,,), i=1,2, then:
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Stochastic comparisons

Comparisons of GDD

Theorem (Navarro, del Aguila, Sordo and Suarez-Llorens
(2016))

If T; has DF FT,- = Q;(Fl, RN F,,), i=1,2, then:
» T1 <s1 T for all Fi,..., F, iff Ql < Og in [0, 1]".
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Stochastic comparisons

Comparisons of GDD

Theorem (Navarro, del Aguila, Sordo and Suarez-Llorens
(2016))

If T; has DF FT,- = Q;(Fl, RN F,,), i=1,2, then:

» Ty <s1 Tpforall Fp,..., F,iff Ql < Oz in [0,1]".
» Ty <pr Tz forall Fi, ..., F,iff Qo/Q is decreasing in (0,1)".
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Comparisons of GDD

Theorem (Navarro, del Aguila, Sordo and Suarez-Llorens
(2016))
If Tj has DF Fr, = Qi(F1,..., Fn), i =1,2, then:
» Ty <st Toforall Fi,..., F,iff Q. < Q in[0,1]".
» Ty <pr Tz forall Fi, ..., F,iff Qo/Q is decreasing in (0,1)".
» T1 <gur Tz forall Fi,... F,iff Q2/Q is increasing in
(0,1)".
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Comparisons of GDD, ordered components

Theorem (Navarro and del Aguila (2017))
If T; has DF FT,- = Q,'(Fl, ce Fn), i=1,2, then:
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Stochastic comparisons

Comparisons of GDD, ordered components

Theorem (Navarro and del Aguila (2017))
If T; has DF FT,- = Q,'(Fl, ce Fn), i=1,2, then:

» Ty <st Txforall F{ >s7 -+ >s7 Fp iff @1 < Q2 in
D={(u1,...,up) €[0,1]" 1y > --- > up};
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P Comparisons of distorted distributions
Comparisons of generalized distorted distributions

Comparisons of GDD, ordered components

Theorem (Navarro and del Aguila (2017))
If T; has DF FT,- = Q,'(Fl, ce Fn), i=1,2, then:
> Ty <st Taforall Fy >s7 -+ >s7 Fy iff Q1 < @z in
D={(u1,...,up) €[0,1]" 1y > --- > up};
» Ty <pgr T forall F; >yr -+ >R Fn iff the function
I:I(V]_,...,Vn): ?2(V17V1V2;...,V1...Vn) (21)
Ql(V]_, Vivo,...,V1... V,-,)

is decreasing in (0,1)";
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Comparisons of GDD, ordered components

Theorem (Navarro and del Aguila (2017))
If T; has DF FT,- = Q,'(Fl, ce Fn), i=1,2, then:
> Ty <st Taforall Fy >s7 -+ >s7 Fy iff Q1 < @z in
D={(u1,...,un) €[0,1]" 11 > -+ > up};
» Ty <pgr T forall F; >yr -+ >R Fn iff the function
w )_Q2(V17V1V25"'7V1---Vn)

H(vi,...,vy) = = 2.1
( ! " Ql(V]_,V1V2,...,V1...V,-,) ( )

is decreasing in (0,1)";
» T1 <gur To for all F; <gpr -+ <gur F, iff the function
Q2(vi,viva, ..., vi... V)
Ql(vl7 Vive,..., V1... VI‘I)

H(vi,...,vp) = (2.2)

is increasing in (0,1)".
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Comparisons of GDD. Example 2.

» Xi, X2 independent (IND) ~ Fq, Fp.
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Comparisons of GDD. Example 2.

» Xi, X2 independent (IND) ~ Fq, Fp.
» X1:2 = min(X1, X2) is a GDD with Ql;z(ul, up) = urun.
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» X1:2 = min(X1, X2) is a GDD with Ql;z(ul, up) = urun.
» X2 = max(X1, X2) is a GDD with Q2.2(u1, u2) = uiuz and
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» Does X1;2 SST X,' SST X2:2 hold for all Fl, Fg?
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» Xi, X2 independent (IND) ~ Fq, Fp.
» X1:2 = min(X1, X2) is a GDD with Ql;z(ul, up) = urun.
» X2 = max(X1, X2) is a GDD with Q2.2(u1, u2) = uiuz and

@o(u, ) =1— (1 —u1)(1 — ) = ug + up — ur .

v

Does X1;2 SST X,' SST X2:2 hold for all Fl, Fg?

Does X1;2 <HR X; <HR X2;2 hold for all Fl, F2?

Yes for X1:2 SHR X,' and X1;2 SHR X2;2 for all Fl, F2.
No for X; <pyr Xo.» and for all Fy, F».

v

v

v
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Figure: Reliability (left) and hazard rate (right) functions of Xi.» (black),
X; (red) and Xz.» (blue) for two exponential distributions.
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# Reliability functions

Ri<-function(t) exp(-t)

R2<-function(t) exp(-2%t)
QIND<-function(ul,u2) ul*u2

G12<-function(t) QIND(R1(t),R2(t))
G22<-function(t) R1(t)+R2(t)-G12(t)
curve(G12(x) ,xlab="t’,ylab=’Reliability’,0,5)
curve (G22(x),add=T,col="blue’)

curve (R1(x) ,add=T,col="red’)

curve (R2(x),add=T,col="red’)
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#Hazard rate

fi<-function(t) exp(-t)

f2<-function(t) 2xexp(-2+*t)

Qi<-function(u,v) v

Q2<-function(u,v) u
gl2<-function(t)f1(t)*Q1(R1(t),R2(t))+f2(t)*Q2(R1(t),R2(t))
g22<-function(t) f1(t)+f2(t)-gl2(t)
curve(gl2(x)/G12(x) ,xlab=’t’,ylab="Hazard rate’,0,3,
ylim=c(0,3))

curve (g22(x)/G22(x) ,add=T,col="blue’)

curve (f1(x)/R1(x) ,add=T,col="red’)

curve (£f2(x) /R2(x) ,add=T,col="red’)
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» Xi, X2 independent with F; >pg Fp (ordered components).

» X2 = max(X1, X2) is a GDD with Q2.2(u1, u2) = uiuz and
@2(u1, tp) = 11 + tp — uruy.

» Does X1 <HR X2;2 hold for all F1 ZHR Fg?

. F,(vl’ Vg) _ Q2(v1,v1v2)

Q1(vi,viv2)
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>

X1, Xo independent with F1 >pr F> (ordered components).
X2:2 = max(X1, X2) is a GDD with Qa.2(u1, up) = uius and

v

Qoa(u1, un) =ty + ur — Uyt

v

Does X1 SHR X2;2 hold for all F1 ZHR Fg?

— _ Qa(vivave)
H(vi, ) = (vviva)

Does X2 SHR X2;2 hold for all F1 ZHR Fz?

v

v
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>

X1, Xo independent with F1 >pr F> (ordered components).
X2:2 = max(X1, X2) is a GDD with Qa.2(u1, up) = uius and

v

Qoa(u1, un) =ty + ur — Uyt

v

Does X1 SHR X2;2 hold for all F1 ZHR Fg?

I:I(vl, V) = %%
Does Xo <yr Xa:2 hold for all F; >pr F2?

- _ C_?2:2(‘/17‘/1‘/2)
H(vi,v2) = 5 )

v

v

v
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Figure: Hazard rate functions of Xi.o (black), X; (red) and X2 (blue) for
two exponential distributions with hazard rates 1,2 (left) and 1,1 (right).
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» X >0 (lifetime).
» Xi = (X — t|X > t) (residual lifetime) for t > 0.

Jorge Navarro, SMCS 2021 Universidad de Murcia.  37/51



Main aging classes
Preservation of aging classes in DD

Preservation of aging classes Preservation of aging classes in GDD

Main aging classes
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» Xi = (X — t|X > t) (residual lifetime) for t > 0.

» X is Increasing (Decreasing) Failure Rate, IFR (DFR), if
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Main aging classes

>

X >0 (lifetime).

Xe = (X — t|X > t) (residual lifetime) for t > 0.

X is Increasing (Decreasing) Failure Rate, IFR (DFR), if
Xs >s1 Xt (<g7) for all 0 <'s <t (or hx increases).

X is New Better (Worse) than Used, NBU (NWU), if
X >s7 X; (SST) forall t > 0.

v
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>

X >0 (lifetime).

Xe = (X — t|X > t) (residual lifetime) for t > 0.

X is Increasing (Decreasing) Failure Rate, IFR (DFR), if
Xs >s1 Xt (<g7) for all 0 <'s <t (or hx increases).

X is New Better (Worse) than Used, NBU (NWU), if
X >s7 X; (SST) forall t > 0.

X is Increasing (Decreasing) Failure Rate Average, IFRA
(DFRA), if A(t) = 1 [ h(x)dx = —1In F(t) is increasing
(decreasing) (or F(ct) > Fc(t) 0< c < 1) forall t > 0.

v

v

v

v
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» X >0 (lifetime).

» Xi = (X — t|X > t) (residual lifetime) for t > 0.

X is Increasing (Decreasing) Failure Rate, IFR (DFR), if

Xs >s1 Xt (<g7) for all 0 <'s <t (or hx increases).

X is New Better (Worse) than Used, NBU (NWU), if

X >s7 X; (SST) forall t > 0.

X is Increasing (Decreasmg) Failure Rate Average, IFRA

(DFRA), if A(t) = 1 [ h(x)dx = —1In F(t) is increasing

(decreasing) (or F(ct) > Fc(t) 0< c < 1) forall t > 0.

» X is Increasing (Decreasing) Likelihood Ratio, ILR (DLR), if
Xs >1r Xt (S1g) forall 0 < s <t (or f is logconcave).

v

v

v
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Main among the main aging classes

LR = IFR = IFRA = NBU

DLR =* DFR = DFRA = NWU

Table: Relationships among the main aging classes (* when the support is

(a,00). ).
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Distorted distributions

Theorem
Let Fq = q(F) and o(u) = ug'(u)/q(u). Then:
» The IFR (DFR) class is preserved by q iff o is decreasing
(increasing) for u € (0,1).
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Distorted distributions

Theorem
Let Fq = q(F) and o(u) = ug'(u)/q(u). Then:

» The IFR (DFR) class is preserved by q iff o is decreasing
(increasing) for u € (0,1).

» The NBU (NWU) class is preserved by q iff G is
submultiplicative (supermultiplicative), that is,

g(uv) < g(uv)g(v), (=) for all u,v € [0,1]. (3.1)
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Distorted distributions

Theorem
Let Fq = q(F) and o(u) = ug'(u)/q(u). Then:
» The IFR (DFR) class is preserved by q iff o is decreasing
(increasing) for u € (0,1).

» The NBU (NWU) class is preserved by q iff G is
submultiplicative (supermultiplicative), that is,

G(uv) < a(u)a(v), (=) foralluve 0,1, (31)
» The IFRA (DFRA) class is preserved by q iff G satisfies

G(u) > (G(u))°, (<) forallu,ce[0,1].  (3.2)
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Main aging classes
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Preservation of aging classes Preservation of aging classes in GDD

Distorted distributions

» If F is absolutely continuous and ILR and there exists
ug € [0, 1] such that 3(u) = ug”(u)/§ (u) is non-negative and
decreasing in [0, ug] and B(u) = (1 — u)g"(u)/q (u) is
non-positive and decreasing in [ug, 1], then Fy is ILR.
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Distorted distributions

» Reverse results: If Fy is IFR and « is increasing, then F is also
IFR.
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» Reverse results: If Fy is IFR and « is increasing, then F is also
IFR.

» |If both IFR and DFR classes are preserved, then « is constant
in (0,1) and so g(u) = u€ holds for u € [0,1] and ¢ > 0.
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Distorted distributions

» Reverse results: If Fy is IFR and « is increasing, then F is also
IFR.

» |If both IFR and DFR classes are preserved, then « is constant
in (0,1) and so g(u) = u€ holds for u € [0,1] and ¢ > 0.

» If « is increasing (or decreasing) but it is not constant, then
just the DFR (IFR) class is preserved.
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Distorted distributions

>

Reverse results: If Fg is IFR and « is increasing, then F is also
IFR.

If both IFR and DFR classes are preserved, then « is constant
in (0,1) and so g(u) = u€ holds for u € [0,1] and ¢ > 0.

If « is increasing (or decreasing) but it is not constant, then
just the DFR (IFR) class is preserved.

If o is not monotone, then neither of them are preserved.

v

v

v
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Distorted distributions

» |If the IFR class is preserved, then the NBU class is also
preserved.
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» |If the IFR class is preserved, then the NBU class is also
preserved.

» If the DFR class is preserved, then the NWU class is also
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Preservation of aging classes Preservation of aging classes in GDD

Distorted distributions

» |If the IFR class is preserved, then the NBU class is also
preserved.

» If the DFR class is preserved, then the NWU class is also
preserved.

» If the IFR class is preserved, then the IFRA class is also
preserved.

» |If the DFR class is preserved, then the DFRA class is also
preserved.

» The conditions for the IFR/DFR classes are quite strong, while
the conditions for the NBU/NWU and IFRA/DFRA classes a
mild.
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Example 1.

> X1,X2 [ID~ F, X1;2 = min(Xl,Xg) and Xg;g = max(Xl,Xg).
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> X1,X2 [ID~ F, X1;2 = min(Xl,Xg) and Xg;g = max(Xl,Xg).

» Then g1.o(u) = v? for u € [0,1] and ay.0(u) = 2. Hence all
the classes are preserved!
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Example 1.

> Xl,X2 [ID~ F, X1;2 = min(Xl,Xg) and Xg;g = max(Xl,Xg).

» Then g1.o(u) = v? for u € [0,1] and ay.0(u) = 2. Hence all
the classes are preserved!

» Then Goo(u) = 2u — u? for u € [0,1] and
uc‘yé:z(u) _ 2—2u
Go:2(u) 2—u

azo(u) =
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Example 1.

>

v

v

Xl,X2 [ID~ F, X1;2 = min(Xl,Xg) and Xg;g = max(Xl,Xg).

Then g1.2(u) = u? for u € [0,1] and a1.5(u) = 2. Hence all
the classes are preserved!

Then ga.o(u) = 2u — u? for u € [0, 1] and
uc'yé;g(u) _ 2—2u
Go:2(u) 2—u

azo(u) =

As .o is strictly decreasing, then IFR, NBU and IFRA classes
are preserved and DFR, NWU and DFRA are not.
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Preservation of IFR/DFR. Example 1.
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Figure: Alpha function (left) and hazard rate (right) functions of Xj.»
(black), X; (red) and X.» (blue) for a standard exponential distribution.
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Generalized distorted distributions

Theorem
Let Fo = Q(F1,...,Fn), u=(u1,...,u,) and
ai(u) = u;0;Q(u)/Q(u). Then:
» Ifaig,...,ap are decreasing (increasing) for uy, ..., u, € (0,1)
and i =1,...,n, then the IFR (DFR) class is preserved.
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Theorem
Let Fo = Q(F1,...,Fn), u=(u1,...,u,) and
ai(u) = u;0;Q(u)/Q(u). Then:
» Ifaig,...,ap are decreasing (increasing) for uy, ..., u, € (0,1)
and i =1,...,n, then the IFR (DFR) class is preserved.

» The NBU (NWU) class is preserved by Q if Q is
submultiplicative (supermultiplicative), that is,

Q(ulvl,...,u,,v,,) < Q(ul, ceyn)Q(viy ..oy vi), (=) b, vi € [0,1].
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Generalized distorted distributions

Theorem
Let Fo = Q(F1,...,Fn), u=(u1,...,u,) and
ai(u) = u;0;Q(u)/Q(u). Then:
» Ifaig,...,ap are decreasing (increasing) for uy, ..., u, € (0,1)
and i =1,...,n, then the IFR (DFR) class is preserved.

» The NBU (NWU) class is preserved by Q if Q is
submultiplicative (supermultiplicative), that is,

Q(ulvl, cey UpVy) < Q(ul, cel, u,,)@(vl, cey V), () uiyvi €]0,1].
» The IFRA (DFRA) class is preserved by @ if @ satisfies

QUuS, ... uS) > (Qui, ..., un))S, (<) ujc € [0,1]:
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Generalized distorted distributions

» |If the IFR class is preserved, then the NBU class is also
preserved.
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preserved.

» If the IFR class is preserved, then the IFRA class is also
preserved.

» |If the DFR class is preserved, then the DFRA class is also
preserved.

» The conditions for the IFR/DFR classes are really strong, while
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Example 2.

> X1,X2 IND~ Fl, F2, X1;2 = min(Xth).
» Then (_)1;2(u1, up) = uyup and

01Q12(u1, up)
a1\ u ,U =y = 1
1(u1, u2) ' Qu2(u1, up)

and ap(ug, up) = 1.
» As «; are constant, all the aging classes IFR, NBU, IFRA,
DFR, NWU, and DFRA are preserved.

> If Xo.0 = max(Xl,Xz), then @2;2(u1, U2) = uy + up — u1Up and

01 Qaa(u1, ) _ ur(1— w)
Qo:2(u1, ) Uy + up — Ul

ag(ur, ) = u

is not monotone. IFR and DFR are not preserved because
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Figure: Alpha function «1(0.5, v) and as(u,0.5) (left) and hazard rate
(right) functions of Xj.» (black), X; (red) and Xz.» (blue) for two
exponential distributions.
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Mixtures

» The DFR class is preserved in mixtures.
» However ag, ..., a, are not monotone.

» Therefore, some preservations are not detected by the above
conditions.

» For example, if F(t) = pFi(t) + (1 — p)Fa(t), with
Fi(t) = exp(—it) for t > 0 and i = 1,2, then

pe~t+2(1 — p)e2t L0
pe~t+(1—p)e2t’ ~— 7

h(t) =
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Preservation of IFR/DFR in Mixtures
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Figure: Reliability functions (left) and hazard rate (right) functions of a
mixture of two exponential distributions with hazard rates 1 (black) and
2 (red) and p=0.1,...,0.9 (blue).
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Exercises

Prove that if g is a distortion function, then F; is a
proper distribution function for all F.

Provide a valid distortion function of dimension 1.
Prove that if Q is a distortion function, then Fg is
a proper distribution function for all F.

Provide a valid distortion function of dimension
n>1.

Compute the distortion functions of the median
X2:3.

Compute the distortion function of a fifty-fifty
mixture of F and F2.

Compute the distortion functions of the parallel
system X;, = max(Xy, X) for a copula C. What
happen if X; and X, are ID?
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Find a distortion function that is not a copula.

Compare the order statistics X3 and X33 (11D
case).

Study which aging classes are preserved by the
median X3 (IID case).

Study which aging classes are preserved by a
fifty-fifty mixture of F and F2.

Prove that the NBU class is preserved by X;., in
the IID case.

Prove that the NBU class is preserved by X., in
the IND case.

Study which classes are preserved by X,., in the ID
case for a copula C.
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That's all.
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That's all.
Thank you for your attention!!
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That's all.
Thank you for your attention!!
Questions?
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