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Systems

I A (binary) system with (binary) components of order n is a
Boolean structure function (map)

φ : {0, 1}n → {0, 1},

where φ(x1, . . . , xn) ∈ {0, 1} represents the system’s state that
is determined by the components’ states x1, . . . , xn ∈ {0, 1}.

I φ(x1, . . . , xn) = 1 means that the system works,
I φ(x1, . . . , xn) = 0 means that the system has failed and the

same for the components.
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Semi-coherent systems

Definition
A semi-coherent system of order n is a system

φ : {0, 1}n → {0, 1}

satisfying the following properties:
(i) φ is increasing;
(ii) φ(0, . . . , 0) = 0 and φ(1, . . . , 1) = 1.

I The ith component is irrelevant for the system φ if

φ(x1, . . . , xi−1, 0, xi+1, . . . , xn) = φ(x1, . . . , xi−1, 1, xi+1, . . . , xn)

for all x1, . . . , xi−1, xi+1, . . . , xn ∈ {0, 1}.
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Coherent systems

Definition
A coherent system of order n is a system

φ : {0, 1}n → {0, 1}

satisfying the following properties:
(i) φ is increasing;
(ii) φ is strictly increasing in each variable in at least a point.

I All the coherent systems are semi-coherent systems but the
reverse is not true.

I A coherent system is a semi-coherent system without
irrelevant components.
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Examples

I The coherent systems φ1(x1, x2, x3) = min(x1,max(x2, x3))
and φ2(x1, x2, x3) = min(x2,max(x1, x3)) are different.

I However, they have a similar “structure”:

1j j3
j2

2j j3
j1

Figure: Two coherent systems of order 3 with a similar structure.
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Path and cut sets

I A non-empty set P ⊆ {1, . . . , n} is a path set of a system φ if
φ(x1, . . . , xn) = 1 when xi = 1 for all i ∈ P .

I A non-empty set C ⊆ {1, . . . , n} is a cut set of φ if
φ(x1, . . . , xn) = 0 when xi = 0 for all i ∈ C .

I A path set P is a minimal path set if it does not contain
other path sets.

I A cut set C is a minimal cut set if it does not contain other
cut sets.

I The dual system of a system φ is the system

φD(x1, . . . , xn) := 1− φ(1− x1, . . . , 1− xn)

for all x1, . . . , xn ∈ {0, 1}.
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Examples

I The series system of order n is

φ1:n(x1, . . . , xn) := min(x1, . . . , xn).

I The parallel system of order n is

φn:n(x1, . . . , xn) := max(x1, . . . , xn).

I The series system with components in the set P is

φP(x1, . . . , xn) := min
i∈P

xi .

I The parallel system with components in the set P is

φP(x1, . . . , xn) := max
i∈P

xi .
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Examples

I The k-out-of-n system is defined for k = 1, . . . , n by

φn−k+1:n(x1, . . . , xn) =

{
1, if x1 + · · ·+ xn ≥ k
0, if x1 + · · ·+ xn < k

= xn−k+1:n.

I They are also called k-out-of-n:G (good) systems.
I The series system φ1:n is an n-out-of-n system.
I The parallel system φn:n is a 1-out-of-n system.
I Its minimal path (cut) sets are all the sets P with |P| = k

(n − k + 1).
I The k-out-of-n:F (failed) systems is the system that fails

when k components (or more) fail. Its structure is

φk:n(x1, . . . , xn) = xk:n.
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Examples

I The coherent system φ1(x1, x2, x3) = min(x1,max(x2, x3)) has
the “structure”:

1j j3
j2

I Its minimal path sets are P1 = {1, 2} and P2 = {1, 3}.
I Its minimal cut sets are C1 = {1} and C2 = {2, 3}.
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Minimal path (cut) set representation

Theorem (Minimal path/cut sets representations)
Let φ be a coherent (or semi-coherent) system of order n and let
P1, . . . ,Pr and C1, . . . ,Cs be its minimal path and minimal cut
sets, respectively. Then

φ(x1, . . . , xn) = max
i=1,...,r

min
j∈Pi

xj (1.1)

and
φ(x1, . . . , xn) = min

i=1,...,s
max
j∈Ci

xj (1.2)

for all (x1, . . . , xn) ∈ {0, 1}n.
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Notation

I T lifetime of the system (positive random variable).

I X1, . . . ,Xn lifetimes of the components.
I Distribution functions (DF) FT (t) = Pr(T ≤ t) and

Fi (t) = Pr(Xi ≤ t).
I Reliability or survival functions

F̄T (t) = Pr(T > t) = 1− FT (t) and F̄i (t) = Pr(Xi > t).
I Probability density functions (PDF) fT = F ′T = −F̄ ′T and

fi = F ′i = −F̄ ′i .
I Hazard rate (HR) or failure rate (FR) functions hT = fT/F̄T

and hi = fi/F̄i .
I Identically distributed (ID) components, F1 = · · · = Fn = F .
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Minimal path (cut) set representation

Theorem (Barlow and Proschan (1975))
Let φ be a coherent (or semi-coherent) system of order n with
lifetime T and let P1, . . . ,Pr and C1, . . . ,Cs be its minimal path
and minimal cut sets, respectively. Then

T = max
i=1,...,r

min
j∈Pi

Xj (1.3)

and
T = min

i=1,...,s
max
j∈Ci

Xj (1.4)

where X1, . . . ,Xn ≥ 0 are the component lifetimes.
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Theorem (Minimal path set representation)
If T is the lifetime of a coherent (or semi-coherent) system with
minimal path sets P1, . . . ,Pr and component lifetimes
(X1, . . . ,Xn), then

F̄T (t) =
r∑

i=1

F̄Pi
(t)−

r−1∑
i=1

r∑
j=i+1

F̄Pi∪Pj
(t)+. . .+(−1)r+1F̄P1∪...∪Pr (t)

(1.5)
for all t, where F̄P(t) = Pr(XP > t) and XP = minj∈P Xj for
P ⊆ {1, . . . , n}.
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Copula representation

I (X1, . . . ,Xn) random vector with joint distribution

F(x1, . . . , xn) = Pr(X1 ≤ x1, . . . ,Xn ≤ xn).

I Marginal distributions

Fi (xi ) = Pr(Xi ≤ xi ) = lim
xj→∞, ∀j 6=i

F(x1, . . . , xn).

I Sklar’s theorem: There exist a copula C such that

F(x1, . . . , xn) = C (F1(x1), . . . ,Fn(xn)), x1, . . . , xn ∈ R.

Moreover, if F1, . . . ,Fn are continuous, then C is unique.
I A copula C is a multivariate distribution function with uniform

marginals over the interval (0, 1).
I Note that we just need C in [0, 1]n.
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Survival copula representation

I (X1, . . . ,Xn) with joint reliability (survival) function

F(x1, . . . , xn) = Pr(X1 > x1, . . . ,Xn > xn).

I Marginal reliability functions

F̄i (xi ) = Pr(Xi > xi ) = lim
xj→−∞, ∀j 6=i

F(x1, . . . , xn).

I Sklar’s theorem: There exist a copula Ĉ (called survival
copula) such that

F(x1, . . . , xn) = Ĉ (F̄1(x1), . . . , F̄n(xn)), x1, . . . , xn ∈ R.

Moreover, if F̄1, . . . , F̄n are continuous, then Ĉ is unique.
I Ĉ is a copula (distribution), not a survival function.
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Series systems

I The reliability function of X1:n is

F̄1:n(t) = Pr(X1 > t, . . . ,Xn > t) = Ĉ (F̄1(t), . . . , F̄n(t)).

I The reliability function of X1:k (k < n) is

F̄1:k(t) = Pr(X1 > t, . . . ,Xk > t) = Ĉ (F̄1(t), . . . , F̄k(t), 1, . . . , 1).

I The reliability function of XP = minj∈P Xj is

F̄P(t) = ĈP(F̄1(t), . . . , F̄n(t)),

where
ĈP(u1, . . . , un) = Ĉ (uP1 , . . . , u

P
n )

with uPj = uj for j ∈ P and uPj = 1 for j /∈ P .
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Distortion representation

Theorem (Distortion representation, general case)
If T is the lifetime of a semi-coherent system and the component
lifetimes (X1, . . . ,Xn) have the survival copula Ĉ , then the
reliability function of T can be written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t)) (1.6)

for all t, where Q̄ is a distortion function which depends on φ (that
is, on P1, . . . ,Pr ) and Ĉ .
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Distortion representation, IND case

Theorem (Distortion representation, IND case)
If T is the lifetime of a semi-coherent system with independent
component lifetimes X1, . . . ,Xn, then the reliability function of T
can be written as

F̄T (t) = Q̄(F̄1(t), . . . , F̄n(t))

for all t, where Q̄ is a multinomial (called reliability structure
function in Barlow and Proschan (1975)) which only depends on φ
(structure).
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Distortion representation, ID case

Theorem (Distortion representation, ID case)
If T is the lifetime of a semi-coherent system and the component
lifetimes (X1, . . . ,Xn) have the survival copula Ĉ and a common
reliability F̄ , then the reliability function of T can be written as

F̄T (t) = q̄(F̄ (t))

for all t, where q̄ is a distortion function which only depends on φ
and on Ĉ .
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Distortion representation, IID case

Theorem (Distortion representation, IID case)
If T is the lifetime of a semi-coherent system with IID component
lifetimes X1, . . . ,Xn having a common reliability F̄ , then the
reliability function of T can be written as

F̄T (t) = q̄(F̄ (t))

for all t, where q̄(u) =
∑n

i=1 aiu
i is a distortion function and

a = (a1, . . . , an) is the minimal signature which only depends on φ.

I FT (t) = q(F (t)), where q(u) =
∑n

i=1 biu
i is a distortion

function and b = (b1, . . . , bn) is the maximal signature.
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Example 1

I T = min(X1,max(X2,X3)).

I General case

F̄T (t) = F̄{1,2}(t) + F̄{1,3}(t)− F̄{1,2,3}(t).

I General case

F̄T (t) = Ĉ (F̄1(t), F̄2(t), 1)+Ĉ (F̄1(t), 1, F̄3(t))−Ĉ (F̄1(t), F̄2(t), F̄3(t)).

I General case

F̄T (t) = Q̄(F̄1(t), F̄2(t), F̄3(t))

with Q̄(u1, u2, u3) = Ĉ (u1, u2, 1) + Ĉ (u1, 1, u3)− Ĉ (u1, u2, u3).
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Example 1

I IND case
F̄T (t) = Q̄(F̄1(t), F̄2(t), F̄3(t))

with Q̄(u1, u2, u3) = u1u2 + u1u3 − u1u2u3.

I ID case
F̄T (t) = q̄(F̄ (t))

with q̄(u) = Q̄(u, u, u) = Ĉ (u, u, 1) + Ĉ (u, 1, u)− Ĉ (u, u, u).
I IID case

F̄T (t) = q̄(F̄ (t))

with q̄(u) = Q̄(u, u, u) = 2u2 − u3 and a = (0, 2,−1).
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Example 1

I If we choose the FGM copula:

Ĉ (u1, u2, u3) = u1u2u3(1 + θ(1− u1)(1− u2)(1− u3))

for θ ∈ [−1, 1], then

Q̄(u1, u2, u3) = u1u2+u1u3−u1u2u3(1+θ(1−u1)(1−u2)(1−u3)).

I IND case Q̄(u1, u2, u3) = u1u2 + u1u3 − u1u2u3.

I ID case F̄T (t) = q̄(F̄ (t)) with q̄(u) = 2u2 − u3 − θu3(1− u)3.

I IID case F̄T (t) = q̄(F̄ (t)) with q̄(u) = 2u2 − u3.
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Example 1: Reliability and hazard rate functions
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Figure: Reliability (left) and hazard rate (right) functions of T for a
standard exponential distribution, a FGM survival copula and
θ = −1,−0.5 (red), 0 (black) and θ = 0.5, 1 (blue).
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R code

# Reliability functions
C<-function(u1,u2,u3,z)u1*u2*u3*(1+z*(1-u1)*(1-u2)*(1-u3))
bQ<-function(u1,u2,u3,z)
C(u1,u2,1,z)+C(u1,1,u3,z)-C(u1,u2,u3,z)
bq<-function(u,z) bQ(u,u,u,z)
R<-function(t) exp(-t)
RT<-function(t,z) bq(R(t),z)
curve(RT(x,0),0,2,xlab=’t’,ylab=’Reliability’)
curve(RT(x,0.5),add=T,col=’blue’)
curve(RT(x,1),add=T,col=’blue’)
curve(RT(x,-0.5),add=T,col=’red’)
curve(RT(x,-1),add=T,col=’red’)
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R code

#Hazard rate functions
f<-function(t) exp(-t)
bqp<-function(u,z)
4*u-3*uˆ 2-3*z*uˆ 2*(1-u)ˆ 3+3*z*uˆ 3*(1-u)ˆ 2
fT<-function(t,z) bqp(R(t),z)*f(t)
hT<-function(t,z) fT(t,z)/RT(t,z)
curve(hT(x,0),0,3,xlab=’t’,ylab=’Hazard
rate’,ylim=c(1,2))
curve(hT(x,0.5),add=T,col=’blue’)
curve(hT(x,1),add=T,col=’blue’)
curve(hT(x,-0.5),add=T,col=’red’)
curve(hT(x,-1),add=T,col=’red’)
abline(h=2,lty=2)
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Minimal and maximal signatures

Table: Minimal a and maximal b signatures of all the coherent systems
with 1-4 IID components.

i Ti a b
1 X1:1 = X1 (1) (1)
2 X1:2 = min(X1,X2) (2-series) (0, 1) (2,−1)
3 X2:2 = max(X1,X2) (2-parallel) (2,−1) (0, 1)
4 X1:3 = min(X1,X2,X3) (3-series) (0, 0, 1) (3,−3, 1)
5 min(X1,max(X2,X3)) (0, 2,−1) (1, 1,−1)
6 X2:3 (2-out-of-3) (0, 3,−2) (0, 3,−2)
7 max(X1,min(X2,X3)) (1, 1,−1) (0, 2,−1)
8 X3:3 = max(X1,X2,X3) (3-parallel) (3,−3, 1) (0, 0, 1)
9 X1:4 = min(X1,X2,X3,X4) (series) (0, 0, 0, 1) (4,−6, 4,−1)
10 max(min(X1,X2,X3),min(X2,X3,X4)) (0, 0, 2,−1) (2, 0,−2, 1)
11 min(X2:3,X4) (0, 0, 3,−2) (1, 3,−5, 2)
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Minimal and maximal signatures

i Ti a b
12 min(X1,max(X2,X3),max(X3,X4)) (0, 1, 1,−1) (1, 2,−3, 1)
13 min(X1,max(X2,X3,X4)) (0, 3,−3, 1) (1, 0, 1,−1)
14 X2:4 (3-out-of-4) (0, 0, 4,−3) (0, 6,−8, 3)

15
max(min(X1,X2),min(X1,X3,X4),

min(X2,X3,X4))
(0, 1, 2,−2) (0, 5,−6, 2)

16 max(min(X1,X2),min(X3,X4)) (0, 2, 0,−1) (0, 4,−4, 1)

17
max(min(X1,X2),min(X1,X3),

min(X2,X3,X4))
(0, 2, 0,−1) (0, 4,−4, 1)

18
max(min(X1,X2),min(X2,X3),

min(X3,X4))
(0, 3,−2, 0) (0, 3,−2, 0)

19
max(min(X1,max(X2,X3,X4)),

min(X2,X3,X4))
(0, 3,−2, 0) (0, 3,−2, 0)

20
min(max(X1,X2),max(X1,X3),

max(X2,X3,X4))
(0, 4,−4, 1) (0, 2, 0,−1)

21 min(max(X1,X2),max(X3,X4)) (0, 4,−4, 1) (0, 2, 0,−1)
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Minimal and maximal signatures

i Ti a b

22
min(max(X1,X2),max(X1,X3,X4),

max(X2,X3,X4))
(0, 5,−6, 2) (0, 1, 2,−2)

23 X3:4 (2-out-of-4) (0, 6,−8, 3) (0, 0, 4,−3)
24 max(X1,min(X2,X3,X4)) (1, 0, 1,−1) (0, 3,−3, 1)
25 max(X1,min(X2,X3),min(X3,X4)) (1, 2,−3, 1) (0, 1, 1,−1)
26 max(X2:3,X4) (1, 3,−5, 2) (0, 0, 3,−2)
27 min(max(X1,X2,X3),max(X2,X3,X4)) (2, 0,−2, 1) (0, 0, 2,−1)
28 X4:4 = max(X1,X2,X3,X4) (4-parallel) (4,−6, 4,−1) (0, 0, 0, 1)
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Comparisons of systems with ID components

Theorem
If Ti has the DF Fi (t) = qi (F (t)), i = 1, 2, then:

I T1 ≤ST T2 for all F iff q̄1 ≤ q̄2 (or q2 ≤ q1) in (0, 1).
I T1 ≤HR T2 for all F iff q̄2/q̄1 decreases in (0, 1).
I T1 ≤RHR T2 for all F iff q2/q1 increases in (0, 1).
I T1 ≤LR T2 for all F iff q̄′2/q̄

′
1 decreases in (0, 1).

I T1 ≤MRL T2 for all F such that E (T1) ≤ E (T2) if q̄2/q̄1 is
bathtub in (0, 1).
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Comparisons of systems with ID. Example 1.

I X1,X2 ID∼ F .

I X1:2 = min(X1,X2) is a DD with q̄1:2(u) = Ĉ (u, u).
I X2:2 = max(X1,X2) is a DD with q̄2:2(u) = 2u − Ĉ (u, u).
I X1:2 ≤ST Xi ≤ST X2:2 holds for all F and all Ĉ .
I X1:2 ≤HR Xi holds for all F iff the ratio

q̄1:2(u)

q̄i (u)
=

Ĉ (u, u)

u

is increasing in (0, 1).
I Xi ≤HR X2:2 holds for all F iff

q̄2:2(u)

q̄i (u)
=

2u − Ĉ (u, u)

u

is decreasing in (0, 1).
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2u − Ĉ (u, u)

u

is decreasing in (0, 1).

Jorge Navarro, SMCS 2021 Universidad de Murcia. 33/83



Coherent systems
Stochastic comparison of systems

Preservation of aging classes
References

Comparisons of systems with ID components
Comparisons of systems with non-ID components
A Parrondo paradox in reliability

Comparisons of systems with ID. Example 1.

I X1,X2 ID∼ F .
I X1:2 = min(X1,X2) is a DD with q̄1:2(u) = Ĉ (u, u).
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Comparisons of systems with ID. Example 1.

I If the components are IID, that is, Ĉ (u, v) = uv , then
Ĉ (u, u)/u = u is increasing and so

X1:2 ≤HR Xi ≤HR X2:2 ∀F . (2.1)

I If the components are ID with the Clayton copula

Ĉ (u, v) =
uv

u + v − uv

(positive dependence), then

Ĉ (u, u)

u
=

u2

2u2 − u3 =
1

2− u

which is increasing in (0, 1). So (2.1) holds for all F .
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Comparisons of DD. Example 1.
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Figure: Reliability (left) and hazard rate (right) functions for X1:2 (black),
Xi (red) and X2:2 (blue) for the case of IID (dashed lines) or ID
components with a Clayton survival copula (continuous lines).
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Comparisons of systems with ID. Example 1.

I Note that X IID
1:2 ≤HR XC

1:2 (≥HR) holds for all F iff

Ĉ (u, u)

u2 =
u2

2u2 − u3 =
1

u(2− u)

is decreasing (increasing) in (0, 1).

I As it is decreasing, X IID
1:2 ≤HR XC

1:2 holds for all F .
I Analogously X IID

2:2 ≥HR XC
2:2 holds for all F since

2u − Ĉ (u, u)

2u − u2 =
2u − u

2−u
2u − u2 =

3− u

(2− u)2

is increasing in (0, 1).
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1:2 holds for all F .

I Analogously X IID
2:2 ≥HR XC

2:2 holds for all F since

2u − Ĉ (u, u)

2u − u2 =
2u − u

2−u
2u − u2 =

3− u

(2− u)2

is increasing in (0, 1).
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Comparisons of systems with ID. Example 1.

I Note that X1:2 ≤LR Xi holds for all abs. cont. F iff 1/q̄′1:2(u)
is decreasing in (0, 1), that is, q̄1:2 is convex.

I In the IID case q̄(u) = u2 is convex, and so this order holds for
all abs. cont. F .

I In the ID case with this Clayton copula q̄(u) = u/(2− u) is
convex, and so this order holds for all abs. cont. F and this
copula.
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Comparisons of systems with ID.

Proposition
Let X1 and X2 be the lifetimes of two components having a
common distribution function F and copula and survival copulas C
and Ĉ , respectively. Then the following properties are equivalent:
(i) X1:2 ≤HR X1 for all F ;
(ii) X1 ≤HR X2.2 for all F ;
(iii) X1:2 ≤HR X2:2 for all F ;
(iv) Ĉ (u, u)/u is increasing in (0, 1);
(v) (1− C (u, u))/(1− u) is increasing in (0, 1).
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Comparisons of systems with ID.

Proposition
Let X1 and X2 be the lifetimes of two components having a
common absolutely continuous distribution function F and copula
and survival copulas C and Ĉ , respectively. Then the following
properties are equivalent:
(i) X1:2 ≤LR X1 for all F ;
(ii) X1 ≤LR X2.2 for all F ;
(iii) X1:2 ≤LR X2:2 for all F ;
(iv) Ĉ (u, u) is convex in (0, 1).
(v) C (u, u) is convex in (0, 1).
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Comparisons for systems with non-ID components

Theorem (Navarro and del Águila (2017))
If Ti has DF FTi

= Qi (F1, . . . ,Fn), i = 1, 2, then:

I T1 ≤ST T2 for all F1, . . . ,Fn iff Q̄1 ≤ Q̄2 in (0, 1)n.
I T1 ≤HR T2 for all F1, . . . ,Fn iff Q̄2/Q̄1 is decreasing in (0, 1)n.
I T1 ≤RHR T2 for all F1, . . . ,Fn iff Q2/Q1 is increasing in

(0, 1)n.
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Comparisons for systems with ordered components

Theorem (Navarro and del Águila (2017))
If Ti has DF FTi

= Qi (F1, . . . ,Fn), i = 1, 2, then:

I T1 ≤ST T2 for all F1 ≥ST · · · ≥ST Fn iff Q̄1 ≤ Q̄2 in
D = {(u1, . . . , un) ∈ [0, 1]n : u1 ≥ · · · ≥ un};

I T1 ≤HR T2 for all F1 ≥HR · · · ≥HR Fn iff the function

H̄(v1, . . . , vn) =
Q̄2(v1, v1v2, . . . , v1 . . . vn)

Q̄1(v1, v1v2, . . . , v1 . . . vn)
(2.2)

is decreasing in (0, 1)n;
I T1 ≤RHR T2 for all F1 ≤RHR · · · ≤RHR Fn iff the function

H(v1, . . . , vn) =
Q2(v1, v1v2, . . . , v1 . . . vn)

Q1(v1, v1v2, . . . , v1 . . . vn)
(2.3)

is increasing in (0, 1)n.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 44/83



Coherent systems
Stochastic comparison of systems

Preservation of aging classes
References

Comparisons of systems with ID components
Comparisons of systems with non-ID components
A Parrondo paradox in reliability

Comparisons for systems with ordered components

Theorem (Navarro and del Águila (2017))
If Ti has DF FTi

= Qi (F1, . . . ,Fn), i = 1, 2, then:

I T1 ≤ST T2 for all F1 ≥ST · · · ≥ST Fn iff Q̄1 ≤ Q̄2 in
D = {(u1, . . . , un) ∈ [0, 1]n : u1 ≥ · · · ≥ un};

I T1 ≤HR T2 for all F1 ≥HR · · · ≥HR Fn iff the function

H̄(v1, . . . , vn) =
Q̄2(v1, v1v2, . . . , v1 . . . vn)

Q̄1(v1, v1v2, . . . , v1 . . . vn)
(2.2)

is decreasing in (0, 1)n;
I T1 ≤RHR T2 for all F1 ≤RHR · · · ≤RHR Fn iff the function

H(v1, . . . , vn) =
Q2(v1, v1v2, . . . , v1 . . . vn)

Q1(v1, v1v2, . . . , v1 . . . vn)
(2.3)

is increasing in (0, 1)n.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 44/83



Coherent systems
Stochastic comparison of systems

Preservation of aging classes
References

Comparisons of systems with ID components
Comparisons of systems with non-ID components
A Parrondo paradox in reliability

Comparisons for systems with ordered components

Theorem (Navarro and del Águila (2017))
If Ti has DF FTi

= Qi (F1, . . . ,Fn), i = 1, 2, then:

I T1 ≤ST T2 for all F1 ≥ST · · · ≥ST Fn iff Q̄1 ≤ Q̄2 in
D = {(u1, . . . , un) ∈ [0, 1]n : u1 ≥ · · · ≥ un};

I T1 ≤HR T2 for all F1 ≥HR · · · ≥HR Fn iff the function

H̄(v1, . . . , vn) =
Q̄2(v1, v1v2, . . . , v1 . . . vn)

Q̄1(v1, v1v2, . . . , v1 . . . vn)
(2.2)

is decreasing in (0, 1)n;

I T1 ≤RHR T2 for all F1 ≤RHR · · · ≤RHR Fn iff the function

H(v1, . . . , vn) =
Q2(v1, v1v2, . . . , v1 . . . vn)

Q1(v1, v1v2, . . . , v1 . . . vn)
(2.3)

is increasing in (0, 1)n.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 44/83



Coherent systems
Stochastic comparison of systems

Preservation of aging classes
References

Comparisons of systems with ID components
Comparisons of systems with non-ID components
A Parrondo paradox in reliability

Comparisons for systems with ordered components

Theorem (Navarro and del Águila (2017))
If Ti has DF FTi

= Qi (F1, . . . ,Fn), i = 1, 2, then:

I T1 ≤ST T2 for all F1 ≥ST · · · ≥ST Fn iff Q̄1 ≤ Q̄2 in
D = {(u1, . . . , un) ∈ [0, 1]n : u1 ≥ · · · ≥ un};

I T1 ≤HR T2 for all F1 ≥HR · · · ≥HR Fn iff the function

H̄(v1, . . . , vn) =
Q̄2(v1, v1v2, . . . , v1 . . . vn)

Q̄1(v1, v1v2, . . . , v1 . . . vn)
(2.2)

is decreasing in (0, 1)n;
I T1 ≤RHR T2 for all F1 ≤RHR · · · ≤RHR Fn iff the function

H(v1, . . . , vn) =
Q2(v1, v1v2, . . . , v1 . . . vn)

Q1(v1, v1v2, . . . , v1 . . . vn)
(2.3)

is increasing in (0, 1)n.
Jorge Navarro, SMCS 2021 Universidad de Murcia. 44/83



Coherent systems
Stochastic comparison of systems

Preservation of aging classes
References

Comparisons of systems with ID components
Comparisons of systems with non-ID components
A Parrondo paradox in reliability

Comparisons of systems. Example 2.

I X1,X2 ∼ C , Ĉ ,F1,F2.

I X1:2 = min(X1,X2) is a GDD with Q̄1:2(u1, u2) = Ĉ (u1, u2).
I X2:2 = max(X1,X2) is a GDD with Q2:2(u1, u2) = C (u1, u2)

and
Q̄2:2(u1, u2) = u1 + u2 − Ĉ (u1, u2).

I Does X1:2 ≤ST Xi ≤ST X2:2 hold for all F1,F2?
I Does X1:2 ≤HR X1 hold for all F1,F2?
I It holds iff Ĉ (u, v)/u is increasing in (0, 1)2.
I For the Clayton survival copula

Ĉ (u, v)

u
=

v

u + v − uv

is decreasing in u and increasing in v .
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Ĉ (u, v)

u
=

v

u + v − uv

is decreasing in u and increasing in v .

Jorge Navarro, SMCS 2021 Universidad de Murcia. 45/83



Coherent systems
Stochastic comparison of systems

Preservation of aging classes
References

Comparisons of systems with ID components
Comparisons of systems with non-ID components
A Parrondo paradox in reliability

Comparisons of systems. Example 2.

I X1,X2 ∼ C , Ĉ ,F1,F2.
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I X1:2 = min(X1,X2) is a GDD with Q̄1:2(u1, u2) = Ĉ (u1, u2).
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Comparisons of systems. Example 2.
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Figure: Reliability (left) and hazard rate functions (right) for X1:2 (black),
Xi (red) and X2:2 (blue) for IND (dashed lines) and dependent
(continuous lines) components with a Clayton survival copula.
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Comparisons of systems. Example 2.

I Does X1:2 ≤HR X1 hold for all F1 ≥HR F2?

I It holds iff the function

H̄1(v1, v2) =
Q̄1(v1, v1v2)

Q̄1:2(v1, v1v2)
=

v1

Ĉ (v1, v1v2)

is decreasing in (0, 1)2.
I It holds for the Clayton copula since

H̄1(v1, v2) =
v1(v1 + v1v2 − v2

1 v2)

v2
1 v2

=
1 + v2 − v1v2

v2
,

is decreasing in (0, 1)2.
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Figure: Reliability (left) and hazard rate functions (right) for X1:2 (black),
Xi (red) and X2:2 (blue) for the case of IND components (dashed lines)
and dependent (continuous lines) components a Clayton survival copula.
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Systems with IND components

Table: Dual distortions functions of coherent systems with 1-3 IND
components.

N T = ψ(X1,X2,X3) Q(u1, u2, u3)

1 X1:3 = min(X1,X2,X3) u1u2u3
2 min(X2,X3) u2u3
3 min(X1,X3) u1u3
4 min(X1,X2) u1u2
5 min(X3,max(X1,X2)) u1u3 + u2u3 − u1u2u3
6 min(X2,max(X1,X3)) u1u2 + u2u3 − u1u2u3
7 min(X1,max(X2,X3)) u1u2 + u1u3 − u1u2u3
8 X3 u3
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Systems with IND components

N T = ψ(X1,X2,X3) Q(u1, u2, u3)

9 X2 u2
10 X1 u1
11 X2:3 u1u2 + u1u3 + u2u3 − 2u1u2u3
12 max(X3,min(X1,X2)) u3 + u1u2 − u1u2u3
13 max(X2,min(X1,X3)) u2 + u1u3 − u1u2u3
14 max(X1,min(X2,X3)) u1 + u2u3 − u1u2u3
15 max(X2,X3) u2 + u3 − u2u3
16 max(X1,X3) u1 + u3 − u1u3
17 max(X1,X2) u1 + u2 − u1u2
18 X3:3 = max(X1,X2,X3) u1 + u2 + u3 − u1u2 − u1u3 − u2u3

+u1u2u3
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Systems with IND components

Table: Relationships for the ST order between the coherent systems with
independent components given in Table 2. The value 2 indicates that
Ti ≤ST Tj holds for any F1,F2,F3 (i denotes the row and j the column).
The value 1 indicates that Ti ≤ST Tj holds for all F1 ≥ST F2 ≥ST F3. It
also indicates that Ti ≤ST Tj does not hold for all F1,F2,F3. The value
0 indicates that Ti ≤ST Tj does not hold for all F1 ≥ST F2 ≥ST F3.

ST 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 1 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2
3 0 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2
4 0 0 2 0 2 2 0 2 2 2 2 2 2 2 2 2 2
5 0 0 0 2 1 1 2 1 1 2 2 2 2 2 2 2 2
6 0 0 0 0 2 1 0 2 1 2 2 2 2 2 2 2 2
7 0 0 0 0 0 2 0 0 2 2 2 2 2 2 2 2 2
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Systems with IND components

ST 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
8 0 0 0 0 0 0 2 1 1 0 2 1 1 2 2 1 2
9 0 0 0 0 0 0 0 2 1 0 0 2 1 2 1 2 2
10 0 0 0 0 0 0 0 0 2 0 0 0 2 0 2 2 2
11 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
12 0 0 0 0 0 0 0 0 0 0 2 1 1 2 2 1 2
13 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 2 2
14 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 2
15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 2
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
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Systems with IND components

Table: Relationships for the HR order between the coherent systems with
independent components given in Table 2. The value 2 indicates that
Ti ≤HR Tj holds for any F1,F2,F3 (i denotes the row and j the column).
The value 1 indicates that Ti ≤HR Tj holds for all F1 ≥HR F2 ≥HR F3. It
also indicates that Ti ≤HR Tj does not hold for all F1,F2,F3. The value
0 means that Ti ≤HR Tj does not hold for all F1 ≥HR F2 ≥HR F3.

HR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1
3 0 2 1 0 0 1 2 1 2 0 1 1 1 1 2 1 1
4 0 0 2 0 0 0 0 2 2 0 0 0 0 0 0 2 0
5 0 0 0 2 0 0 2 1 1 0 0 1 1 1 1 2 2
6 0 0 0 0 2 0 0 2 1 0 0 0 1 0 2 1 2
7 0 0 0 0 0 2 0 0 2 0 0 0 1 2 1 1 2
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Systems with IND components

HR 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
8 0 0 0 0 0 0 2 1 1 0 0 0 0 1 1 1 1
9 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 1 0
10 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 2 0 1 1 2 2 2 2
12 0 0 0 0 0 0 0 0 0 0 2 0 1 1 1 1 1
13 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0
14 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
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with 1-3 independent components given in Table 2 when
F1 ≥HR F2 ≥HR F3 holds.
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A Parrondo paradox in reliability

I The Parrondo’s paradox shows how, in some games, a random
strategy might be better than any deterministic strategy.

I Di Crescenzo (2007) note that a similar paradox holds in
reliability for series systems with IND components.

I Let T = min(X1,X2) with IND∼ F̄1, F̄2.
I We can assume F̄1 ≥ F̄2.
I Let S = min(Y1,Y2), with IID Ḡ = 1

2 F̄1 + 1
2 F̄2.

I This system represents the case in which we choose the
components randomly from a mixed population with a 50% of
units of type F̄1 and a 50% of units of type F̄2.

I Which one is the best option?
I Does this property depend on F̄1 and F̄2?
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2 F̄1 + 1
2 F̄2.

I This system represents the case in which we choose the
components randomly from a mixed population with a 50% of
units of type F̄1 and a 50% of units of type F̄2.

I Which one is the best option?
I Does this property depend on F̄1 and F̄2?

Jorge Navarro, SMCS 2021 Universidad de Murcia. 57/83



Coherent systems
Stochastic comparison of systems

Preservation of aging classes
References

Comparisons of systems with ID components
Comparisons of systems with non-ID components
A Parrondo paradox in reliability

A Parrondo paradox in reliability

I The Parrondo’s paradox shows how, in some games, a random
strategy might be better than any deterministic strategy.

I Di Crescenzo (2007) note that a similar paradox holds in
reliability for series systems with IND components.

I Let T = min(X1,X2) with IND∼ F̄1, F̄2.

I We can assume F̄1 ≥ F̄2.
I Let S = min(Y1,Y2), with IID Ḡ = 1
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2 F̄1 + 1
2 F̄2.

I This system represents the case in which we choose the
components randomly from a mixed population with a 50% of
units of type F̄1 and a 50% of units of type F̄2.

I Which one is the best option?
I Does this property depend on F̄1 and F̄2?

Jorge Navarro, SMCS 2021 Universidad de Murcia. 57/83



Coherent systems
Stochastic comparison of systems

Preservation of aging classes
References

Comparisons of systems with ID components
Comparisons of systems with non-ID components
A Parrondo paradox in reliability

A Parrondo paradox in Reliability

I The respective reliability functions are

F̄T (t) = Pr(X1 > t,X2 > t) = F̄1(t)F̄2(t) = Q̄T (F̄1(t), F̄2(t)),

F̄S(t) = Pr(Y1 > t,Y2 > t) =

(
1
2
F̄1(t) +

1
2
F̄2(t)

)2

= Q̄S(F̄1(t), F̄2(t)),

where

Q̄T (u1, u2) = u1u2 and Q̄S(u1, u2) =

(
u1 + u2

2

)2

.

I It is easy to prove that Q̄T ≤ Q̄S since
√
u1u2 ≤

u1 + u2

2.
I Hence T ≤ST S for all F̄1, F̄2.
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Figure: Reliability functions for the series systems T (black) and S (blue)
in Parrondo’s paradox for exponential (left) and Weibull (right)
distributions.
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A Parrondo paradox in Reliability

I When this “Parrondo paradox” holds?

I It is easy to see that it can be extended to series systems with
n independent components.

I These systems are better when the units are similar
(homogeneous).

I Hence, it is not a paradox but an expectable property.
I This property is reverted for parallel systems since, in this case,

the systems are better when the units are different
(heterogeneous).

I What happen in other system structures?
I Do these properties hold when the components are dependent?
I The answers to these questions were obtained in Navarro and

Spizzichino (2010) and they are based on the notions of
Schur-concave and weakly Schur-concave functions.
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A Parrondo paradox in Reliability

Definition (Durante and Papini (2007))
A function g : Rn → R is weakly Schur-concave (convex) if

g(u1, . . . , un) ≤ g(ū, . . . , ū) (≥)

for all (u1, . . . , un), where ū = (u1 + · · ·+ un)/n.

Definition
A function g : Rn → R is Schur-concave (convex) if

g(u1, . . . , un) ≤ g(v1, . . . , vn) (≥)

for all u1, . . . , un, v1, . . . , vn such that u1 + · · ·+ un = v1 + · · ·+ vn
and such that

∑j
i=1 ui :n ≤

∑j
i=1 vi :n where ui :n and vi :n are the

ordered values obtained from the respective vectors.
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A Parrondo paradox in Reliability

Theorem (Navarro and Spizzichino (2010))
Let Q̄ be the dual distortion function of a system. The Parrondo
paradox holds (is reverted) for this system if and only if Q̄ is weakly
Schur-concave (convex).
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A Parrondo paradox in Reliability

I For series systems with independent components,

Q̄1:n(u1, . . . , un) = u1 . . . un

is Schur-concave and the Parrondo paradox holds.

I If the components are dependent with a survival copula Ĉ ,

Q̄1:n(u1, . . . , un) = Ĉ (u1, . . . , un).

I The Parrodo paradox holds iff Ĉ is weakly Schur-concave.
I Many copulas are Schur-concave (e.g. all the Archimedean

copulas are Schur-concave).
I There are no strict Schur-convex copulas.
I Durante and Papini (2007) obtained a weakly Schur-convex

copula.
I For this survival copula, the Parrondo paradox is reverted in

this series system with dependent components.
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I Many copulas are Schur-concave (e.g. all the Archimedean

copulas are Schur-concave).
I There are no strict Schur-convex copulas.
I Durante and Papini (2007) obtained a weakly Schur-convex

copula.

I For this survival copula, the Parrondo paradox is reverted in
this series system with dependent components.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 63/83



Coherent systems
Stochastic comparison of systems

Preservation of aging classes
References

Comparisons of systems with ID components
Comparisons of systems with non-ID components
A Parrondo paradox in reliability

A Parrondo paradox in Reliability

I For series systems with independent components,

Q̄1:n(u1, . . . , un) = u1 . . . un

is Schur-concave and the Parrondo paradox holds.
I If the components are dependent with a survival copula Ĉ ,
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I The Parrodo paradox holds iff Ĉ is weakly Schur-concave.
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A Parrondo paradox in Reliability

I For parallel systems with independent components,

Qn:n(u1, . . . , un) = u1 . . . un

is Schur-concave and the Parrondo paradox is reverted.

I If the components are dependent with a copula C ,

Q̄n:n(u1, . . . , un) = C (u1, . . . , un).

I The Parrodo paradox is reverted iff C is weakly Schur-concave.
I Many copulas are Schur-concave (e.g. all the Archimedean

copulas are Schur-concave).
I It does not exist Schur-convex copulas.
I Durante and Papini (2007) obtained a weakly Schur-convex

copula.
I For this survival copula, the Parrondo paradox holds in this

parallel system with dependent components.
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Figure: Reliability functions for the series systems T (black) and S (blue)
in Parrondo’s paradox for exponential (left) and Weibull (right)
distributions.
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A Parrondo paradox in Reliability

I The red and orange lines only use one kind of components.

I What is the green line?
I It can be proved that it is the best option for series system

(with randomized options), see Navarro, Pellerey and Di
Crescenzo (2015).

I Tgreen = min(X1,X
∗
1 ) where X1,X

∗
1 are IID with reliability F̄1

and probability 1/2 and Tgreen = min(X2,X
∗
2 ) where X2,X

∗
2

are IID with reliability F̄2 and probability 1/2.
I What to do in practice?
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Main aging classes

I X ≥ 0 (lifetime).
I Xt = (X − t|X > t) (residual lifetime) for t ≥ 0.
I X is Increasing (Decreasing) Failure Rate, IFR (DFR), if

Xs ≥ST Xt (≤ST ) for all 0 ≤ s ≤ t (or hX increases).
I X is New Better (Worse) than Used, NBU (NWU), if

X ≥ST Xt (≤ST ) for all t ≥ 0.
I X is Increasing (Decreasing) Failure Rate Average, IFRA

(DFRA), if A(t) = 1
t

∫ t
0 h(x)dx = −1

t ln F̄ (t) is increasing
(decreasing) (or F̄ (ct) ≥ F̄ c(t), 0 < c < 1) for all t ≥ 0.

I X is Increasing (Decreasing) Likelihood Ratio, ILR (DLR), if
Xs ≥LR Xt (≤ST ) for all 0 ≤ s ≤ t (or f is logconcave).
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Main among the main aging classes

ILR ⇒ IFR ⇒ IFRA ⇒ NBU

DLR ⇒∗ DFR ⇒ DFRA ⇒ NWU

Table: Relationships among the main aging classes (∗ when the support is
(a,∞). ).
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Distorted distributions

Theorem
Let Fq = q(F ) and α(u) = uq̄′(u)/q̄(u). Then:

I The IFR (DFR) class is preserved by q iff α is decreasing
(increasing) for u ∈ (0, 1).

I The NBU (NWU) class is preserved by q iff q̄ is
submultiplicative (supermultiplicative), that is,

q̄(uv) ≤ q̄(u)q̄(v), (≥) for all u, v ∈ [0, 1]. (3.1)

I The IFRA (DFRA) class is preserved by q iff q̄ satisfies

q̄(uc) ≥ (q̄(u))c , (≤) for all u, c ∈ [0, 1]. (3.2)
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Preservation in systems with IID

I If the IFR class is preserved, then the NBU and IFRA classes
are also preserved.

I If the DFR class is preserved, then the NWU and DFRA
classes are also preserved.

I The IFR class in preserved in k-out-of-n systems with IID
components (Barlow and Proschan (1975)) and the DFR not.

I The NBU class is preserved in all the coherent systems with
IID components (Barlow and Proschan (1975)).
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Example 1.

I X1,X2,X3 IID∼ F and T1 = min(X1,max(X2,X3)).

I Then q̄1(u) = 2u2 − u3 for u ∈ [0, 1].
I Is the IFR (DFR) class preserved?
I For this system

α1(u) =
uq̄′1(u)

q̄1(u)
=

4− 3u
2− u

.

I As α1 is strictly decreasing, then IFR, NBU and IFRA classes
are preserved and DFR, NWU and DFRA are not.
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Preservation of IFR/DFR. Example 1.
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Figure: Alpha (left) and hazard rate (right) functions of T1 (continuous
lines) for an exponential distribution with h(t) = 1 (black) and a Weibull
distribution with h(t) = 2t for t ≥ 0. The dashed lines are 2h(t).
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Example 2.

I X1,X2,X3 IID∼ F and T2 = max(X1,min(X2,X3)).

I Then q̄2(u) = u + u2 − u3 for u ∈ [0, 1].
I Is the IFR (DFR) class preserved?
I For this system

α2(u) =
uq̄′2(u)

q̄2(u)
=

1 + 2u − 3u2

1 + u − u2 .

I As α2 is strictly increasing and then decreasing, the IFR and
DFR, NWU are not preserved. The NBU and IFRA are
preserved.
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Preservation of IFR/DFR. Example 2.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

u

a
lp

h
a

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

t

H
a

z
a

rd
 r

a
te

Figure: Alpha function (left) and hazard rate (right) functions of T2
(continuous lines) for an exponential distribution with h(t) = 1 (black)
and a Weibull distribution with h(t) = 2t (blue) for t ≥ 0.
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Example 3.

I We consider the series and parallel systems with dependent ID
components (X1,X2) having the Clayton survival copula

Ĉ (u, v) =
uv

u + v − uv

I Their respective dual distortion functions are

q̄1:2(u) =
u

2− u
and q̄2:2(u) = 2u − u

2− u
.

I Their respective alpha functions are

α1:2(u) =
2

2− u
and α2:2(u) =

2u2 − 8u + 6
2u2 − 7u + 6

.

I α1:2 is increasing and α2:2 is decreasing.
I The IFR class is preserved in X2:2 but it is not preserved in

X1:2 and the opposite for the DFR class.
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Figure: Alpha functions (left) and hazard rate functions for the series
(black) and parallel (blue) systems with a Clayton survival copula. The
dotted line represents the hazard rate of the components.
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Generalized distorted distributions

Theorem
Let FQ = Q(F1, . . . ,Fn), u = (u1, . . . , un) and
αi (u) = ui∂i Q̄(u)/Q̄(u). Then:

I If α1, . . . , αn are decreasing (increasing) for u1, . . . , un ∈ (0, 1)
and i = 1, . . . , n, then the IFR (DFR) class is preserved.

I The NBU (NWU) class is preserved by Q if Q̄ is
submultiplicative (supermultiplicative), that is,

Q̄(u1v1, . . . , unvn) ≤ Q̄(u1, . . . , un)Q̄(v1, . . . , vn), (≥) ui , vi ∈ [0, 1].

I The IFRA (DFRA) class is preserved by Q if Q̄ satisfies

Q̄(uc1 , . . . , u
c
n) ≥ (Q̄(u1, . . . , un))c , (≤) ui , c ∈ [0, 1].
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Systems with IND components

I If the IFR class is preserved, then the NBU and IFRA classes
are also preserved.

I If the DFR class is preserved, then the NWU and DFRA
classes are also preserved.

I It can be proved that both NBU and IFRA classes are
preserved in coherent systems with IND components (Barlow
and Proschan (1975)).

I The IFR and DFR classes are not always preserved.
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Example 4.

I X1,X2 IND∼ F1,F2, X1:2 = min(X1,X2).

I Then Q̄1:2(u1, u2) = u1u2 and

α1(u1, u2) = u1
∂1Q̄1:2(u1, u2)

Q̄1:2(u1, u2)
= 1

and α2(u1, u2) = 1.
I As αi are constant, all the aging classes IFR, NBU, IFRA,

DFR, NWU, and DFRA are preserved.
I If X2:2 = max(X1,X2), then Q̄2:2(u1, u2) = u1 + u2 − u1u2 and

α1(u1, u2) = u1
∂1Q̄2:2(u1, u2)

Q̄2:2(u1, u2)
=

u1(1− u2)

u1 + u2 − u1u2

is not monotone. IFR and DFR are not preserved because
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Preservation of IFR/DFR. Example 4.
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Figure: Alpha function α1(0.5, u) and α1(u, 0.5) (left) and hazard rate
(right) functions of X1:2 (black), Xi (red) and X2:2 (blue) for two
exponential distributions.
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Example 5

I Let us consider the system T2 = max(X1,max(X2,X3)) with
IND components.

I Let us see that NBU is preserved.
I We have already seen that IFR/DFR are not preserved.
I The distortion function is

Q̄(u1, u2, u3) = u1 + u2u3 − u1u2u3.

I A straightforward calculation show that Q̄ is submultiplicative.
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Figure: Reliability F̄Tt (left) and hazard rate hT (right) functions of T2
(continuous lines) for an exponential distribution with h(t) = 1 (black)
and t = 0.1, 0.2, . . . , 1 (blue), 1.4 (red), 2, 3, 4, 5 (green) and 10
(orange).
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Figure: Reliability F̄Tt (left) and hazard rate hT (right) functions of T2
(continuous lines) for three exponential distribution with h(t) = 1, 2, 3
(black) and t = 0.05, 0.1, 0.2 (blue), 0.3 (red), 0.7, 1 (green) and 2
(orange).
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The slides and more references can be seen in my webpage:

https : //webs.um.es/jorgenav/miwiki/doku.php
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Exercises

1. Determine the minimal path and minimal cut sets
of a coherent system with four components.

2. Compute the reliability of a coherent system with
four components in the general case.

3. Compute the reliability of a coherent system with
four components in the IND case.

4. Compute the reliability of a coherent system with
four components in the ID case.

5. Compute the reliability of a coherent system with
four components in the IID case.

6. Compute the reliability of a plane with four
engines, two in each wing, that can fly if at least
one engine works in each wing.

Jorge Navarro, SMCS 2021 Universidad de Murcia. 82/83



Coherent systems
Stochastic comparison of systems

Preservation of aging classes
References

7. Compute the minimal and maximal signatures of a
system with four components.

8. Check an arrow in the figures for the ST, HR and
LR orders of systems with IID components

9. Check a no arrow in the figures for the ST, HR
and LR orders of systems with IID components

10. Check if Xi ≤HR X2:2 holds for IND components.
11. Check if Xi ≤HR X2:2 holds for IND HR-ordered

components.
12. Check if Xi ≤HR X2:2 holds for dependent

components with the Clayton copula in the slides.
13. Check if Xi ≤HR X2:2 holds for HR-ordered

components with the Clayton copula in the slides.
14. Check an arrow in the tables and figure for the ST

and HR orders of systems with IND components.
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15. Check a no arrow in the figures for the ST, HR
and LR orders of systems with IID components

16. Check if the IFR class is preserved in a system
with four IID components.

17. Check if the Parrondo paradox holds in a system
with three IND components.
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I That’s all.

I Thank you for your attention!!
I Questions?
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