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Notation

m X =(Xi,...,Xk)" arandom vector.

m = E(X)=(u1,...,ux) mean vector.

m V = Cov(X) = E((X = p)(X — p)") covariance matrix.
mx=(x,...,x) €RK

m Mahalanobis distance from x to u:

Ay(x,p) = \/(x —p) V-1(x—p).
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The (univariate) Markov's inequality.

m If Z is a non-negative random variable with finite mean E(Z) and
e >0, then

5Pr(22€):5/

[e;00)

dF7(x) < /

[e,00)

xdF(x) < /[0 dF(x) = E2)

where Fz(x) = Pr(Z < x).
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The (univariate) Markov's inequality.

m If Z is a non-negative random variable with finite mean E(Z) and
e >0, then

5Pr(22€):5/

[e;00)

dF7(x) < /

[e,00)

xdF(x) < /[0 dF(x) = E2)

where Fz(x) = Pr(Z < x).

m It can be stated as
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The univariate Chebyshev's inequality.

m If X is a random variable with finite mean p = E(X) and variance
02 = Var(X) > 0, then by taking Z = (X — u)?/0? in (1), we get

Pr<M26)§§ (2)

o2

for all € > 0.
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02 = Var(X) > 0, then by taking Z = (X — u)?/0? in (1), we get

Pr<M26)§§ (2)

o2

for all € > 0.

m It can also be written as

or as

for all r > 0.
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The multivariate Chebyshev's inequality (MCI).

m If X is a random vector with finite mean p = E(X) and positive
definite covariance matrix V = Cov(X).
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The multivariate Chebyshev's inequality (MCI).

m If X is a random vector with finite mean p = E(X) and positive
definite covariance matrix V = Cov(X).

m Then
Pr((X —p)VH X —p) > ¢) <

™| X

for all € > 0.

RSME2017, Zaragoza J. Navarro, E-mail: jorgenav@um.es, 5/36



Main results The univariate Chebyshev's inequality
The multivariate Chebyshev's inequality
The bounds are sharp

The multivariate Chebyshev's inequality (MCI).

m If X is a random vector with finite mean p = E(X) and positive
definite covariance matrix V = Cov(X).
m Then

Pr((X —p) VI (X —p) > ¢) < (3)

™| x

for all € > 0.

m Chen, X. (2011). A new generalization of Chebyshev inequality for
random vectors. arXiv:0707.0805v2.
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The multivariate Chebyshev's inequality.

m The inequality in (3) can also be written as
k
Pr((X—p) VI (X—p)<e)>1- - (4)

for all e > 0.
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The multivariate Chebyshev's inequality.

m The inequality in (3) can also be written as

k
Pr((X — i)V I (X~ ) <2) 21— (4)
for all ¢ > 0.
m This inequality says that the ellipsoid
E.={xeR":(x—p)Vix—p)<el (5)

contains at least the 100(1 — k/<)% of the population.
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k
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for all ¢ > 0.
m This inequality says that the ellipsoid
E.={xeR":(x—p)Vix—p)<el (5)
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The multivariate Chebyshev's inequality.

m The inequality in (3) can also be written as

k
Pr((X — )V (X~ ) <) 21—~ (4)
for all ¢ > 0.
m This inequality says that the ellipsoid
E.={xeR":(x—p)Vix—p)<el (5)

contains at least the 100(1 — k/<)% of the population.
m The inequality can also be written as

Pr(Ay(X, ) < r)>1— < (6)

5

p

m Hence (6) gives a lower bound for the percentage of points from X in
spheres “around” the mean w in the Mahalanobis distance based on
V.
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A very short proof.

m Let us consider the random variable

Z=(X— V(X p).
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A very short proof.

m Let us consider the random variable

Z=(X—p)VHX~-p).
m As V is positive definite, then Z > 0.

m Moreover, there exist symmetric matrices V1/2 and V~1/2 such that
vi/2y1/2 — vV, V-~ 1/2y-1/2 _ -1 and
vi/2y-1/2 —

v-2yyz — where I is the identity matrix of
dimension k.
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A very short proof.

m Let us consider the random variable
Z=(X—p)VHX~-p).

m As V is positive definite, then Z > 0.

m Moreover, there exist symmetric matrices V1/2 and V~1/2 such that
V1/2vl/2 vV, V-~ 1/2\/ 1/2 _ v-1 and
V1/2y =12 — v=1/2y/1/2 — |, where I is the identity matrix of
dimension k.

m Therefore

= (X —p)VVRVTVA(X — ) = Y'Y,
where Y = (Yq,..., Y&) = V712(X — ).
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A very short proof.

m Let us consider the random variable
Z=(X—p)VHX~-p).

m As V is positive definite, then Z > 0.

m Moreover, there exist symmetric matrices V1/2 and V~1/2 such that
V1/2vl/2: vV, V-~ 1/2\/ 1/2 _ Ve 1 and
V1/2y =12 — v=1/2y/1/2 — |, where I is the identity matrix of
dimension k.

m Therefore

Z=X—-p)V2v12(X—p)=Y'Y,
where Y = (Y1,..., Yi) = V71/2(X — p).
m Hence E(Y) = 04 and
Cov(Y) = VV2Cov(X)V 12 = y12yy—1/2 —
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A very short proof.

m Therefore E(Y;) =0, Var(Y;) =1 and

k k k
E(Z)=E(Y'Y)=E (Z Y,?) =Y E(Y)) =) Var(Yi) =k
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A very short proof.

m Therefore E(Y;) =0, Var(Y;) =1 and

k k k
E(Z)=E(Y'Y)=E (Z Y,?) =Y E(Y)) =) Var(Yi) =k

m Hence, from Markov's inequality (1), we get

PHZ 2 2) = Pr((X— p) VI (X —p) 2 ) < =2 =

E(Z)

and therefore (3) holds for all ¢ > 0.
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m That’s all, thank you for your attention!!
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m That’s all, thank you for your attention!!

m It's a joke, let's see something more (if you want).
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Another short proof.

m Let us consider the random variable

Z=(X-p)V I X-p)>0
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Another short proof.

m Let us consider the random variable

Z=(X-p)V I X-p)>0
m As V is positive definite and symmetric, there exists an ortogonal
matrix T such that TT' = T'T = I, and T'VT = D and

D = diag(\1,. .., ) is the diagonal matrix with the ordered
eigenvalues A\; > --- > A\ > 0.
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Another short proof.

m Let us consider the random variable
Z=(X-p)V I X-p)>0
m As V is positive definite and symmetric, there exists an ortogonal
matrix T such that TT' = T'T = I, and T'VT = D and
D = diag(\1, ... ,)\k) is the diagonal matrix with the ordered

eigenvalues A\; > --- > A\ > 0.
m Then V =TDT’ and v-1=T1D1T.
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Another short proof.

m Let us consider the random variable
Z=(X-p)V I X-p)>0
m As V is positive definite and symmetric, there exists an ortogonal
matrix T such that TT' = T'T = I, and T'VT = D and
D = diag(\q, . .. ,)\k) is the diagonal matrix with the ordered
eigenvalues A\; > --- > A\ > 0.
m Then V=TDT and V1 = TDIT".
m Therefore
Z=X-p)TD T (X - p)
— [DV2T(X = ) D2 T(X — )]
=272,
where Z = (Zy,...,2,) = DY2T(X — p) and
_ . ~1/2 —-1/2
D=Y2 = diag(\?,.. ., AP,
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Another short proof.

m The random vector Z satisfies E(Z) = 0y and

ov(Z) = Cov(D™M2T'(X — p)) = D-Y2T'VID™ Y2 = D7Y2DD~1/2 = .
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Another short proof.

m The random vector Z satisfies E(Z) = 0y and
ov(Z) = Cov(D™YV2T(X — p)) = D~Y2T'VvTD~Y2 = D~12pD~1/2 = .

m Therefore E(Z;) =0, Var(Z;) =1 and

k k k
E(Z)=E(Z'Z)=E (Z Z,-2> = E(Z?)=)_Var(Z) = k.
i=1 i=1 i=1
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m Therefore E(Z;) =0, Var(Z;) =1 and

k k k
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m Hence, from Markov's inequality (1), we get

for all € > 0.
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Bounds for singular covariance matrices.

m Z=D"Y2T/(X — p) is the vector of the standardized principal
components of X.
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Bounds for singular covariance matrices.

m Z=D"Y2T/(X — p) is the vector of the standardized principal
components of X.
m Then (3) can be written as

Pr(ZZ<e)>1- % (7)
g

k
where Z'Z = Y | Z2.
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Bounds for singular covariance matrices.

m Z=D"Y2T/(X — p) is the vector of the standardized principal
components of X.
m Then (3) can be written as

Pr(ZZ<e)>1- % (7)
g

where Z'Z = Y% | 72,
m If Vissingular, then Ay > - > Ap > App1 =~ = A = 0.
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Bounds for singular covariance matrices.

m Z=D"Y2T/(X — p) is the vector of the standardized principal
components of X.
m Then (3) can be written as

k
Pr(Zz<e)>1- - (7)

where Z'Z = Y% | 72,
m If Vissingular, then Ay > - > Ap > App1 =~ = A = 0.
m Then (7) can be replaced with

m
m
P ZP<e|>1—— 8
for all £ > 0, where Z; = A; "/?t}(X — 11) is the ith standardized

principal components of X and t; is the normalized eigenvector
associated with the eigenvalue A;.
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An example.

m (X1, X3, X3) = Multinomial(p1 = 1/3,p2 = 1/3,p3 =1/3,n).
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An example.

m (X1, X3, X3) = Multinomial(p1 = 1/3,p2 = 1/3,p3 =1/3,n).
m Then u= E(X) =(n/3,n/3,n/3) and

2 -1 -1

-1 2 -1

-1 -1 2

n

V =
9
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An example.

m (X1, X3, X3) = Multinomial(p1 = 1/3,p2 = 1/3,p3 =1/3,n).
m Then u= E(X) =(n/3,n/3,n/3) and
n 2 -1 -1
V = 9 -1 2 -1
-1 -1 2

m As X; + Xo + X3 = n, we of course have |V| =0,
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An example.

m (X1, X3, X3) = Multinomial(p1 = 1/3,p2 = 1/3,p3 =1/3, n).
m Then u= E(X) =(n/3,n/3,n/3) and
N 2 -1 -1
v=gl| -1 2 -1
-1 -1 2

m As X; + Xo + X3 = n, we of course have |V| =0,

m The eigenvalues are \; = A\ = n/3 and A3 = 0.

m Some two first standardized principal components are
7X1—X2 7X1+X2—2X3

v2n/3’ ? V2n

and the multivariate Chebyshev's inequality given in (8) gives

4
Pr <\/(X1 — X2)2 4+ (X1 + Xo — 2X3)2/3 < 5) >1-— 37;’2

Zy
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The bounds are sharp.

Theorem (Navarro SPL 2014)

Let X = (X1,...,Xk) be a random vector with finite mean vector
= E(X) and positive definite covariance matrix V = Cov(X) and let
€ > k. Then there exists a sequence X(" (X . ,X,S"))/ of random
vectors with mean vector (v and covariance matr/x V such that
: 1) _ A
lim Pr((X™ — p) VTHXD — ) > ) = —. (9)
n—oo & )
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Main results

The bounds are sharp (proof).

m For ¢ > k, let us consider

VZ,+¢  with probability (p —1/n)/2

D, =4 —+/Z,+¢c with probability (p —1/n)/2
0 with probability 1 — p+1/n

for n > ¢/k, where p = k/e <1 and Z, = Exp(un = o—1/n
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Main results

The bounds are sharp (proof).

m For ¢ > k, let us consider

VZ,+¢  with probability (p —1/n)/2

D,=< —+/Z,+¢e with probability (p —1/n)/2
0 with probability 1 — p+1/n
for n > ¢/k, where p = k/e <1 and Z, = Exp(u, = pi/l';n > 0).

m Note that Pr(D? > ¢) = p—1/n.
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Main results

The bounds are sharp (proof).

m For ¢ > k, let us consider

VZ,+¢  with probability (p —1/n)/2
D, =4 —+/Z,+¢c with probability (p —1/n)/2
0 with probability 1 — p+1/n

for n > ¢/k, where p = k/e <1 and Z, = Exp(u, = pi/l';n > 0).

m Note that Pr(D? > ¢) = p—1/n.

n E(D,) = CHNE (vZ 1 e) - EHE (VZ, ¥ E) = 0.
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Main results

The bounds are sharp (proof).

m For ¢ > k, let us consider

VZ,+¢  with probability (p —1/n)/2
D, =4 —+/Z,+¢c with probability (p —1/n)/2
0 with probability 1 — p+1/n

for n > ¢/k, where p = k/e <1 and Z, = Exp(u, = pi/l';n > 0).

m Note that Pr(D? > ¢) = p—1/n.

n E(D,) = CHNE (vZ 1 e) - EHE (VZ, ¥ E) = 0.

m E(D2) = (p—1/n)E(Zy+¢) = (p—1/n) (pi/l”/n + s) = k.
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The bounds are sharp (proof).

m Let U, be a r.v., independent of Z,, with a uniform distribution over

{1,....k}.
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The bounds are sharp (proof).

m Let U, be a r.v., independent of Z,, with a uniform distribution over
{1,...,k}.

m Let YOO = (V{7 . v"Y defined by Y” = D, and V") =0 for
j=1,...,i—1i4+1,...,k when U, = 1.
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The bounds are sharp (proof).

m Let U, be a r.v., independent of Z,, with a uniform distribution over
{1,...,k}.
m Let YOO = (V{7 . v"Y defined by Y” = D, and V") =0 for
j=1,...,i—1i4+1,...,k when U, = 1.
m Hence E(Y") = LE(D,) = 0 and
n 1
Var(Y{") = E(Y{")?) = LE(D}) = 1.

n
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The bounds are sharp (proof).

m Let U, be a r.v., independent of Z,, with a uniform distribution over
{1,...,k}.

m Let YOO = (V{7 . v"Y defined by Y” = D, and V") =0 for
j=1,...,i—1i4+1,...,k when U, = 1.

m Hence E(Y") = LE(D,) = 0 and
Var(v() = E((V{")) = LE(D)) =1

m Moreover, Yl-(") YJ-(") =0 and E(Yi(n) Yj(")) =0 for all i # j.
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The bounds are sharp (proof).

m Let U, be a r.v., independent of Z,, with a uniform distribution over
{1,...,k}.

m Let YOO = (V{7 . v"Y defined by Y” = D, and V") =0 for
j=1,...,i—1i4+1,...,k when U, = 1.

m Hence E(Y") = LE(D,) = 0 and
Var(v() = E((V{")) = LE(D)) =1

m Moreover, YI( )Y( ) =0 and E(Y(n) Y(")) =0 for all i # j.
= Then E(Y(") = 04 and Cov(Y() = .
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Main results The univariate Chebyshev's inequality
The multivariate Chebyshev's inequality
The bounds are sharp

The bounds are sharp (proof).

m Let U, be a r.v., independent of Z,, with a uniform distribution over

{1,...,k}.
m Let YOO = (V{7 . v"Y defined by Y” = D, and V") =0 for
j=1,...,i—1i4+1,...,k when U, = 1.

m Hence E(Yi(")) = LE(D,) =0 and
Var(v() = E((V{")) = LE(D)) =1
m Moreover, YI( )Y( ") =0 and E(Y(") Y(")) =0 for all i # j.

m Then E(Y() =0, and Cov(Y() = .
m Then X(") =y + V1/2Y(") has mean E(X(") = ;1 and

COV(X(n)) — COV(Vl/ZY(n)) _ V1/2 V1/2 — V.
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Main results The univariate Chebyshev's inequality
The multivariate Chebyshev’s inequality
The bounds are sharp

The bounds are sharp (proof).

m Moreover,

Pr((X — ) VX — ) > ¢)
= Pr((V2Y(y v (vi2y () > ¢
— Pr((Y(MY v2y-1ylzy () > ()
= Pr((YYY(™) > ¢)

:P(D22 €)
1
:p—;—>p: , as n— o0
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Case k = 2.
Applications Order statistics
Data sets

Applications. Case k = 2.

Theorem

(X, Y) with E(X) = ux, E(Y) = py, Var(X) = 0% >0,
Var(Y) = 0% >0 and p = Cor(X,Y) € (—1,1). Then

Pr((x*—\/*)2+2(1—p)x*v*<5)21—21_6p2 (10)
for all 6 > 0, where X* = (X — ux)/ox and Y* = (X — py)/oy.
Zi = (X*+ Y)/\/2(1+p), Z = (X* = Y*)/{/2(1 = p) and
Pr((X*+Y*)2+(X*_Y*)2 <€> 21_5, )

2(1+p) 2(1—p)
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Case k = 2.
Applications Order statistics
Data sets

An example

m (X, Y) with E(X) = E(Y) =1, Var(X) = Var(Y) =1 and
p= Cor(X,Y)=0.9. Then

1
Pr(5(X — Y)> + (X —1)(Y —1) < 55) >1— 2079,
that is,
) ) 1.9
Pr(5X* —OXY +5Y? =X - ¥ +1<e)>1- =
for all e > 1.9.

m The distribution-free confidence regions for ¢ = 3,4, 5,10 containing
respectively at least the 36.6666%, 52.5%, 62% and the 81% of the
values of (X, Y) can be seen in the following figure.
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Case k = 2.
Applications Order statistics
Data sets

Figure: Confidence regions for e = 3,4, 5, 10 containing at least the 36.66%,
52.5%, 62% and the 81% of the values of (X, Y).
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Case k = 2.
Applications Order statistics
Data sets

Order statistics

m Let X1.4,..., Xk be the OS from (Xi, ..., Xk).
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Case k = 2.
Applications Order statistics
Data sets

Order statistics

m Let X1.4,..., Xk be the OS from (Xi, ..., Xk).

m For kK = 2 we have

0102 1 — pa2)(p2 — p12
p1,2:2 = Cor(X12, X22) = p + (u1 = pr2)(p )7
01:201:2 01:201:2

where i = E(X;), pi2 = E(Xi2), a,-2 = Var(X;), 0,2:2 = Var(Xj.p), for
i=1,2, and p = Cor(Xi, X2).
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Applications Order statistics
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Order statistics

m Let X1.4,..., Xk be the OS from (Xi, ..., Xk).

m For kK = 2 we have

0102 1 — pa2)(p2 — p12
p1,2:2 = Cor(X12, X22) = p + (u1 = pr2)(p )7
01:201:2 01:201:2

where i = E(X;), pi2 = E(Xi2), a,-2 = Var(X;), 0,2:2 = Var(Xj.p), for
i=1,2, and p = Cor(Xi, X2).
m Then

1- P%,z:z

S22, (12)

Pr((Xgo — X{2)? +2(1 = p12:2) X302 X1ip < 0) > 12

where Xi*:(2 = (X,';z — Hi:2)/0i:2, i = 1,2.
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 1.

m (Xi, X2) has a Pareto distribution with
F(x,y) =Pr(Xy > x,Xo > y) = (1 + Ax + Ay)~?

for x,y >0, where A\ > 0 and 6 > 2.
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 1.

m (Xi, X2) has a Pareto distribution with
F(x,y) =Pr(Xy > x, X0 > y) = (1 4+ Ax + )\y)_e
for x,y >0, where A\ > 0 and 6 > 2.

m Then pp=1/(N0 —\), 0 = pi?/(1 —2p), p=1/0, p1.0 = /2,
po:2 = 3p1/2

2 p2 2 _ 13(6+3p) 142

012 = 4(1 — 2p)7 02.2 = 4(1 — 2p) y  P1,2:2 m
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 1.

m (Xi, X2) has a Pareto distribution with
F(x,y) =Pr(Xy > x,Xo > y) = (1 + Ax + Ay)~?

for x,y >0, where A\ > 0 and 6 > 2.
m Then pp=1/(N0 —\), 0 = pi?/(1 —2p), p=1/0, p1.0 = /2,
po:2 = 3p1/2
2 2 _ (6+3p) g = 120
Aoy T Aoz 0T er
mIf A=0.5and 8 = 3, then n= 1, p= 1/3, H1:2 = 1/2, H2:0 = 3/2,
o1.2 = 0.866, 02.0 = 2.291 p1 2.0 = 0.6299 and
2

3 1
Xoo—35 Xi2—3 4074

2201  0.866

Xoo — 3 Xio — 4
2.291 0.866

1.2
<o|>1- —606.
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Case k = 2.
Applications Order statistics
Data sets

Figure: Confidence regions for § = 2,4,6 containing at least the 39.68%, the
69.84% and the 79.89% of the values of (X1.2, X2:2).
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 2.

m X1,..., Xy iid Exp(u = 1), then

and
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 2.

m X1,..., Xy iid Exp(u = 1), then

and .
pijik = Cor(Xik, Xjk) = —=, 1<i<j<k

mIf k=3,i=2andj =23, then pup3="5/6, us.3 = 11/6,
02:3 = 06009, 03:3 = 1.1667, and £2,3:3 = 0.5151.
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 2.

m X1,..., Xy iid Exp(u = 1), then

and .
pijik = Cor(Xik, Xjk) = —=, 1<i<j<k

mIf k=3,i=2andj =23, then pup3="5/6, us.3 = 11/6,
02:3 = 06009, 03:3 = 1.1667, and £2,3:3 = 0.5151.

m Hence
2
Xae W x5 X33 — 1 Xo53 — 2 1.469
, 3:3 6 2:3 6 + 0.969 3:3 6 2:3 6 < S 2 1— ‘
1.1667 0.6009 1.1667 0.6009 )
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Case k = 2.
Applications Order statistics
Data sets

)

@
(2]
<
N X mean
o Rl ST
| | | T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0
X 2:3

Figure: Confidence regions for 6 = 2, 3,4 containing at least 63.26%, the 75.51%
and the 81.63% of the values of (Xz:3, X3:3).
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 2.

m For (Xi.3, X2:3, X3.3)" we obtain the confidence region
R- = {(x,y,2) : 1.444x* — 1.602xy + 1.805y° — 1.402yz + 1.3612% < ¢}

containing (Xj'3, X553, X3:3)" with a probability greater than 1 — 3/e,
where X, = (Xj.k — pi-)/0ik for i =1,2,3.
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Case k = 2.
Applications Order statistics
Data sets

Order statistics. Example 2.

m For (Xi.:3, X2:3, X3.3)" we obtain the confidence region
R. = {(x,y,z) : 1.444x° — 1.602xy + 1.805y> — 1.402yz + 1.3612> < ¢}

containing (Xj'3, X553, X3:3)" with a probability greater than 1 — 3/e,
where X, = (Xj.k — pi-)/0ik for i =1,2,3.
m If we use the two principal components

P Y + i3 ce)>1-2 (13)
; _Z
1.9129431 ' 0.77153779 =7 ¢

for all € > 0, where

Y; = 0.5548133X; 5 + 0.6382230X5 5 + 0.5337169.X3 5

and

Y, = 0.66914423X; 5 + 0.03890251X3 5 — 0.7421136X5 5.
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Case k = 2.
Applications Order statistics
Data sets

Figure: Confidence regions for e = 4,6, 8 containing at least the 50%, the
66.6667% and the 75% of the scores of (X1.3, X2:3, X3.3).
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Case k = 2.
Applications Order statistics
Data sets

Data sets.
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Case k = 2.
Applications Order statistics
Data sets

Data sets.

m If we have a dataset O; = (X;, Y;), i=1,...,n, the mean is

m The correlation is r = V4 5/4/V11V22 and

1—1r2

Pr((X; — Y72 +2(1 - nNX[ Y <) >1-2 (14)

where X = (X; = X)/\/ Vi1, Yi = (Y1 = Y)/y/Vaz and | = i with
probability 1/n.
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Case k = 2.
Applications Order statistics
Data sets

Data sets.

m Then, by taking § = 4(1 — r?)
Ri={(6y) €R?: (X" —y")? +2(1 = )xy" < 4(1 =)},

contains (for sure) at least the 50% of the data.
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Case k = 2.
Applications Order statistics
Data sets

Data sets.

m Then, by taking § = 4(1 — r?)
Ri={(6y) €R?: (X" —y")? +2(1 = )xy" < 4(1 =)},

contains (for sure) at least the 50% of the data.
m By taking § = 8(1 — r?)

Ro={(6y) €R%: (" = y" )P +2(1 = )X’y < 8(1 =)},

contains (for sure) at least the 75% of the data and the
complementary region

Ra={(x.y) € B2: (x" =y P +2(1 = Nx'y" 2 81— )},

contains (for sure) at most the 25% of the data.
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Case k = 2.
Applications Order statistics
Data sets

Data sets.

m Then, by taking § = 4(1 — r?)
Ri={(6y) €R?: (X" —y")? +2(1 = )xy" < 4(1 =)},

contains (for sure) at least the 50% of the data.
m By taking § = 8(1 — r?)

Ro={(6y) €R%: (" = y" )P +2(1 = )X’y < 8(1 =)},

contains (for sure) at least the 75% of the data and the
complementary region

Ra={(x.y) € B2: (x" =y P +2(1 = Nx'y" 2 81— )},

contains (for sure) at most the 25% of the data.
m These regions are similar to (univariate) box plots.
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Case k = 2.
Applications Order statistics
Data sets

Data sets. An example.

m Consider in the data set “iris” from R (Fisher, 1936), the variables
X = Petal.Length and Y = Petal.Width.

RSME2017, Zaragoza J. Navarro, E-mail: jorgenav@um.es, 30/36



Case k = 2.
Applications Order statistics
Data sets

Data sets. An example.

m Consider in the data set “iris” from R (Fisher, 1936), the variables
X = Petal.Length and Y = Petal.Width.

m We obtain r = 0.9628654 and R; and R, determined by

2
X —3.758y — 1.199
_ 292
) 2= 759 o750 <02

<x —3.758  y—1.199

1.759 0.759
and
x—3.758 y—1.199\2 x —3.758 y — 1.199
- 2(1 — 0.583
< 1.759 0.759 ) 211759 o750 0583

respectively.
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Case k = 2.
Applications Order statistics
Data sets

Data sets. An example.

m Consider in the data set “iris" from R (Fisher, 1936), the variables
X = Petal.Length and Y = Petal. Width.

m We obtain r = 0.9628654 and R; and R, determined by

x—3.758 y—1.199)2 x —3.758 y — 1.199
- 2(1 — 0.292
( 1.759 0.759 ) (1=1)"7750 o750 ©
and
x—3.758 y—1.199\7? x —3.758 y — 1.199
- 2(1 - 0.583
< 1.759 0.759 > (=175 o750 <058

respectively.

m These regions contain more than the 50% and the 75% of the data
(i.e. more than 75 and 113 data in this case).
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Case k = 2.
Applications Order statistics
Data sets

3.0

Petal.Width

1.0

0.0

0 2 4 6 8
Petal.Length

Figure: Regions Ry and R, containing (for sure) at least the 50% and 75% of the
data from X = Petal.Length and Y = Petal.Width.
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Case k = 2.
Applications Order statistics
Data sets
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Figure: Regions Ry and R, by species containing (for sure) at least the 50% and
75% of the data from X = Petal.Length and Y = Petal. Width.
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Case k = 2.
Applications Order statistics
Data sets

Data sets. An example.

m The two first principal components Y7 and Y5 of the four variables in
this data set are

Y1 = 0.521X; — 0.269X; + 0.580X; + 0.565X;

and
Y, = —0.377X{ — 0.923X5 — 0.025X5 — 0.067.X;,

where X* = (X; — X;)/\/Vii, i = 1,2,3,4.
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Case k = 2.
Applications Order statistics
Data sets

Data sets. An example.

m The two first principal components Y7 and Y5 of the four variables in
this data set are

Y1 = 0.521X; — 0.269X; + 0.580X; + 0.565X;

and
Y, = —0.377X{ — 0.923X5 — 0.025X5 — 0.067.X;,

~

where X = (X; — X;)/\/ Vi, i = 1,2,3,4.
m In this case, Y1 = Y5> =0 and r = 0 and hence
2 2

X y
= : 4
Ru={(x¥) 5918 " o.01a <4
and ) )
_ S y
Ro=1(x¥): 5518 T 5012 <&
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Case k = 2.

Applications Order statistics
Data sets
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Figure: Regions Ry and R; for the scores in the two first principal components
containing (for sure) at least the 50% and 75% of the data scores.
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