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Notation

X = (X1, . . . ,Xk)′ a random vector.

µ = E (X) = (µ1, . . . , µk)′ mean vector.

V = Cov(X) = E ((X− µ)(X− µ)′) covariance matrix.

x = (x1, . . . , xk)′ ∈ Rk .

Mahalanobis distance from x to µ:

∆V (x,µ) =
√

(x− µ)′V−1(x− µ).

RSME2017, Zaragoza J. Navarro, E-mail: jorgenav@um.es, 2/36



Main results
Applications
References

The univariate Chebyshev’s inequality
The multivariate Chebyshev’s inequality
The bounds are sharp

Notation

X = (X1, . . . ,Xk)′ a random vector.

µ = E (X) = (µ1, . . . , µk)′ mean vector.

V = Cov(X) = E ((X− µ)(X− µ)′) covariance matrix.

x = (x1, . . . , xk)′ ∈ Rk .

Mahalanobis distance from x to µ:

∆V (x,µ) =
√

(x− µ)′V−1(x− µ).

RSME2017, Zaragoza J. Navarro, E-mail: jorgenav@um.es, 2/36



Main results
Applications
References

The univariate Chebyshev’s inequality
The multivariate Chebyshev’s inequality
The bounds are sharp

Notation

X = (X1, . . . ,Xk)′ a random vector.

µ = E (X) = (µ1, . . . , µk)′ mean vector.

V = Cov(X) = E ((X− µ)(X− µ)′) covariance matrix.

x = (x1, . . . , xk)′ ∈ Rk .

Mahalanobis distance from x to µ:

∆V (x,µ) =
√

(x− µ)′V−1(x− µ).

RSME2017, Zaragoza J. Navarro, E-mail: jorgenav@um.es, 2/36



Main results
Applications
References

The univariate Chebyshev’s inequality
The multivariate Chebyshev’s inequality
The bounds are sharp

Notation

X = (X1, . . . ,Xk)′ a random vector.

µ = E (X) = (µ1, . . . , µk)′ mean vector.

V = Cov(X) = E ((X− µ)(X− µ)′) covariance matrix.

x = (x1, . . . , xk)′ ∈ Rk .

Mahalanobis distance from x to µ:

∆V (x,µ) =
√

(x− µ)′V−1(x− µ).

RSME2017, Zaragoza J. Navarro, E-mail: jorgenav@um.es, 2/36



Main results
Applications
References

The univariate Chebyshev’s inequality
The multivariate Chebyshev’s inequality
The bounds are sharp

Notation

X = (X1, . . . ,Xk)′ a random vector.

µ = E (X) = (µ1, . . . , µk)′ mean vector.

V = Cov(X) = E ((X− µ)(X− µ)′) covariance matrix.

x = (x1, . . . , xk)′ ∈ Rk .

Mahalanobis distance from x to µ:

∆V (x,µ) =
√

(x− µ)′V−1(x− µ).

RSME2017, Zaragoza J. Navarro, E-mail: jorgenav@um.es, 2/36



Main results
Applications
References

The univariate Chebyshev’s inequality
The multivariate Chebyshev’s inequality
The bounds are sharp

The (univariate) Markov’s inequality.

If Z is a non-negative random variable with finite mean E (Z ) and
ε > 0, then

ε Pr(Z ≥ ε) = ε

∫
[ε,∞)

dFZ (x) ≤
∫

[ε,∞)
xdFZ (x) ≤

∫
[0,∞)

xdFZ (x) = E (Z )

where FZ (x) = Pr(Z ≤ x).

It can be stated as

Pr(Z ≥ ε) ≤ E (Z )

ε
. (1)

RSME2017, Zaragoza J. Navarro, E-mail: jorgenav@um.es, 3/36



Main results
Applications
References

The univariate Chebyshev’s inequality
The multivariate Chebyshev’s inequality
The bounds are sharp

The (univariate) Markov’s inequality.

If Z is a non-negative random variable with finite mean E (Z ) and
ε > 0, then

ε Pr(Z ≥ ε) = ε

∫
[ε,∞)

dFZ (x) ≤
∫

[ε,∞)
xdFZ (x) ≤

∫
[0,∞)

xdFZ (x) = E (Z )

where FZ (x) = Pr(Z ≤ x).

It can be stated as

Pr(Z ≥ ε) ≤ E (Z )

ε
. (1)

RSME2017, Zaragoza J. Navarro, E-mail: jorgenav@um.es, 3/36



Main results
Applications
References

The univariate Chebyshev’s inequality
The multivariate Chebyshev’s inequality
The bounds are sharp

The univariate Chebyshev’s inequality.

If X is a random variable with finite mean µ = E (X ) and variance
σ2 = Var(X ) > 0, then by taking Z = (X − µ)2/σ2 in (1), we get

Pr

(
(X − µ)2

σ2
≥ ε

)
≤ 1

ε
(2)

for all ε > 0.

It can also be written as

Pr((X − µ)2 < εσ2) ≥ 1− 1

ε

or as

Pr(|X − µ| < r) ≤ 1− σ2

r2

for all r > 0.
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The multivariate Chebyshev’s inequality (MCI).

If X is a random vector with finite mean µ = E (X)′ and positive
definite covariance matrix V = Cov(X).

Then

Pr((X− µ)′V−1(X− µ) ≥ ε) ≤ k

ε
(3)

for all ε > 0.

Chen, X. (2011). A new generalization of Chebyshev inequality for
random vectors. arXiv:0707.0805v2.
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The multivariate Chebyshev’s inequality.

The inequality in (3) can also be written as

Pr((X− µ)′V−1(X− µ) < ε) ≥ 1− k

ε
(4)

for all ε > 0.

This inequality says that the ellipsoid

Eε = {x ∈ Rk : (x− µ)′V−1(x− µ) < ε} (5)

contains at least the 100(1− k/ε)% of the population.

The inequality can also be written as

Pr(∆V (X,µ) < r) ≥ 1− k

r2
. (6)

Hence (6) gives a lower bound for the percentage of points from X in
spheres “around” the mean µ in the Mahalanobis distance based on
V .
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A very short proof.

Let us consider the random variable

Z = (X− µ)′V−1(X− µ).

As V is positive definite, then Z ≥ 0.

Moreover, there exist symmetric matrices V 1/2 and V−1/2 such that
V 1/2V 1/2 = V , V−1/2V−1/2 = V−1 and
V 1/2V−1/2 = V−1/2V 1/2 = Ik , where Ik is the identity matrix of
dimension k.

Therefore

Z = (X− µ)′V−1/2V−1/2(X− µ) = Y′Y,

where Y = (Y1, . . . ,Yk)′ = V−1/2(X− µ).

Hence E (Y) = 0k and

Cov(Y) = V−1/2Cov(X)V−1/2 = V−1/2VV−1/2 = Ik .
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A very short proof.

Therefore E (Yi ) = 0, Var(Yi ) = 1 and

E (Z ) = E (Y′Y) = E

(
k∑

i=1

Y 2
i

)
=

k∑
i=1

E (Y 2
i ) =

k∑
i=1

Var(Yi ) = k.

Hence, from Markov’s inequality (1), we get

Pr(Z ≥ ε) = Pr((X− µ)′V−1(X− µ) ≥ ε) ≤ E (Z )

ε
=

k

ε

and therefore (3) holds for all ε > 0.
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That’s all, thank you for your attention!!

It’s a joke, let’s see something more (if you want).
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Another short proof.

Let us consider the random variable

Z = (X− µ)′V−1(X− µ) ≥ 0.

As V is positive definite and symmetric, there exists an ortogonal
matrix T such that TT ′ = T ′T = Ik and T ′VT = D and
D = diag(λ1, . . . , λk) is the diagonal matrix with the ordered
eigenvalues λ1 ≥ · · · ≥ λk > 0.
Then V = TDT ′ and V−1 = TD−1T ′.
Therefore

Z = (X− µ)′TD−1T ′(X− µ)

= [D−1/2T ′(X− µ)]′[D−1/2T ′(X− µ)]

= Z′Z,

where Z = (Z1, . . . ,Zn)
′ = D−1/2T ′(X− µ) and

D−1/2 = diag(λ
−1/2
1 , . . . , λ

−1/2
k ).
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Another short proof.

The random vector Z satisfies E (Z) = 0k and

Cov(Z) = Cov(D−1/2T ′(X− µ)) = D−1/2T ′VTD−1/2 = D−1/2DD−1/2 = Ik .

Therefore E (Zi ) = 0, Var(Zi ) = 1 and

E (Z ) = E (Z′Z) = E

(
k∑

i=1

Z 2
i

)
=

k∑
i=1

E (Z 2
i ) =

k∑
i=1

Var(Zi ) = k.

Hence, from Markov’s inequality (1), we get

Pr(Z ≥ ε) = Pr((X− µ)′V−1(X− µ) ≥ ε) ≤ E (Z )

ε
=

k

ε
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Bounds for singular covariance matrices.

Z = D−1/2T ′(X− µ) is the vector of the standardized principal
components of X.

Then (3) can be written as

Pr(Z′Z < ε) ≥ 1− k

ε
(7)

where Z′Z =
∑k

i=1 Z 2
i .

If V is singular, then λ1 ≥ · · · ≥ λm > λm+1 = · · · = λk = 0.
Then (7) can be replaced with

Pr

(
m∑

i=1

Z 2
i < ε

)
≥ 1− m

ε
(8)

for all ε > 0, where Zi = λ
−1/2
i t′i (X− µ) is the ith standardized

principal components of X and ti is the normalized eigenvector
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An example.

(X1,X3,X3) ≡ Multinomial(p1 = 1/3, p2 = 1/3, p3 = 1/3, n).

Then µ = E (X) = (n/3, n/3, n/3)′ and

V =
n

9

 2 −1 −1
−1 2 −1
−1 −1 2

 .

As X1 + X2 + X3 = n, we of course have |V | = 0,
The eigenvalues are λ1 = λ2 = n/3 and λ3 = 0.
Some two first standardized principal components are

Z1 =
X1 − X2√

2n/3
, Z2 =

X1 + X2 − 2X3√
2n

and the multivariate Chebyshev’s inequality given in (8) gives

Pr

(√
(X1 − X2)2 + (X1 + X2 − 2X3)2/3 < δ

)
≥ 1− 4n

3δ2
.
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The bounds are sharp.

Theorem (Navarro SPL 2014)

Let X = (X1, . . . ,Xk)′ be a random vector with finite mean vector
µ = E (X) and positive definite covariance matrix V = Cov(X) and let

ε ≥ k. Then there exists a sequence X(n) = (X
(n)
1 , . . . ,X

(n)
k )′ of random

vectors with mean vector µ and covariance matrix V such that

lim
n→∞

Pr((X(n) − µ)′V−1(X(n) − µ) ≥ ε) =
k

ε
. (9)
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The bounds are sharp (proof).

For ε ≥ k, let us consider

Dn =


√

Zn + ε with probability (p − 1/n)/2
−
√

Zn + ε with probability (p − 1/n)/2
0 with probability 1− p + 1/n

for n > ε/k, where p = k/ε ≤ 1 and Zn ≡ Exp(µn = ε/n
p−1/n > 0).

Note that Pr(D2
n ≥ ε) = p − 1/n.

E (Dn) = (p−1/n)
2 E

(√
Zn + ε

)
− (p−1/n)

2 E
(√

Zn + ε
)

= 0.

E (D2
n) = (p − 1/n)E (Zn + ε) = (p − 1/n)

(
ε/n

p−1/n + ε
)

= k.
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The bounds are sharp (proof).

Let Un be a r.v., independent of Zn, with a uniform distribution over
{1, . . . , k}.

Let Y(n) = (Y
(n)
1 , . . . ,Y

(n)
k )′ defined by Y

(n)
i = Dn and Y

(n)
j = 0 for

j = 1, . . . , i − 1, i + 1, . . . , k when Un = i .

Hence E (Y
(n)
i ) = 1

k E (Dn) = 0 and

Var(Y
(n)
i ) = E ((Y

(n)
i )2) =

1

k
E (D2

n) = 1.

Moreover, Y
(n)
i Y

(n)
j = 0 and E (Y

(n)
i Y

(n)
j ) = 0 for all i 6= j .

Then E (Y(n)) = 0k and Cov(Y(n)) = Ik .

Then X(n) = µ + V 1/2Y(n) has mean E (X(n)) = µ and

Cov(X(n)) = Cov(V 1/2Y(n)) = V 1/2V 1/2 = V .
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The bounds are sharp (proof).

Moreover,

Pr((X(n) − µ)′V−1(X(n) − µ) ≥ ε)

= Pr((V 1/2Y(n))′V−1(V 1/2Y(n)) ≥ ε)

= Pr((Y(n))′V 1/2V−1V 1/2Y(n) ≥ ε)

= Pr((Y(n))′Y(n) ≥ ε)

= Pr

(
k∑

i=1

(Y
(n)
i )2 ≥ ε

)
= Pr(D2

n ≥ ε)

= p − 1

n
→ p =

k

ε
, as n →∞
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Applications. Case k = 2.

Theorem

(X ,Y )′ with E (X ) = µX , E (Y ) = µY , Var(X ) = σ2
X > 0,

Var(Y ) = σ2
Y > 0 and ρ = Cor(X ,Y ) ∈ (−1, 1). Then

Pr((X ∗ − Y ∗)2 + 2(1− ρ)X ∗Y ∗ < δ) ≥ 1− 2
1− ρ2

δ
(10)

for all δ > 0, where X ∗ = (X − µX )/σX and Y ∗ = (X − µY )/σY .

Z1 = (X ∗ + Y ∗)/
√

2(1 + ρ), Z2 = (X ∗ − Y ∗)/
√

2(1− ρ) and

Pr

(
(X ∗ + Y ∗)2

2(1 + ρ)
+

(X ∗ − Y ∗)2

2(1− ρ)
< ε

)
≥ 1− 2

ε
. (11)
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An example

(X ,Y ) with E (X ) = E (Y ) = 1, Var(X ) = Var(Y ) = 1 and
ρ = Cor(X ,Y ) = 0.9. Then

Pr(5(X − Y )2 + (X − 1)(Y − 1) < 5δ) ≥ 1− 2
0.19

δ
,

that is,

Pr(5X 2 − 9XY + 5Y 2 − X − Y + 1 < ε) ≥ 1− 1.9

ε

for all ε > 1.9.

The distribution-free confidence regions for ε = 3, 4, 5, 10 containing
respectively at least the 36.6666%, 52.5%, 62% and the 81% of the
values of (X ,Y ) can be seen in the following figure.
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Figure: Confidence regions for ε = 3, 4, 5, 10 containing at least the 36.66%,
52.5%, 62% and the 81% of the values of (X ,Y ).
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Order statistics

Let X1:k , . . . ,Xk:k be the OS from (X1, . . . ,Xk).

For k = 2 we have

ρ1,2:2 = Cor(X1:2,X2:2) = ρ
σ1σ2

σ1:2σ1:2
+

(µ1 − µ1:2)(µ2 − µ1:2)

σ1:2σ1:2
,

where µi = E (Xi ), µi :2 = E (Xi :2), σ2
i = Var(Xi ), σ2

i :2 = Var(Xi :2), for
i = 1, 2, and ρ = Cor(X1,X2).

Then

Pr((X ∗
2:2−X ∗

1:2)
2 +2(1−ρ1,2:2)X

∗
2:2X

∗
1:2 < δ) ≥ 1−2

1− ρ2
1,2:2

δ
, (12)

where X ∗
i :2 = (Xi :2 − µi :2)/σi :2, i = 1, 2.
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i :2 = (Xi :2 − µi :2)/σi :2, i = 1, 2.
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Order statistics
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Order statistics. Example 1.

(X1,X2) has a Pareto distribution with

F (x , y) = Pr(X1 > x ,X2 > y) = (1 + λx + λy)−θ

for x , y ≥ 0, where λ > 0 and θ > 2.

Then µ = 1/(λθ − λ), σ2 = µ2/(1− 2ρ), ρ = 1/θ, µ1:2 = µ/2,
µ2:2 = 3µ/2

σ2
1:2 =

µ2

4(1− 2ρ)
, σ2

2:2 =
µ2(6 + 3ρ)

4(1− 2ρ)
, ρ1,2:2 =

1 + 2ρ√
6 + 3ρ

.

If λ = 0.5 and θ = 3, then µ = 1, ρ = 1/3, µ1:2 = 1/2, µ2:2 = 3/2,
σ1:2 = 0.866, σ2:2 = 2.291 ρ1,2:2 = 0.6299 and

Pr

[X2:2 − 3
2

2.291
−

X1:2 − 1
2

0.866

]2

+ 0.74
X2:2 − 3

2

2.291

X1:2 − 1
2

0.866
< δ

 ≥ 1− 1.206

δ
.
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Data sets

Figure: Confidence regions for δ = 2, 4, 6 containing at least the 39.68%, the
69.84% and the 79.89% of the values of (X1:2,X2:2).
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Order statistics. Example 2.

X1, . . . ,Xk iid Exp(µ = 1), then

µi :k =
k∑

j=k−i+1

1

j
, σ2

i :k =
k∑

j=k−i+1

1

j2

and
ρi ,j :k = Cor(Xi :k ,Xj :k) =

σi :k

σj :k
, 1 ≤ i < j ≤ k

If k = 3, i = 2 and j = 3, then µ2:3 = 5/6, µ3:3 = 11/6,
σ2:3 = 0.6009, σ3:3 = 1.1667, and ρ2,3:3 = 0.5151.

Hence

Pr

[X3:3 − 11
6

1.1667
−

X2:3 − 5
6

0.6009

]2

+ 0.969
X3:3 − 11

6

1.1667

X2:3 − 5
6

0.6009
< δ

 ≥ 1− 1.469

δ
.
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Case k = 2.
Order statistics
Data sets

Figure: Confidence regions for δ = 2, 3, 4 containing at least 63.26%, the 75.51%
and the 81.63% of the values of (X2:3,X3:3).
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Order statistics. Example 2.

For (X1:3,X2:3,X3:3)
′ we obtain the confidence region

Rε = {(x , y , z) : 1.444x2 − 1.602xy + 1.805y2 − 1.402yz + 1.361z2 < ε}

containing (X ∗
1:3,X

∗
2:3,X

∗
3:3)

′ with a probability greater than 1− 3/ε,
where X ∗

i :k = (Xi :k − µi :k)/σi :k for i = 1, 2, 3.

If we use the two principal components

Pr

(
Y 2

1

1.9129431
+

Y 2
2

0.77153779
< ε

)
≥ 1− 2

ε
(13)

for all ε > 0, where

Y1 = 0.5548133X ∗
1:3 + 0.6382230X ∗

2:3 + 0.5337169X ∗
3:3

and

Y2 = 0.66914423X ∗
1:3 + 0.03890251X ∗

2:3 − 0.7421136X ∗
3:3.
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Case k = 2.
Order statistics
Data sets

Figure: Confidence regions for ε = 4, 6, 8 containing at least the 50%, the
66.6667% and the 75% of the scores of (X1:3,X2:3,X3:3).
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Data sets.

If we have a data set Oi = (Xi ,Yi )
′, i = 1, . . . , n, the mean is

O =
1

n

n∑
i=1

Oi = (X ,Y )

and its covariance matrix is

V̂ =
1

n

n∑
m=1

(Om − O)(Om − O)′ = (V̂i ,j),

The correlation is r = V̂1,2/

√
V̂1,1V̂2,2 and

Pr((X ∗
I − Y ∗

I )2 + 2(1− r)X ∗
I Y ∗

I < δ) ≥ 1− 2
1− r2

δ
, (14)

where X ∗
I = (XI − X )/

√
V̂1,1, Y ∗

I = (YI − Y )/
√

V̂2,2 and I = i with

probability 1/n.
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Data sets

Data sets.

Then, by taking δ = 4(1− r2)

R1 = {(x , y) ∈ R2 : (x∗ − y∗)2 + 2(1− r)x∗y∗ < 4(1− r2)},

contains (for sure) at least the 50% of the data.

By taking δ = 8(1− r2)

R2 = {(x , y) ∈ R2 : (x∗ − y∗)2 + 2(1− r)x∗y∗ < 8(1− r2)},

contains (for sure) at least the 75% of the data and the
complementary region

R2 = {(x , y) ∈ R2 : (x∗ − y∗)2 + 2(1− r)x∗y∗ ≥ 8(1− r2)},

contains (for sure) at most the 25% of the data.

These regions are similar to (univariate) box plots.
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Data sets. An example.

Consider in the data set “iris” from R (Fisher, 1936), the variables
X = Petal .Length and Y = Petal .Width.

We obtain r = 0.9628654 and R1 and R2 determined by(
x − 3.758

1.759
− y − 1.199

0.759

)2

+ 2(1− r)
x − 3.758

1.759

y − 1.199

0.759
< 0.292

and(
x − 3.758

1.759
− y − 1.199

0.759

)2

+ 2(1− r)
x − 3.758

1.759

y − 1.199

0.759
< 0.583,

respectively.

These regions contain more than the 50% and the 75% of the data
(i.e. more than 75 and 113 data in this case).

RSME2017, Zaragoza J. Navarro, E-mail: jorgenav@um.es, 30/36



Main results
Applications
References

Case k = 2.
Order statistics
Data sets

Data sets. An example.

Consider in the data set “iris” from R (Fisher, 1936), the variables
X = Petal .Length and Y = Petal .Width.

We obtain r = 0.9628654 and R1 and R2 determined by(
x − 3.758

1.759
− y − 1.199

0.759

)2

+ 2(1− r)
x − 3.758

1.759

y − 1.199

0.759
< 0.292

and(
x − 3.758

1.759
− y − 1.199

0.759

)2

+ 2(1− r)
x − 3.758

1.759

y − 1.199

0.759
< 0.583,

respectively.

These regions contain more than the 50% and the 75% of the data
(i.e. more than 75 and 113 data in this case).

RSME2017, Zaragoza J. Navarro, E-mail: jorgenav@um.es, 30/36



Main results
Applications
References

Case k = 2.
Order statistics
Data sets

Data sets. An example.

Consider in the data set “iris” from R (Fisher, 1936), the variables
X = Petal .Length and Y = Petal .Width.

We obtain r = 0.9628654 and R1 and R2 determined by(
x − 3.758

1.759
− y − 1.199

0.759

)2

+ 2(1− r)
x − 3.758

1.759

y − 1.199

0.759
< 0.292

and(
x − 3.758

1.759
− y − 1.199

0.759

)2

+ 2(1− r)
x − 3.758

1.759

y − 1.199

0.759
< 0.583,

respectively.

These regions contain more than the 50% and the 75% of the data
(i.e. more than 75 and 113 data in this case).

RSME2017, Zaragoza J. Navarro, E-mail: jorgenav@um.es, 30/36



Main results
Applications
References

Case k = 2.
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Data sets

Figure: Regions R1 and R2 containing (for sure) at least the 50% and 75% of the
data from X = Petal .Length and Y = Petal .Width.
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Case k = 2.
Order statistics
Data sets

Figure: Regions R1 and R2 by species containing (for sure) at least the 50% and
75% of the data from X = Petal .Length and Y = Petal .Width.
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Data sets. An example.

The two first principal components Y1 and Y2 of the four variables in
this data set are

Y1 = 0.521X ∗
1 − 0.269X ∗

2 + 0.580X ∗
3 + 0.565X ∗

4

and
Y2 = −0.377X ∗

1 − 0.923X ∗
2 − 0.025X ∗

3 − 0.067X ∗
4 ,

where X ∗
i = (Xi − X i )/

√
V̂i ,i , i = 1, 2, 3, 4.

In this case, Y 1 = Y 2 = 0 and r = 0 and hence

R1 = {(x , y) :
x2

2.918
+

y2

0.914
< 4}

and

R2 = {(x , y) :
x2

2.918
+

y2

0.914
< 8}.
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Figure: Regions R1 and R2 for the scores in the two first principal components
containing (for sure) at least the 50% and 75% of the data scores.
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