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Notation

▶ X and Y random variables.

▶ FX (t) = Pr(X ≤ t) and FY (t) = Pr(Y ≤ t) cumulative
distribution functions (CDF).

▶ F̄X (t) = 1 − FX (t) = Pr(X > t) and F̄Y (t) = Pr(Y > t)
survival (or reliability) functions (SF).

▶ fX = F ′
X and fY = F ′

Y probability density functions (PDF).
▶ hX = fX/F̄X and hY = fY /F̄Y hazard rate (HR) functions.
▶ mX (t) = E (X − t|X > t) and mY (t) = E (Y − t|Y > t)

mean residual (MRL) life functions.
▶ m̄X (t) = E (t − X |X < t) and m̄Y (t) = E (t − Y |Y < t)

mean inactivity time (MIT) functions.
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Main stochastic orders

▶ Stochastic order: X ≤ST Y ⇔ F̄X ≤ F̄Y .

▶ Hazard rate order: X ≤HR Y ⇔ F̄Y /F̄X increases.
▶ Reversed hazard rate order: X ≤RHR Y ⇔ FY /FX increases.
▶ Mean residual life order: X ≤MRL Y ⇔ mX ≤ mY .
▶ Mean inactivity time order: X ≤MIT Y ⇔ m̄X ≥ m̄Y .
▶ Likelihood ratio order: X ≤LR Y ⇔ fY /fX increases.
▶ Increasing concave order X ≤ICV Y ⇔ E (ϕ(X )) ≤ E (ϕ(X ))

for all increasing and concave functions ϕ.
▶ Increasing convex order X ≤ICX Y ⇔ E (ϕ(X )) ≤ E (ϕ(X )) for

all increasing and convex functions ϕ.
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Main stochastic orders

▶ Relationships:

X ≤LR Y ⇒ X ≤HR Y ⇒ X ≤MRL Y
⇓ ⇓ ⇓

X ≤RHR Y ⇒ X ≤ST Y ⇒ X ≤ICX Y
⇓ ⇓ ⇓

X ≤MIT Y ⇒ X ≤ICV Y ⇒ E (X ) ≤ E (Y )
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Properties based on residual lifetimes

Proposition
If Xt = (X − t|X > t) and Yt = (Y − t|Y > t), the following
conditions are equivalent:

i) X ≤HR Y ;
ii) Xt ≤HR Yt for all t;
iii) Xt ≤ST Yt for all t;
iv) hX ≥ hY (abs. cont. case).

DEMO2024 - Workshop on Dependence Modelling Jorge Navarro, Email: jorgenav@um.es. 8/46



Preliminary results
New dependence notions

Conclusions

Stochastic orders
Properties
Dependence notions

Properties based on residual lifetimes

Proposition
The following conditions are equivalent:

i) X ≤LR Y ;
ii) Xt ≤LR Yt for all t;
iii) Xt ≤RHR Yt for all t;
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Properties based on inactivity times

Proposition
If tX = (t − X |X < t) and tY = (t − Y |Y < t), the following
conditions are equivalent:

i) X ≤RHR Y ;
ii) tX ≥HR tY for all t > 0;
iii) tX ≥ST tY for all t > 0.
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Dependence notions

▶ PQD (Positively Quadrant Dependent) iff X ≤ST (X |Y > t)
for all t ≥ 0.

▶ NQD (Negatively Quadrant Dependent) iff X ≥ST (X |Y > t)
for all t ≥ 0.

▶ RTI (X |Y ) (Right Tail Increasing) iff (X |Y > t) ST-increasing.
▶ RTD(X |Y ) (Right Tail Decreasing) iff (X |Y > t)

ST-decreasing.
▶ LTD(X |Y ) (Left Tail Decreasing) iff (X |Y ≤ t) is

ST-increasing.
▶ LTI (X |Y ) (Left Tail Increasing) iff (X |Y ≤ t) is

ST-decreasing.
▶ SI (X |Y ) (Stochastically Increasing) iff (X |Y = t) is

ST-increasing.
▶ SD(X |Y ) (Stochastically Decreasing) iff (X |Y = t) is

ST-decreasing.
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▶ PQD (Positively Quadrant Dependent) iff X ≤ST (X |Y > t)
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▶ RCSI (Right Corner Set Increasing) iff
Pr(X > x ,Y > y |X > s,Y > t) is increasing in s and t for all
x , y or, equivalently, if (X |Y > t) is HR-increasing in t.

▶ RCSD (Right Corner Set Decreasing) iff
Pr(X > x ,Y > y |X > s,Y > t) is decreasing in s and t for
all x , y or, equivalently, if (X |Y > t) is HR-decreasing in t.

▶ LCSD (Left Corner Set Decreasing) iff
Pr(X ≤ x ,Y ≤ y |X ≤ s,Y ≤ t) is decreasing in s and t for
all x , y or, equivalently if (X |Y ≤ t) is RHR-increasing in t.

▶ LCSI (Left Corner Set Increasing) iff
Pr(X ≤ x ,Y ≤ y |X ≤ s,Y ≤ t) is increasing in s and t for all
x , y or, equivalently if (X |Y ≤ t) is RHR-decreasing in t.
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▶ SIRL(X |Y ) (Stochastically Increasing in Residual Life) iff
(X |Y = t) is HR-increasing in t.

▶ SDRL(X |Y ) (Stochastically Decreasing in Residual Life) iff
(X |Y = t) is HR-decreasing in t.

▶ PRLD (Positive Likelihood Ratio Dependent) iff its joint
density function is TP2 or, equivalently, if (X |Y = t)
LR-increasing in t.

▶ NRLD (Negative Likelihood Ratio Dependent) iff its joint
density function is RR2 or, equivalently, if (X |Y = t)
LR-decreasing in t.
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Copula representations

▶ (X ,Y ) non-negative random vector.

▶ The joint distribution function can be written as

F (x , y) = Pr(X ≤ x ,Y ≤ y) = C (FX (x),FY (y))

for all x , y ∈ R, where C : [0, 1]2 → [0, 1] is a copula function.
▶ The joint survival (or reliability) function can be written as

F̄ (x , y) = Pr(X > x ,Y > y) = Ĉ (F̄X (x), F̄Y (y))

for all x , y ∈ R, where Ĉ : [0, 1]2 → [0, 1] is a copula function
called survival copula.
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Properties

Proposition
The following conditions are equivalent:

i) X ≤ST (X |Y > s) for all s and all F̄X , F̄Y ;
ii) Y ≤ST (Y |X > t) for all t and all F̄X , F̄Y ;
iii) Ĉ (u, v) ≥ uv for all u, v ∈ (0, 1);
iv) Cov(ϕ1(X ), ϕ2(Y )) ≥ 0 for all increasing functions ϕ1 and ϕ2;
iv) (X ,Y ) is PQD.
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Properties

Proposition
If Xt,s = (X − t|X > t,Y > s) and Yt,s = (Y − s|X > t,Y > s),
for continuous F̄X , F̄Y the following conditions are equivalent:

i) X ≤HR (X |Y > s) for all s and all F̄X , F̄Y ;
ii) Xt ≤HR Xt,s for all t, s and all F̄X , F̄Y ;
iii) Xt ≤ST Xt,s for all t, s and all F̄X , F̄Y ;

iv) Ĉ (u, v)/u is decreasing in u for all v ∈ (0, 1);
v) RTI (Y |X ).
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Proposition
The following conditions are equivalent:

i) X ≤LR (X |Y > s) for all s and all F̄X , F̄Y ;
ii) Xt ≤LR Xt,s for all t, s and all F̄X , F̄Y ;
iii) Xt ≤RHR Xt,s for all t, s and all F̄X , F̄Y ;

iv) Ĉ (u, v) is concave in u (or ∂1Ĉ (u, v) is decreasing in u) for all
v ∈ (0, 1);

v) SI (Y |X ).
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Proposition
The following conditions are equivalent:

i) (X |Y > s1) ≤HR (X |Y > s2) for all s1 ≤ s2 and all F̄X , F̄Y ;
ii) (Y |X > t1) ≤HR (Y |X > t2) for all t1 ≤ t2 and all F̄X , F̄Y ;
iii) Xt,s1 ≤HR Xt,s2 for all t, all s1 ≤ s2 and all F̄X , F̄Y ;
iv) Xt,s1 ≤ST Xt,s2 for all t, all s1 ≤ s2 and all F̄X , F̄Y ;
v) Yt1,s ≤HR Yt2,s for all s, all t1 ≤ t2 and all F̄X , F̄Y ;
vi) Yt1,s ≤ST Yt2,s for all s, all t1 ≤ t2 and all F̄X , F̄Y ;

vii) Ĉ (u, v) is TP2;
viii) (X ,Y ) is RCSI .
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Proposition
The following conditions are equivalent:

i) (X |Y > s1) ≤LR (X |Y > s2) for all s1 < s2 and all F̄X , F̄Y ;
ii) (Xt |Y > s1) ≤LR (Xt |Y > s2) for all t, s1 < s2 and all F̄X , F̄Y ;
iii) (Xt |Y > s1) ≤RHR (Xt |Y > s1) for all t, s1 < s2 and all

F̄X , F̄Y ;
iv) ∂1Ĉ (u, v) is TP2;
v) SIRL(Y |X ).

DEMO2024 - Workshop on Dependence Modelling Jorge Navarro, Email: jorgenav@um.es. 22/46



Preliminary results
New dependence notions

Conclusions

Stochastic orders
Properties
Dependence notions

Properties

Proposition
The following conditions are equivalent:

i) (Y |X = t1) ≤LR (Y |X = t2) for all t1 < t2 and all F̄X , F̄Y ;
ii) (X |Y = s1) ≤LR (X |Y = s2) for all s1 < s2 and all F̄X , F̄Y ;
iii) (Xt |Y = s1) ≤LR (Xt |Y = s2) for all t, s1 < s2 and all F̄X , F̄Y ;
iv) (Xt |Y = s1) ≤RHR (Xt |Y = s2) for all t, s1 < s2 and all

F̄X , F̄Y ;
v) (Ys |X = t1) ≤LR (Ys |X = t2) for all s, t1 < t2 and all F̄X , F̄Y ;
vi) (Ys |X = t1) ≤RHR (Ys |X = t2) for all s, t1 < t2 and all

F̄X , F̄Y ;
vii) ∂2

1,2C (u, v) is TP2;
viii) PLRD.
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▶ We say that (X ,Y ) is Stochastically Increasing (Decreasing)
in the order ORD, denoted SIORD(X |Y ) (SDORD(X |Y )) if

(X |Y = t1) ≤ORD (X |Y = t2) (≥ORD)

holds for all t1 < t2 for a given stochastic order ORD.

▶ With this definition SI (X |Y ) = SIST (X |Y ),
SIRL(X |Y ) = SIHR(X |Y ) and PLRD = SILR(Y |X ).

▶ Note that SILR(Y |X ) is equivalent to SILR(X |Y ) and so we
can just write SILR .
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▶ We say that (X ,Y ) is Right Tail Increasing (Decreasing) in
the order ORD, denoted RTIORD(X |Y ) (RTDORD(X |Y )), if

(X |Y > t1) ≤ORD (X |Y > t2) (≥ORD)

holds for all t1 < t2 for a given stochastic order ORD.

▶ We say that (X ,Y ) is Left Tail Decreasing (Increasing) in the
order ORD, denoted LTDORD(X |Y ) (LTIORD(X |Y )), if

(X |Y ≤ t1) ≤ORD (X |Y ≤ t2) (≥ORD)

holds for all t1 < t2 for a given stochastic order ORD.
▶ Then RTI (X |Y ) = RTIST (X |Y ),

RCSI = RTIHR(X |Y ) = RTIHR(Y |X ) and
SIRL(Y |X ) = RTILR(X |Y ).
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▶ We say that (X ,Y ) is Right Tail Increasing (Decreasing) at
zero in the order ORD, denoted RTI 0ORD(X |Y )
(RTD0

ORD(X |Y )), if

X ≤ORD (X |Y > s) (≥ORD)

holds for all s > 0 for a given stochastic order ORD.

▶ We say that (X ,Y ) is Left Tail Decreasing (Increasing) at
infinity in the order ORD, denoted LTD∞

ORD(X |Y )
(LTI∞ORD(X |Y )), if

X ≥ORD (X |Y ≤ s) (≤ORD)

holds for all s > 0 for a given stochastic order ORD.
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▶ With these definitions:

▶ PQD = RTI 0ST (Y |X ) = RTI 0ST (X |Y ) = LTD∞
ST (Y |X ) =

LTD∞
ST (X |Y ).

▶ Analogously, RTI (Y |X ) = RTI 0HR(X |Y ) and
LTD(Y |X ) = LTD∞

RHR(X |Y ).
▶ Also, SI (Y |X ) = RTI 0LR(X |Y ) = LTD∞

LR(X |Y ).
▶ The proofs of these equivalences can be found in Navarro and

Sordo (2018) and Longobardi and Pellerey (2019).
▶ Some of these notions are actually equivalent, like, e.g.,

RTI 0LR(Y |X ) and SIST (X |Y ), or RTI 0HR(Y |X ) and
RTIST (X |Y ) (see Foschi and Spizzichino (2013) for details).
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RTI 0LR(Y |X ) and SIST (X |Y ), or RTI 0HR(Y |X ) and
RTIST (X |Y ) (see Foschi and Spizzichino (2013) for details).
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Relationships

PQD(X ,Y ) ⇐ RTI (Y |X ) ⇐ SI (Y |X )
⇑ ⇑ ⇑

RTI (X |Y ) ⇐ RCSI (X ,Y ) ⇐ SIRL(Y |X )
⇑ ⇑ ⇑

SI (X |Y ) ⇐ SIRL(X |Y ) ⇐ PLRD(X ,Y )

Table: Relationships among positive dependence properties.
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Relationships

SI (Y |X ) ⇒ LTD(Y |X ) ⇒ PQD(X ,Y )
⇑ ⇑ ⇑

SIRHR(Y |X ) ⇒ LCSD(X ,Y ) ⇒ LTD(X |Y )
⇑ ⇑ ⇑

PLRD(X ,Y ) ⇒ SIRHR(X |Y ) ⇒ SI (X |Y )

Table: Relationships among reversed positive dependence properties.

DEMO2024 - Workshop on Dependence Modelling Jorge Navarro, Email: jorgenav@um.es. 30/46



Preliminary results
New dependence notions

Conclusions

Weak dependence notions
Relationships

Weak dependence notions

▶ New dependence notions can be introduced and discussed.

▶ They are defined as those satisfying RTIORD(X |Y ) or
RTI 0ORD(X |Y ) where ORD is one of the orders ICX or MRL,

▶ They are “weak” in the sense that they do not imply the PQD
property.

▶ However, they imply non-negativity of the linear Pearson’s
correlation coefficient rX ,Y .

▶ For that reason, they can be considered as “weak positive
dependence notions”.

▶ The negative dependence properties are defined in a similar
way.
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Proposition
The following conditions are equivalent:

i) X ≤ICX (X |Y > y) for all y (i.e. RTI 0ICX (X |Y ));

ii) The survival copula Ĉ satisfies∫ z

0
[Ĉ (u, v)− uv ] dF̄−1

X (u) ≤ 0, ∀z ∈ [0, 1], ∀v ∈ [0, 1].

(2.1)
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Proposition
The following conditions are equivalent:

i) X ≤MRL (X |Y > y) for all y (i.e. RTI 0MRL(X |Y ));
ii) Xt ≤MRL Xt,s for all t, s;
iii) Xt ≤ICX Xt,s for all t, s;

iv) The survival copula Ĉ satisfies∫ z

0
[zĈ (u, v)− uĈ (z , v)) dF̄−1

X (u) ≤ 0 ∀z , v ∈ [0, 1] (2.2)
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Weak dependence notions

▶ The Positive Quadrant Dependence in Expectation property
(PQDE ) was defined in Balakrishnan and Lai (2009) with
PQDE (X |Y ) iff E (X ) ≤ E (X |Y > y) for all y ≥ 0.

▶ Thus we have the following proposition:

Proposition
The following conditions are equivalent:

i) E (X ) ≤ E (X |Y > y) for all y (i.e. PQDE (X |Y ) = RTI 0mean(X |Y ));
ii) The survival copula Ĉ satisfies∫ 1

0
(Ĉ (u, v)− uv) dF̄−1

X (u) ≤ 0, ∀t ∈ [0, 1], ∀v ∈ [0, 1]. (2.3)

▶ Then PQD ⇒ PQDE (X |Y ) ⇒ rX ,Y ≥ 0.
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Relationships between weak dependence notions

rX ,Y ≥ 0
⇑

PQDE (X |Y ) ⇐ RTI 0ICX (X |Y ) ⇐ RTI 0MRL(X |Y )
⇑ ⇑ ⇑

RTI 0ICX (Y |X ) ⇐ PQD(X ,Y ) ̸⇐ RTIMRL(X |Y )
⇑ ̸⇑ ⇑

RTI 0MRL(Y |X ) ⇐ RTIMRL(Y |X ) ⇐ RCSI (X ,Y )

Table: Relationships among weak positive dependence properties.
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Relationships between weak dependence notions

rX ,Y ≥ 0
⇑

PQDE (X |Y ) ⇐ RTI 0ICX (X |Y ) ⇐ RTI 0MRL(X |Y )
⇑ ⇑ ⇑

RTI 0ICX (X |Y ) ⇐ RTIICX (X |Y ) ⇐ RTIMRL(X |Y )
⇑ ⇑ ⇑

PQD(X,Y) ⇐ RTIST (X |Y ) ⇐ RCSI (X ,Y )

Table: Relationships among weak positive dependence properties.
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Other dependence properties

▶ All the properties mentioned above are not independent on the
marginal distributions.

▶ However, interesting properties of the survival copula of the
vector are introduced when we assume uniform marginals.

▶ They can be used to define new weak dependence properties
that do not depend on the marginals.

▶ In fact, letting P denote the property∫ z

0
[Ĉ (u, v)− uv ] du ≥ 0,∀z ∈ [0, 1],∀v ∈ [0, 1],

and letting P̃ denote the property

X ≤ICX (X |Y > y) ∀y

one immediately observes that both are positive dependence
properties weaker than PQD.
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Other dependence properties

▶ Property P satisfies

PQD ⇒ P ⇒ ρX ,Y ≥ 0,

where

ρX ,Y = 12
∫ 1

0

∫ 1

0
C (u, v)dudv − 3

is the Spearman’s rho coefficient for X and Y (for the formula
of ρX ,Y , see (5.1.15c) in Nelsen (2006)), and the first
implication follows from (2.1).

▶ Property P̃ satisfies

PQD ⇒ P̃ ⇒ rX ,Y ≥ 0. (2.4)

▶ One can define weak dependence properties as it has been
done for P , by letting the margins to be uniformly distributed
on (0, 1) in the definitions above.
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Reversed weak positive dependence properties

▶ Reversed weak positive dependence properties are defined in a
similar way by using MIT and ICV orders.

▶ In the paper we also include counterexamples showing that
these classes are different.

▶ Finally, we conclude with a diagram that connect all these
properties.
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Figure: Relationships between all the positive dependence notions in
Table 1.
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N Name
0 PQDE E (X ) ≤ E (X |Y > s) E (X ) ≥ E (X |Y ≤ s)
1 PQD RTI 0ST (Y |X ) LTD∞

ST (Y |X )
2 RTI (Y |X ) RTIST (Y |X ) RTI 0HR(X |Y )
2’ RTI (X |Y ) RTIST (X |Y ) RTI 0HR(Y |X )
3 SI (Y |X ) SIST (Y |X ) or RTI 0LR(X |Y ) LTD∞

LR(X |Y )
3’ SI (X |Y ) SIST (X |Y ) or RTI 0LR(Y |X ) LTD∞

LR(Y |X )
4 LTD(Y |X ) LTDST (Y |X ) LTD∞

RHR(X |Y )
4’ LTD(X |Y ) LTDST (X |Y ) LTD∞

RHR(Y |X )
5 RCSI RTIHR(Y |X ) RTIHR(X |Y )
6 LCSD LTDRHR(Y |X ) LTDRHR(X |Y )
7 SIRL(Y |X ) SIHR(Y |X ) RTILR(X |Y )
7’ SIRL(X |Y ) SIHR(X |Y ) RTILR(Y |X )
8 SIRHR(Y |X ) LTDLR(X |Y )
8’ SIRHR(X |Y ) LTDLR(Y |X )
9 PLRD SILR(Y |X ) SILR(X |Y )
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N Name New dependence notions
10 RTIMRL(Y |X ) (Y |X > s) ≤MRL (Y |X > t) for all s < t
10’ RTIMRL(X |Y ) (X |Y > s) ≤MRL (X |Y > t) for all s < t
11 RTI 0MRL(Y |X ) Y ≤MRL (Y |X > t) for all 0 < t
11’ RTI 0MRL(X |Y ) X ≤MRL (X |Y > t) for all 0 < t
12 RTIICX (Y |X ) (Y |X > s) ≤ICX (Y |X > t) for all s < t
12’ RTIICX (X |Y ) (X |Y > s) ≤ICX (X |Y > t) for all s < t
13 RTI 0ICX (Y |X ) Y ≤ICX (Y |X > t) for all 0 < t
13’ RTI 0ICX (X |Y ) X ≤ICX (X |Y > t) for all 0 < t
14 LTDMIT (Y |X ) (Y |X ≤ s) ≤MIT (Y |X ≤ t) for all s < t
14’ LTDMIT (X |Y ) (X |Y ≤ s) ≤MIT (X |Y ≤ t) for all s < t
15 LTD∞

MIT (Y |X ) (Y |X ≤ s) ≤MIT Y for all s
15’ LTD∞

MIT (X |Y ) (X |Y ≤ s) ≤MIT X for all s
16 LTDICV (Y |X ) (Y |X ≤ s) ≤ICV (Y |X ≤ t) for all s < t
16’ LTDICV (X |Y ) (X |Y ≤ s) ≤ICV (X |Y ≤ t) for all s < t
17 LTD∞

ICV (Y |X ) (Y |X ≤ s) ≤ICV Y for all s
17’ LTD∞

ICV (X |Y ) (X |Y ≤ s) ≤ICV X for all s
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Figure: Relationships in my blackboard.
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Conclusions

▶ We have proposed new positive dependence properties.

▶ All of them imply a positive Pearson’s correlation coefficient.
▶ Similar negative dependence can be proposed as well.
▶ The main disadvantage of the new dependence notions

proposed here is that they depend on the marginal
distributions (as the Pearson’s correlation coefficient).

▶ This problem can be solved by replacing them with the
respective copula properties obtained by assuming uniform
marginals.

▶ They can also be related with properties of coherent systems
(see Navarro, Durante and Fernández-Sánchez (2021) and
Navarro (2022)).

DEMO2024 - Workshop on Dependence Modelling Jorge Navarro, Email: jorgenav@um.es. 45/46



Preliminary results
New dependence notions

Conclusions

Conclusions
Main references

Conclusions

▶ We have proposed new positive dependence properties.
▶ All of them imply a positive Pearson’s correlation coefficient.

▶ Similar negative dependence can be proposed as well.
▶ The main disadvantage of the new dependence notions

proposed here is that they depend on the marginal
distributions (as the Pearson’s correlation coefficient).

▶ This problem can be solved by replacing them with the
respective copula properties obtained by assuming uniform
marginals.

▶ They can also be related with properties of coherent systems
(see Navarro, Durante and Fernández-Sánchez (2021) and
Navarro (2022)).

DEMO2024 - Workshop on Dependence Modelling Jorge Navarro, Email: jorgenav@um.es. 45/46



Preliminary results
New dependence notions

Conclusions

Conclusions
Main references

Conclusions

▶ We have proposed new positive dependence properties.
▶ All of them imply a positive Pearson’s correlation coefficient.
▶ Similar negative dependence can be proposed as well.

▶ The main disadvantage of the new dependence notions
proposed here is that they depend on the marginal
distributions (as the Pearson’s correlation coefficient).

▶ This problem can be solved by replacing them with the
respective copula properties obtained by assuming uniform
marginals.

▶ They can also be related with properties of coherent systems
(see Navarro, Durante and Fernández-Sánchez (2021) and
Navarro (2022)).
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Final slide

▶ More references in my web page

https://webs.um.es/jorgenav/miwiki/doku.php

▶ That’s all. Thank you for your attention!!
▶ Questions?
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