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Notation

▶ X and Y independent random variables (lifetimes).

▶ FX (t) = Pr(X ≤ t) and FY (t) = Pr(Y ≤ t) cumulative
distribution functions (CDF).

▶ F̄X (t) = 1 − FX (t) = Pr(X > t) and F̄Y (t) = Pr(Y > t)
survival (or reliability) functions (SF).

▶ We assume that X and Y have absolutely continuous
distributions with probability density functions (PDF) fX = F ′

X

and fY = F ′
Y .
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Ordered data-Bivariate case

▶ If they are independent, the joint PDF of (X ,Y ) is

f (x , y) = fX (x)fY (y).

For results with dependency see Navarro et al. (2022a).

▶ If we assume that X < Y , the joint PDF of (X ,Y |X < Y ) is

g(x , y) = c fX (x)fY (y), x ≤ y ,

where c = 1/Pr(X < Y ).
▶ The first marginal PDF of (X ,Y |X < Y ) is

g1(x) =

∫ ∞

−∞
g(x , y)dy =

∫ ∞

x
c fX (x)fY (y)dy = c fX (x)F̄Y (x).
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Ordered data-Bivariate case

▶ Analogously, the second marginal PDF of (X ,Y |X < Y ) is

g2(y) =

∫ ∞

−∞
g(x , y)dx =

∫ y

−∞
c fX (x)fY (y)dx = c fY (y)FX (y).

▶ Therefore, the marginal r.v. of (X ,Y |X < Y ) are not
independent.

▶ These marginal PDF are skew versions of fX and fY .
▶ The PDF g2 = c fY FX is the right skewed distribution

associated to fY and FX , as defined in Navarro and Arevalillo
(Test, 2023).

▶ The PDF g1 = c fX F̄Y is the left skewed distribution
associated to fX and F̄Y , as defined in Navarro and Arevalillo
(Test, 2023).
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Ordered data-Particular cases: IID

▶ If they are identically distributed fX = fY = f , then c = 2,

g1(x) = 2 f (x)F̄ (x).

and
g2(y) = 2 f (y)F (y).

▶ Therefore, Ḡ1(x) = F̄ 2(x), which is the survival function of
min(X ,Y ) and G2(x) = F 2(x), which is the CDF of
max(X ,Y ).

▶ Note that both are distorted distributions, that is, Gi = qi (F ).
▶ Similar representations are obtained for series and parallel

systems with dependent components in Navarro and Arevalillo
(Test, 2023) and for general coherent systems in
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Figure: Publicity of my book on System Reliability Theory.
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Ordered data-Particular cases: Skew normal

▶ If fX = ϕ is the standard normal PDF and

F̄Y (x) = 1 − Φ(αx) = Φ(−αx),

where Φ is the standard normal CDF and α > 0, then c = 2
and

g1(x) = 2 ϕ(x)Φ(−αx)

is a skew normal distribution, see Azzalini and Capitanio
(2014).

▶ In this case, G1 is the PDF of min(X ,Y ) where (X ,Y ) has a
bivariate normal distribution with standarized marginals,
correlation ρ and α =

√
(1 − ρ)/(1 + ρ), see Theorem 3.2 in

Loperfido, Navarro, Ruiz, and Sandoval (2007).
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Ordered data-Particular cases: Skew normal

▶ If fY = ϕ is the standard normal PDF and

FX (y) = Φ(αy),

where Φ is the standard normal CDF and α > 0, then c = 2
and

g2(y) = 2 ϕ(y)Φ(αy)

is a skew normal distribution, see Azzalini and Capitanio
(2014).

▶ In this case, G2 is the PDF of max(X ,Y ) where (X ,Y ) has a
bivariate normal distribution with standarized marginals,
correlation ρ and α =

√
(1 − ρ)/(1 + ρ), see Roberts (1966).
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Figure: PDF for max(X ,Y ) and min(X ,Y ) for ρ = −0.5 (black), 0 (red)
and 0.5 (blue). The green line represents the standard normal PDF
ρ = 1, α = 0.
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Ordered data-General result under dependency

Proposition (Navarro and Arevalillo, 2023)
Let (X ,Y ) be an EXC random vector with absolutely continuous
copula C and common marginal CDF F and PDF f . Then the PDF
of max(X ,Y ) can be written as

f2:2(x) = cR f (x)G (x)

where G (x) = ∂1C (F (x),F (x)) and cR = 2.
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Ordered data-General result under dependency

▶ A similar result holds for min(X ,Y ).

▶ G is not always a CDF.
▶ These results can be extended to the multivariate case, see

Navarro and Arevalillo (2023) and Loperfido, Navarro, Ruiz,
and Sandoval (2007).

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 14/64



Theoretical results
Inferencial results

References

Bivariate case
Multivariate case
Generalized Order Statistics

Ordered data-General result under dependency

▶ A similar result holds for min(X ,Y ).
▶ G is not always a CDF.

▶ These results can be extended to the multivariate case, see
Navarro and Arevalillo (2023) and Loperfido, Navarro, Ruiz,
and Sandoval (2007).

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 14/64



Theoretical results
Inferencial results

References

Bivariate case
Multivariate case
Generalized Order Statistics

Ordered data-General result under dependency

▶ A similar result holds for min(X ,Y ).
▶ G is not always a CDF.
▶ These results can be extended to the multivariate case, see

Navarro and Arevalillo (2023) and Loperfido, Navarro, Ruiz,
and Sandoval (2007).

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 14/64



Theoretical results
Inferencial results

References

Bivariate case
Multivariate case
Generalized Order Statistics

Ordered data-Particular cases: PHR

▶ If X and Y are independent, F̄X = F̄α1 and F̄Y = F̄α2 for
α1, α2 > 0, i.e., they satisfy the Proportional Hazard Rate
(PHR) model, then the PDF of (X |X < Y ) is

g1(x) = c fX (x)F̄Y (x) = (α1 + α2) f (x)F̄
α1+α2−1(x)

with c = (α1 + α2)/α1.

▶ It is both a left skew distribution from f and a distortion of F̄
since

Ḡ1(x) = F̄α1+α2(x).

▶ Note that (X |X < Y ) belongs to the same PHR model.
▶ Even more (X |X < Y ), (Y |X > Y ) and min(X ,Y ) have the

same distribution!!
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Ordered data-Particular cases: PHR

▶ If X and Y are independent, F̄X = F̄α1 and F̄Y = F̄α2 for
α1, α2 > 0, then the PDF of (Y |X < Y ) is

g2(y) = c fY (y)FX (y) = c α2f (y)F̄
α2−1(y)(1 − F̄α1(y))

where c = (α1 + α2)/α1, that is,

g2(y) = c α2f (y)F̄
α2−1(y)− c α2f (y)F̄

α1+α2−1(y)

and
Ḡ2(y) =

α1 + α2

α1
F̄α2(y)− α2

α1
F̄α1+α2(y).

▶ It is negative mixture of members of the PHR model.
▶ Note that (Y |X < Y ), (X |X > Y ) and max(X ,Y ) have

different distributions!!
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different distributions!!

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 16/64



Theoretical results
Inferencial results

References

Bivariate case
Multivariate case
Generalized Order Statistics

Ordered data-Particular cases: PHR

▶ If X and Y are independent, F̄X = F̄α1 and F̄Y = F̄α2 for
α1, α2 > 0, then the PDF of (Y |X < Y ) is

g2(y) = c fY (y)FX (y) = c α2f (y)F̄
α2−1(y)(1 − F̄α1(y))

where c = (α1 + α2)/α1, that is,

g2(y) = c α2f (y)F̄
α2−1(y)− c α2f (y)F̄

α1+α2−1(y)

and
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Ordered data-Particular cases: exponential model

▶ If X and Y are independent, F̄X (t) = e−α1t and
F̄Y (t) = e−α2t for t ≥ 0 and α1, α2 > 0, then
c = (α1 + α2)/α1, the PDF of (X |X < Y ) is

g1(t) = c fX (t)F̄Y (t) = (α1 + α2) e
−(α1+α2)t , t ≥ 0.

▶ Analogously, the survival function of (Y |X < Y ) is

Ḡ2(t) =
α1 + α2

α1
e−α2t − α2

α1
e−(α1+α2)t , t ≥ 0.

▶ The first one is an exponential distribution and the second a
negative mixture of exponential distributions.

▶ It is a obtained as a convolution of two independent
exponential distributions (X |X < Y ) and (Y − X |X < Y )
with different parameters.
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Multivariate case

Proposition (Navarro, Cramer and Balakrishnan (2025))
Let X1, . . . ,Xn be independent random variables with reliability
functions F i = F

αi for αi > 0 and i = 1, . . . , n. Then, the
reliability function Ḡk of (Xk |X1 < · · · < Xn) is given by the
reliability function of the k-th generalized order statistic based on
parameters γℓ =

∑n
j=ℓ αj , 1 ≤ ℓ ≤ n, that is,

Ḡk(t) =
k∑

i=1

( k∏
j=1
j ̸=i

γj
γj − γi

)
F̄ γi (t), t ≥ 0. (1.1)

If X1, . . . ,Xn are exponentially distributed then, conditionally on
X1 < · · · < Xn, the spacings Xk:n − Xk−1:n are independent
exponentially distributed with scale parameters γk for k = 1, . . . , n.
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Multivariate case

▶ For k = 1, the reliability function of (X1|X1 < · · · < Xn) is

Ḡ1(t) = F̄α1+···+αn(t), t ≥ 0 (1.2)

and we have

Pr(X1 < · · · < Xn) =
αn−1 . . . α1

(αn−1 + αn) . . . (α1 + · · ·+ αn)
.

(1.3)

▶ The distribution of (X1|X1 < · · · < Xn) also belongs to the
same PHR model with parameter α1 + · · ·+ αn and coincides
with that of X1:n = min(X1, . . . ,Xn).

▶ Hence, the distribution of (Xi |Xi < Xσ(1) < · · · < Xσ(n)) is the
same for any permutation σ of these indices.

▶ This is a quite surprising property since the distributions of
X1, . . . ,Xn are heterogeneous.
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Multivariate case

▶ In particular, for the exponential model, we obtain

E (X1|X1 < · · · < Xn) = E (Xi |Xi < Xσ(1) < · · · < Xσ(n))

= E (X1:n) =
1

α1 + · · ·+ αn
.

▶ In the case k = 2 the reliability function of
(X2|X1 < · · · < Xn) is

Ḡ2(t) =
α1 + · · ·+ αn

α1
F̄α2+···+αn(t)−α2 + · · ·+ αn

α1
F̄α1+···+αn(t), t ≥ 0.

(1.4)
▶ For properties of negative mixtures see Navarro and Sarabia

(2024).
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Exponential case

▶ If X1, . . . ,Xn are independent and have exponential
distributions of parameters α1, . . . , αn, then

E (Xk |X1 < · · · < Xn) =
k∑

i=1

1
γi

=
1

α1 + · · ·+ αn
+· · ·+ 1

αk + · · ·+ αn
,

Var(Xk |X1 < · · · < Xn) =
k∑

i=1

1
γ2
i

=
1

(α1 + · · ·+ αn)2
+· · ·+ 1

(αk + · · ·+ αn)2

and

E (X 2
k |X1 < · · · < Xn) =

k∑
i=1

1
γ2
i

+
( k∑

i=1

1
γi

)2

with γi =
∑n

j=i αj , 1 ≤ i ≤ n.
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Generalized Order Statistics (GOS)

Theorem
Let X1, . . . ,Xn be independent random variables with strictly
increasing continuous reliability functions F i = F

αi for αi > 0 and
i = 1, . . . , n. Then,

(X1, . . . ,Xn|X1 < · · · < Xn)
d
= (Y1, . . . ,Yn),

where (Y1, . . . ,Yn) are the GOS based on F and parameters
γ1, . . . , γn with γℓ =

∑n
j=ℓ αj , 1 ≤ ℓ ≤ n.
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Figure: A tribute to Udo.
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Inferencial results
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Ordered data

▶ Suppose that we observe m independent samples of the
random variables X1, . . . ,Xn represented by X

(j)
1 , . . . ,X

(j)
n for

j = 1, . . . ,m.

▶ The purpose is to estimate the parameters αi by assuming
that Pr(X (j)

i ≤ t) = F̄αi (t) and that F̄ is known.
▶ Furthermore, we assume that not all the data are available,

i.e., the samples are subject to censoring.
▶ For illustration, we consider below some typical cases.
▶ Other cases can be managed in a similar way.
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Case 1: First data (series system)

▶ Suppose that we observe only the minimum in each sample

X
(j)
1:n = min(X

(j)
1 , . . . ,X

(j)
n ), j = 1, . . . ,m.

▶ Alternatively, we could just observe the first measurement of
the first component, that is,

X
(j)
1 |X (j)

1 = X
(j)
1:n, j = 1, . . . ,m.

▶ We use the random variable I
(j)
i indicating if the first failure in

sample j is caused by the i-th component.
▶ Thus, I (j)i = 1 if X (j)

i = X
(j)
1:n and I

(j)
i = 0 otherwise for

i = 1, . . . , n and j = 1, . . . ,m.
▶ Note that we do not have ties.
▶ Both scenarios can be managed in a similar way.
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▶ Both scenarios can be managed in a similar way.
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Case 1: First data (series system)

▶ Several practical situations fit to these scenarios.

▶ For example, we can consider lifetimes from a series system
with n (possibly heterogeneous) components where the other
units stop to work when the system fails.

▶ This scheme can also be applied to survival data of organs
(eyes, kidneys, etc.).

▶ It can also be seen as a progressive censoring procedure where
the units are arranged in blocks of n elements and after the
first failure, the other elements in the block are censored.

▶ In the literature, this model is called ‘first failure censoring’.
▶ From Balakrishnan and Cramer (2014), p. 529, this scheme

can be seen as a standard progressive censoring scheme with a
modified censoring plan S = nR+ (n − 1)(1, . . . , 1).

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 27/64



Theoretical results
Inferencial results

References

Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Case 1: First data (series system)

▶ Several practical situations fit to these scenarios.
▶ For example, we can consider lifetimes from a series system

with n (possibly heterogeneous) components where the other
units stop to work when the system fails.

▶ This scheme can also be applied to survival data of organs
(eyes, kidneys, etc.).

▶ It can also be seen as a progressive censoring procedure where
the units are arranged in blocks of n elements and after the
first failure, the other elements in the block are censored.

▶ In the literature, this model is called ‘first failure censoring’.
▶ From Balakrishnan and Cramer (2014), p. 529, this scheme

can be seen as a standard progressive censoring scheme with a
modified censoring plan S = nR+ (n − 1)(1, . . . , 1).

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 27/64



Theoretical results
Inferencial results

References

Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Case 1: First data (series system)

▶ Several practical situations fit to these scenarios.
▶ For example, we can consider lifetimes from a series system

with n (possibly heterogeneous) components where the other
units stop to work when the system fails.

▶ This scheme can also be applied to survival data of organs
(eyes, kidneys, etc.).

▶ It can also be seen as a progressive censoring procedure where
the units are arranged in blocks of n elements and after the
first failure, the other elements in the block are censored.

▶ In the literature, this model is called ‘first failure censoring’.
▶ From Balakrishnan and Cramer (2014), p. 529, this scheme

can be seen as a standard progressive censoring scheme with a
modified censoring plan S = nR+ (n − 1)(1, . . . , 1).

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 27/64



Theoretical results
Inferencial results

References

Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Case 1: First data (series system)

▶ Several practical situations fit to these scenarios.
▶ For example, we can consider lifetimes from a series system

with n (possibly heterogeneous) components where the other
units stop to work when the system fails.

▶ This scheme can also be applied to survival data of organs
(eyes, kidneys, etc.).

▶ It can also be seen as a progressive censoring procedure where
the units are arranged in blocks of n elements and after the
first failure, the other elements in the block are censored.

▶ In the literature, this model is called ‘first failure censoring’.
▶ From Balakrishnan and Cramer (2014), p. 529, this scheme

can be seen as a standard progressive censoring scheme with a
modified censoring plan S = nR+ (n − 1)(1, . . . , 1).

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 27/64



Theoretical results
Inferencial results

References

Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Case 1: First data (series system)

▶ Several practical situations fit to these scenarios.
▶ For example, we can consider lifetimes from a series system

with n (possibly heterogeneous) components where the other
units stop to work when the system fails.

▶ This scheme can also be applied to survival data of organs
(eyes, kidneys, etc.).

▶ It can also be seen as a progressive censoring procedure where
the units are arranged in blocks of n elements and after the
first failure, the other elements in the block are censored.

▶ In the literature, this model is called ‘first failure censoring’.

▶ From Balakrishnan and Cramer (2014), p. 529, this scheme
can be seen as a standard progressive censoring scheme with a
modified censoring plan S = nR+ (n − 1)(1, . . . , 1).

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 27/64



Theoretical results
Inferencial results

References

Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Case 1: First data (series system)

▶ Several practical situations fit to these scenarios.
▶ For example, we can consider lifetimes from a series system

with n (possibly heterogeneous) components where the other
units stop to work when the system fails.

▶ This scheme can also be applied to survival data of organs
(eyes, kidneys, etc.).

▶ It can also be seen as a progressive censoring procedure where
the units are arranged in blocks of n elements and after the
first failure, the other elements in the block are censored.

▶ In the literature, this model is called ‘first failure censoring’.
▶ From Balakrishnan and Cramer (2014), p. 529, this scheme

can be seen as a standard progressive censoring scheme with a
modified censoring plan S = nR+ (n − 1)(1, . . . , 1).

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 27/64



Theoretical results
Inferencial results

References

Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Case 1: First data (series system)

▶ In the case n = 2, the data of type (X1|X1 < X2) represents
data from X1 with an independent censoring random time X2.

▶ Here, we have two options: independent censoring times for
each data, that is, (X (j)

1 |X (j)
1 < X

(j)
2 ) or a common censoring

time X2 for all the sample values, that is, (X (j)
1 |X (j)

1 < X2).
▶ In this last case the sample values are dependent since they

share a common censoring time X2.
▶ In particular, if X2 = t0 for some t0 > 0 then we have an

experiment with truncated data in the fixed period of time
[0, t0].

▶ This scheme can also represent data from stress-strength
models where a data is observed (fails) if and only if the
strength X

(j)
1 is below the stress X

(j)
2 .

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 28/64



Theoretical results
Inferencial results

References

Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Case 1: First data (series system)

▶ In the case n = 2, the data of type (X1|X1 < X2) represents
data from X1 with an independent censoring random time X2.

▶ Here, we have two options: independent censoring times for
each data, that is, (X (j)

1 |X (j)
1 < X

(j)
2 ) or a common censoring

time X2 for all the sample values, that is, (X (j)
1 |X (j)

1 < X2).

▶ In this last case the sample values are dependent since they
share a common censoring time X2.

▶ In particular, if X2 = t0 for some t0 > 0 then we have an
experiment with truncated data in the fixed period of time
[0, t0].

▶ This scheme can also represent data from stress-strength
models where a data is observed (fails) if and only if the
strength X

(j)
1 is below the stress X

(j)
2 .

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 28/64



Theoretical results
Inferencial results

References

Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Case 1: First data (series system)

▶ In the case n = 2, the data of type (X1|X1 < X2) represents
data from X1 with an independent censoring random time X2.

▶ Here, we have two options: independent censoring times for
each data, that is, (X (j)

1 |X (j)
1 < X

(j)
2 ) or a common censoring

time X2 for all the sample values, that is, (X (j)
1 |X (j)

1 < X2).
▶ In this last case the sample values are dependent since they

share a common censoring time X2.

▶ In particular, if X2 = t0 for some t0 > 0 then we have an
experiment with truncated data in the fixed period of time
[0, t0].

▶ This scheme can also represent data from stress-strength
models where a data is observed (fails) if and only if the
strength X

(j)
1 is below the stress X

(j)
2 .

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 28/64



Theoretical results
Inferencial results

References

Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Case 1: First data (series system)

▶ In the case n = 2, the data of type (X1|X1 < X2) represents
data from X1 with an independent censoring random time X2.

▶ Here, we have two options: independent censoring times for
each data, that is, (X (j)

1 |X (j)
1 < X

(j)
2 ) or a common censoring

time X2 for all the sample values, that is, (X (j)
1 |X (j)

1 < X2).
▶ In this last case the sample values are dependent since they

share a common censoring time X2.
▶ In particular, if X2 = t0 for some t0 > 0 then we have an

experiment with truncated data in the fixed period of time
[0, t0].

▶ This scheme can also represent data from stress-strength
models where a data is observed (fails) if and only if the
strength X

(j)
1 is below the stress X

(j)
2 .

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 28/64



Theoretical results
Inferencial results

References

Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Case 1: First data (series system)

▶ In the case n = 2, the data of type (X1|X1 < X2) represents
data from X1 with an independent censoring random time X2.

▶ Here, we have two options: independent censoring times for
each data, that is, (X (j)

1 |X (j)
1 < X

(j)
2 ) or a common censoring

time X2 for all the sample values, that is, (X (j)
1 |X (j)

1 < X2).
▶ In this last case the sample values are dependent since they

share a common censoring time X2.
▶ In particular, if X2 = t0 for some t0 > 0 then we have an

experiment with truncated data in the fixed period of time
[0, t0].

▶ This scheme can also represent data from stress-strength
models where a data is observed (fails) if and only if the
strength X

(j)
1 is below the stress X

(j)
2 .

OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 28/64



Theoretical results
Inferencial results

References

Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Case 1: First data (series system)

▶ Note that if we only have measurements of the first failure,
then the model (parameters) is subject to identifiability issues
since F̄1:n = F̄α1+···+αn .

▶ Hence, estimation of the single parameter αi is not possible.
▶ The same happen with (X1|X1 = X1:n).
▶ Thus, assuming exponentially distributed lifetimes Xi with

X̄1:n =
1
m

m∑
j=1

X
(j)
1:n,

we get

E
(
X̄1:n

)
= µ1:n = E (X1:n) =

1
α1 + · · ·+ αn

and X̄1:n is an unbiased estimator of µ1:n.
▶ However we cannot identify a single parameters αi .
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Case 1: First data (series system)

▶ The same problem occurs for

X̄1|1< =
1
m1

m∑
j=1

I
(j)
1 X

(j)
1:n, where m1 =

m∑
j=1

I
(j)
1 .

▶ Of course, we need to assume that m1 > 0.
▶ In order to calculate the mean of X̄1|1<, note that,

p1 = Pr(I
(1)
1 = 1) = Pr(X1 < min(X2, . . . ,Xn)) =

α1

α1 + · · ·+ αn

and the property m1 ∼ Binom(m, p1) holds, i.e.,

Pr(m1 = k) =

(
m

k

)
pk1 (1 − p1)

m−k , k = 0, . . . ,m.

▶ Then m1/m
a.s.−−→ p1.
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Case 1: First data (series system)

▶ We prove that

E
(
X̄1|1<|m1 > 0

)
=

1
α1 + α2 + · · ·+ αn

.

▶ To illustrate the inferential approach, we consider n = 2.
▶ Then, we can use the information provided by m1.
▶ Thus, we consider the estimator p̂1 = m1/m with

E (p̂1) = p1 = Pr(X1 < X2) =
α1

α1 + α2
= α1µ1|1<2

where µ1|1<2 = E (X1|X1 < X2) = 1/(α1 + α2).
▶ Therefore, α1 can be estimated by

α̂1 =
p̂1

X̄1|1<2
.

▶ Analogously, α2 can be estimated with α̂2 = (1 − p̂1)/X̄1|1<2.
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X̄1|1<|m1 > 0

)
=

1
α1 + α2 + · · ·+ αn

.

▶ To illustrate the inferential approach, we consider n = 2.
▶ Then, we can use the information provided by m1.
▶ Thus, we consider the estimator p̂1 = m1/m with

E (p̂1) = p1 = Pr(X1 < X2) =
α1

α1 + α2
= α1µ1|1<2

where µ1|1<2 = E (X1|X1 < X2) = 1/(α1 + α2).
▶ Therefore, α1 can be estimated by

α̂1 =
p̂1

X̄1|1<2
.

▶ Analogously, α2 can be estimated with α̂2 = (1 − p̂1)/X̄1|1<2.
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Case 1: First data (series system)

▶ If we prefer to estimate the mean µ1 = E (X1) = 1/α1, we can
use

µ̂1 =
1
α̂1

=
X̄1|1<2

p̂1
≥ X̄1|1<2

provided that m1 > 0.

▶ Note that if we just use the sample mean with the
non-censored data X̄1|1<2, then we get an under-biased
estimation (as expected).

▶ If we have the information about all the first failure times, it is
better to replace X̄1|1<2 by X̄1:2.

▶ In this case, it is easy to get distributional properties for

µ̂1 =
1
α̂1

=
X̄1:2

p̂1
=

1
m1

m∑
j=1

X
(j)
1:2 ≥ X̄1:2 =

1
m

m∑
j=1

X
(j)
1:2.
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Case 1: First data (series system)

▶ Thus, from the Central Limit Theorem (CLT) we know that

X̄1:2 − µ1:2

σ1:2/
√
m

d−→ Z ,

where µ1:2 = E (X1:2) = 1/(α1 + α2),
σ2

1:2 = Var(X1:2) = 1/(α1 + α2)
2 and Z has a standard normal

distribution.

▶ From the Weak Law of Large Numbers (WLLN), we have that

p̂1

p1

p−→ 1.

▶ Hence, from Slutsky’s theorem, we get
√
m

µ1

(
µ̂1 −

µ1:2

p̂1

)
=

√
m
(
X̄1:2 − µ1:2

)
/σ1:2

p̂1/p1

d−→ Z , (2.1)

where Z has a standard normal distribution.
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Properties for systems under MO-model.

Example 1

▶ To illustrate this case we consider a simulated sample of size
m = 100 of n = 2 independent exponential distributions with
α1 = 1 and α2 = 2.

▶ We use the statistical program R with seed 333.
▶ Thus we obtain m1 = 31, that is, the series system lifetime

X1:2 coincides with X1 in the sample 31 times and with X2 69
times.

▶ The sample mean with all the series system lifetimes is

X̄1:2 = 0.3402184 ≈ 1
α1 + α2

=
1
3
.

▶ As mentioned above, this information is not enough to
estimate the unknown parameters α1 and α2.
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Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Example 1

▶ To do so we need to use

p̂1 =
m1

m
=

31
100

= 0.31 ≈ α1

α1 + α2
=

1
3
.

▶ Then we can estimate α1 with

α̂1 =
p̂1

X̄1:2
=

0.31
0.3402184

= 0.9111795 ≈ α1 = 1.

▶ Analogously, for α2 we get p̂2 = 1 − p̂1 and

α̂2 =
p̂2

X̄1:2
=

0.69
0.3402184

= 2.028109 ≈ α2 = 2.
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Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Example 1

▶ If we prefer to estimate the means we get

µ̂1 =
X̄1:2

p̂1
=

0.3402184
0.31

= 1.097479 ≈ µ1 = E (X1) =
1
α1

= 1

and

µ̂2 =
X̄1:2

p̂2
=

0.3402184
0.69

= 0.4930701 ≈ µ2 = E (X2) =
1
α2

= 0.5.

▶ If we just have the 31 censored data obtained from X1 at the
first component failures, then

µ̂1 =
1
α̂1

=
X̄1|1<2

p̂1
=

0.4129864
0.31

= 1.332214 ≥ X̄1|1<2 = 0.4129864.

▶ The estimation is not very good since we just have 31 data
and it is better to use the information of all the censored times
as above getting the estimation 1.097479 for µ1 = 1.
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Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Example 1

▶ Of course, the sample mean with the complete data from X1
at X1:2 underestimate (0.4129864) the mean µ1 = 1.

▶ If we just use the data from X2 when X2 = X1:2 we get

µ̂2 =
1
α̂2

=
X̄2|2<1

p̂2
=

0.3075255
0.69

= 0.4456891 ≥ X̄2|2<1 = 0.3075255

which is a good estimation of µ2 = 0.5.
▶ Note that these values can also be used to estimate the means

of the other variables obtaining

µ̂1 =
X̄2|2<1

p̂1
=

0.3075255
0.31

= 0.9920176 ≈ µ1 = 1

and

µ̂2 =
X̄1|1<2

p̂2
=

0.4129864
0.69

= 0.598531 ≈ µ2 = 0.5.
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Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Example 1

▶ The data from X1 and X2 are plotted in the following figure.

▶ In the right plot we can see the difference between the series
system L = X1:2 and the parallel system lifetimes U = X2:2.

▶ Note that we can estimate the parallel system failure time
from the first component failure time with

E (X2|X1 < X2,X1 = x) = x+
1
α2

≈ m2(x) = x+
X̄1:2

p̂2
= x+0.4930701

by replacing x with X
(j)
1 when X

(j)
1 < X

(j)
2 or with

E (X1|X2 < X1,X2 = x) = x+
1
α1

≈ m1(x) = x+
X̄1:2

p̂1
= x+1.097479

by replacing x with X
(j)
2 when X

(j)
2 < X

(j)
1 .

▶ These regression lines are plotted in the right plot.
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▶ In the right plot we can see the difference between the series

system L = X1:2 and the parallel system lifetimes U = X2:2.
▶ Note that we can estimate the parallel system failure time

from the first component failure time with

E (X2|X1 < X2,X1 = x) = x+
1
α2

≈ m2(x) = x+
X̄1:2

p̂2
= x+0.4930701

by replacing x with X
(j)
1 when X

(j)
1 < X

(j)
2 or with

E (X1|X2 < X1,X2 = x) = x+
1
α1

≈ m1(x) = x+
X̄1:2

p̂1
= x+1.097479

by replacing x with X
(j)
2 when X

(j)
2 < X

(j)
1 .

▶ These regression lines are plotted in the right plot.
OSD2025, Aachen, Germany Jorge Navarro, Email: jorgenav@um.es. 38/64



Theoretical results
Inferencial results

References

Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

X1

X
2

0.0 0.5 1.0 1.5

1
2

3
4

L

U

Figure: Censored data (left) for X1 when X1 < X2 (red) and for X2 when
X2 < X1 (black). Data (right) from series L = X1:2 and parallel U = X2:2
systems. The regression lines are the red and black solid lines.
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Example 1

▶ As the fits are not very good, quantile regression curves might
be used to improve the fits since the residual lifetimes have
also exponential distributions.

▶ For example, as (X2 − x |X1 < X2,X1 = x) has an exponential
distribution with mean 1/α2 ≈ 0.4930701, a lower 90%
confidence band for X2, given X1 = x < X2, is

(x , x − 0.4930701 · log(0.1)) = (x , x + 1.135336).

▶ The top line is plotted in the right plot (red dashed line) where
we see that only four red points out-of-31 points are out of
this band (i.e., it contains the 87.09677% of the red points).

▶ The 90% lower confidence band for the black points is
(x , x + 2.527039) (black dashed line) and it contains
63-out-of-69 black points (i.e., it contains the 95.65217% of
the black points).
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Figure: Censored data (left) for X1 when X1 < X2 (red) and for X2 when
X2 < X1 (black). Data (right) from series L = X1:2 and parallel U = X2:2
systems.
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Case 2: Second data with n = 2 (parallel system)

▶ Let us assume now that we have only lifetime data from a
parallel system without monitoring the first component
failure., that is, we only observe the system lifetimes

X
(j)
2:2 = max(X

(j)
1 ,X

(j)
2 ), j = 1, . . . ,m.

▶ As in case 1, this model is not identifiable, that is, the data
(X

(j)
2:2)j=1,...,m cannot be used to estimate α1 and α2 since

X̄2:2 =
1
m

m∑
j=1

X
(j)
2:2

satisfies

E (X̄2:2) = µ2:2 =
1
α1

+
1
α2

− 1
α1 + α2

. (2.2)

▶ Again, we need extra information.
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Case 2: Second data with n = 2 (parallel system)

▶ For illustration, in the paper we consider three options.

▶ In first, we assume that we know which component causes the
system failure, that is, we know the indicator random variable
J
(j)
i , where J

(j)
i = 1 (resp. 0) iff X

(j)
i = X

(j)
2:2 (resp. ̸=) for

i = 1, 2.
▶ This kind of data might appear in autopsy data from systems

that are only available when they fail.
▶ They could also represent censored data from X2 that are

available just when they exceed X1.
▶ The other options can be seen in the paper.
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Case 2: Second data with n = 2 (parallel system)

▶ Obviously, then we also know, which component was the first
failure in each experiment, that is, we also know the indicator
random variables I

(j)
i for i = 1, 2 used in case 1.

▶ Then we could also use m1 as defined above even if we do not
know the lifetimes X

(j)
1:2.

▶ Hence, as in case 1, we can estimate p1 = α1/(α1 + α2) with
p̂1 = m1/m. Analogously, we can estimate p2 = α2/(α1 + α2)
with

p̂2 = 1 − p̂1 =
m2

m
,

where m2 = m −m1.
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Case 2: Second data with n = 2 (parallel system)

▶ Here we also know which lifetime data from X2:2 belongs to
X2 and then, under exponential distributions, we have

µ2|1<2 = E (X2|X1 < X2) =
1

α1 + α2
+

1
α2

.

▶ This quantity can be estimated by the weighted sample mean

X̄2|1<2 =
1
m1

m∑
j=1

J
(j)
2 X

(j)
2

▶ By using that α2 = 1+p2
µ2|1<2

. we can estimate µ2 = 1/α2 by

µ̂2 =
X̄2|1<2

1 +m2/m
≤ X̄2|1<2,

where we can use again Slutsky’s theorem.
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Case 2-Example 1

▶ Let us consider case 2 with the same simulated data set.

▶ The sample mean with all the parallel system lifetimes is

X̄2:2 = 1.172625 ≈ 1
α1

+
1
α2

− 1
α1 + α2

= 1+
1
2
−1

3
=

7
6
= 1.166667.

▶ We cannot estimate the parameters α1 and α2 from X̄2:2.
▶ To this purpose we need to separate the data from X1 and X2.
▶ We also need m1 and m2.
▶ Thus, we obtain the following estimations

µ̂1 =
X̄1|2<1

1 +m1/m
=

1.305879
1 + 31/100

= 0.9968541 ≈ µ1 = 1

and

µ̂2 =
X̄2|1<2

1 +m2/m
=

0.8760269
1 + 69/100

= 0.5183591 ≈ µ2 = 0.5.
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Case 2-Example 1

▶ Now the estimations from X1 are a little bit better than that
from X2 since we have more data (69) from X1 than from X2
(31) at X2:2.

▶ With the data from X1 we can estimate µ2 with

µ̂∗
2 =

X̄1|2<1

m2/m1 +m2/m
=

1.305879
69/31 + 69/100

= 0.447862 ≈ µ2 = 0.5

which does not improve the preceding estimation obtained
with the data from X2.

▶ Conversely, we can estimate µ1 with the data from X2 with

µ̂∗
1 =

X̄2|1<2

m1/m2 +m1/m
=

0.8760269
(31/69 + 31/100)

= 1.153767 ≈ µ1 = 1.
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Comments

▶ Here we can also predict the first component failures from
(X2|X1 < X2) or (X1|X2 < X1).

▶ In the paper we also consider the case of a 2-out-of-3 system
with lifetime X2:3.

▶ The estimations are more complex in this case.
▶ Again, quantile regression techniques can be used to predict

X2:3 from X1:3.
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Properties for systems under the MO-model.

▶ The results are included in the paper:
▶ Lagos G., Navarro J., Olivero H. (2025). Repair policies

decomposition for monotone systems with a Lévy frailty
Marshall-Olkin Process. In preparation.
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M-O model

▶ A random vector (T1, . . . ,Tn) have an exponential
Marshall-Olkin (MO) distribution if

Ti = min
V⊆{1,...,n} : i∈V

XV , i = 1, . . . , n, (2.3)

where, for all V ⊆ {1, . . . , n}, XV is an exponential random
variable with parameter λV ≥ 0, and is independent of the
other random variables.

▶ The random variables XV represent the time of arrival of a
shock that simultaneously hits all components in the set V .

▶ It is exchangeable when λU = λV whenever |U| = |V |.
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M-O model

▶ The joint reliability function of (T1, . . . ,Tn) is

Pr(T1 > t1, . . . ,Tn > tn) = exp

−
∑

∅≠V⊂{1,...,n}

λV max
i∈V

ti

 ,

for t1, . . . , tn ≥ 0.

▶ It is not absolutely continuous (there are ties).
▶ All the series systems have exponential distributions.
▶ All the coherent system distributions are negative mixtures of

exponential distributions, Navarro (2022).
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Case 2: Second data (parallel system)
Properties for systems under MO-model.

Cost of simple repair policies

▶ At time t = 0 the system starts with all its components
working.

▶ The repair of j failed components costs cj .
▶ The repair of a failed system costs csys plus the cost of

repairing all failed components.
▶ Any failure of a component or the system is detected

instantaneously.
▶ Both types of repairs, i.e., of the system and of components,

are performed instantaneously.
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Cost of simple repair policies

▶ We will consider the following simple repair policies:

▶ For any r ∈ {1, . . . , n}, we define the r -out-of-n:R repair
policy as the one where all failed components, and the system
itself if failed, is repaired in either of the following cases:
▶ when r or more components fail;
▶ when the system fails.

▶ In a system operating under an r -out-of-n:R repair policy,
denote by T sys

r and T rep
r the first time of system failure and

repair, respectively.
▶ As the MO-model has the lack of memory property, after a

repair the system has the same distribution as a new system.
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Example 2

1

2 3

Figure: A coherent system with exchangeable components lifetimes
(T1,T2,T3) satisfying the exponential MO-model with
λ1 := λ{1} = 13/12, λ2 := λ{1,2} = 1/12, and λ3 := λ{1,2,3} = 1/4.
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Example 2: Non-repair case.

▶ The lifetime T1 satisfies

T1 = min(X{1},X{1,2},X{1,3},X{1,2,3}).

▶ Hence
T1 ∼ Exp(λ = λ1 + 2λ2 + λ3 = 3/2).

▶ If N is the number of broken components when the system
fails, we define the signature of the system in the process
as w = (w1, . . . ,wn) where wi = Pr(N = i) for i = 1, . . . , n.

▶ By using the initial results we get

w = (0, 11/20, 9/20).

▶ It does not coincide with the classical (structural) signature
(see Navarro (2022)),

s = (0, 2/3, 1/3).
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Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Case Lifetimes N Probab. Repair r = 1 Repair r = 2
1 T1 = T2 = T3 3 1/15 No No
2 T1 < T2 = T3 3 13/360 Yes No
3 T2 < T1 = T3 3 13/360 Yes No
4 T3 < T1 = T2 3 13/360 Yes No
5 T1 = T2 < T3 2 1/45 No No
6 T1 = T3 < T2 2 1/45 No No
7 T2 = T3 < T1 3 1/45 Yes Yes
8 T1 < T2 < T3 2 91/720 Yes No
9 T1 < T3 < T2 2 91/720 Yes No
10 T2 < T1 < T3 2 91/720 Yes No
11 T2 < T3 < T1 3 91/720 Yes Yes
12 T3 < T1 < T2 2 91/720 Yes No
13 T3 < T2 < T1 3 91/720 Yes Yes

Table: Options and probabilities needed to compute the signature w of T .
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Example 2: Non-repair case.

▶ The probability of case 1 is

p1 = Pr(T1 = T2 = T3) = Pr(X{1,2,3} < Z )

where X{1,2,3} ∼ Exp(α1 = λ3 = 1/4) and

Z = min(X{1},X{3},X{3},X{1,2},X{1,3},X{2,3}) ∼ Exp(α2 = 7/2).

▶ As X{1,2,3} and Z are independent, then

p1 =
α1

α1 + α2
=

1/4
1/4 + 7/2

=
1
15

.

▶ The other probabilities are computed in a similar way (by using
the initial results) and thus we can obtain w2 and w3.
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▶ The probability of case 1 is

p1 = Pr(T1 = T2 = T3) = Pr(X{1,2,3} < Z )

where X{1,2,3} ∼ Exp(α1 = λ3 = 1/4) and

Z = min(X{1},X{3},X{3},X{1,2},X{1,3},X{2,3}) ∼ Exp(α2 = 7/2).
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Example 2: Non-repair case.

▶ Hence, the expected cost in a cycle without repairs is

c(T ) = csys + c2w2 + c3w3 = csys + c2
11
20

+ c3
9
20

.

▶ If we choose the values csys = 1 and ci = i , i = 1, 2, 3, we get

c(T ) = 1 + 2w2 + 3w3 =
69
20

= 3.45.

▶ The Mean Time To Failure is

E (T ) =
31
40

= 0.775.

▶ To measure the quality of the system we can consider the
Mean Cost of a Cycle (MCC) defined as

MCC (T ) =
c(T )

E (T )
=

69/20
31/40

=
138
31

= 4.451613.
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Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Case Lifetimes N Probab. Repair r = 1 Repair r = 2
1 T1 = T2 = T3 3 1/15 No No
2 T1 < T2 = T3 3 13/360 Yes No
3 T2 < T1 = T3 3 13/360 Yes No
4 T3 < T1 = T2 3 13/360 Yes No
5 T1 = T2 < T3 2 1/45 No No
6 T1 = T3 < T2 2 1/45 No No
7 T2 = T3 < T1 3 1/45 Yes Yes
8 T1 < T2 < T3 2 91/720 Yes No
9 T1 < T3 < T2 2 91/720 Yes No
10 T2 < T1 < T3 2 91/720 Yes No
11 T2 < T3 < T1 3 91/720 Yes Yes
12 T3 < T1 < T2 2 91/720 Yes No
13 T3 < T2 < T1 3 91/720 Yes Yes

Table: Options needed to compute the probability of repair.
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Case 1: First data (series system)
Case 2: Second data (parallel system)
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Example 2: Repair case with r = 1.

▶ For r = 1, the probability of repair is

pR = 3
13
360

+
1
45

+ 6
91
720

=
8
9
= 0.8888889.

▶ The expected cost in a cycle with repair is

c(T ) = c2w
R
2 + c3w

R
3

where the conditional signature with repair is

wR =

(
39
40

,
1
40

, 0
)
.

▶ The probability of “no repair” is pR̄ = 1/9 and its conditional
signature is

wR̄ =

(
0,

2
5
,
3
5

)
.
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Example 2: Repair case with r = 1.

▶ Therefore, for r = 1, we get the expected cost

c(T(1)) = csys +
pR

1 − pR

n−1∑
i=r

wR
i ci +

n∑
i=1

w R̄
i ci =

59
5

= 11.8

and the MTTF

E (T(1)) =
pR

1 − pR
E (T(1)|R) + E (T(1)|R̄) =

12
5

= 2.4.

▶ Hence, the Mean Cost of a Cycle for r = 1 is

MCC (T(1)) =
c(T(1))

E (T(1))
=

59/5
12/5

=
59
12

= 4.916667.
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Case 1: First data (series system)
Case 2: Second data (parallel system)
Properties for systems under MO-model.

Example 2: Repair case with r = 2.

▶ Analogously, for r = 2, we get

MCC (T(2)) =
c(T(2))

E (T(2))
=

4
0.816092

= 4.901408.

▶ Hence

MCC (T ) = 4.451613 < MCC (T(2)) = 4.901408 < MCC (T(1)) = 4.916667.

▶ Therefore, in this case, the best option is the one without
repairs.
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Final slide

▶ The slides and more references are in my web page

https://webs.um.es/jorgenav/miwiki/doku.php

▶ That’s all. Thank you for your attention!!
▶ Questions?
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