Compactness, Optimization and Risk

J. Orihuela\(^1\)

\(^1\)Department of Mathematics
University of Murcia

The coauthors

- M. Ruiz Galán and J.O. A coercive and nonlinear James’s weak compactness theorem
- M. Ruiz Galán and J.O. Lebesgue Property for Convex Risk Measurers on Orlicz Spaces
Weak compactness almost everywhere: Finance, Optimization, and Infinite Dimensional Geometry
S. Simons circle of ideas
An Unbounded James Compactness Theorem
The coercive case, variational problems and reflexivity
Weak Compactness Theorem of R.C. James

Theorem

A *Banach space is reflexive if and only if each continuous linear functional attains its supremum on the unit ball*

Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if and only if each continuous linear functional attains its supremum on K

Weak Compactness Theorem of R.C. James

Theorem

A Banach space is reflexive if and only if each continuous linear functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if and only if each continuous linear functional attains its supremum on K

Weak Compactness Theorem of R.C. James

Theorem

A Banach space is reflexive if and only if each continuous linear functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if and only if each continuous linear functional attains its supremum on K

Theorem

A Banach space is reflexive if and only if each continuous linear functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if and only if each continuous linear functional attains its supremum on K

Weak Compactness Theorem of R.C. James

Theorem

A Banach space is reflexive if and only if each continuous linear functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if and only if each continuous linear functional attains its supremum on K

Let us fix a Banach space E with dual E^*

- K is a closed convex set in the Banach space E
- $ι_K(x) = 0$ if $x \in K$ and $+\infty$ otherwise
- $x^* \in E^*$ attains its supremum on K at $x_0 \in K \iff ι_K(y) - ι_K(x_0) \geq x^*(y - x_0)$ for all $y \in E$
- The minimization problem

$$\min \{ι_K(\cdot) - x^*(\cdot)\}$$

on E for every $x^* \in E^*$ has always solution if and only if the set K is weakly compact
The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E^*
- K is a closed convex set in the Banach space E
- $\iota_K(x) = 0$ if $x \in K$ and $+\infty$ otherwise
- $x^* \in E^*$ attains its supremum on K at $x_0 \in K \iff \iota_K(y) - \iota_K(x_0) \geq x^*(y - x_0)$ for all $y \in E$
- The minimization problem

$$\min \{ \iota_K(\cdot) - x^*(\cdot) \}$$

on E for every $x^* \in E^*$ has always solution if and only if the set K is weakly compact
The Theorem of James as a minimization problem

Let us fix a Banach space E with dual E^*

- K is a closed convex set in the Banach space E
- $\iota_K(x) = 0$ if $x \in K$ and $+\infty$ otherwise
- $x^* \in E^*$ attains its supremum on K at
 $x_0 \in K \iff \iota_K(y) - \iota_K(x_0) \geq x^*(y - x_0)$ for all $y \in E$
- The minimization problem
 \[
 \min \{ \iota_K(\cdot) - x^*(\cdot) \}
 \]
 on E for every $x^* \in E^*$ has always solution if and only if the set K is weakly compact
Let us fix a Banach space E with dual E^*

- K is a closed convex set in the Banach space E
- $\iota_K(x) = 0$ if $x \in K$ and $+\infty$ otherwise
- $x^* \in E^*$ attains its supremum on K at $x_0 \in K \iff \iota_K(y) - \iota_K(x_0) \geq x^*(y - x_0)$ for all $y \in E$

The minimization problem

$$\min\{\iota_K(\cdot) - x^*(\cdot)\}$$

on E for every $x^* \in E^*$ has always solution if and only if the set K is weakly compact
Let us fix a Banach space E with dual E^*

- K is a closed convex set in the Banach space E
- $\iota_K(x) = 0$ if $x \in K$ and $+\infty$ otherwise
- $x^* \in E^*$ attains its supremum on K at $x_0 \in K$ if and only if $\iota_k(y) - \iota_K(x_0) \geq x^*(y - x_0)$ for all $y \in E$
- The minimization problem

$$\min \{ \iota_K(\cdot) - x^*(\cdot) \}$$

on E for every $x^* \in E^*$ has always solution if and only if the set K is weakly compact.
A monetary utility function is a concave non-decreasing map

\[U : \mathbb{L}^{\infty}(\Omega, \mathcal{F} \mathcal{P}) \rightarrow [-\infty, +\infty) \]

with \(\text{dom}(U) = \{X : U(X) \in \mathbb{R}\} \neq \emptyset \) and

\[U(X + c) = U(X) + c, \text{ for } X \in \mathbb{L}^{\infty}, c \in \mathbb{R} \]

Defining \(\rho(X) = -U(X) \) the above definition of monetary utility function yields the definition of a convex risk measure.

The space of financial positions \(\mathcal{X} \) verifies \(\mathbb{L}^{\infty} \subseteq \mathcal{X} \subseteq \mathcal{L}^{0} \) and monetary risk measures \(\rho \) are defined on \(\mathcal{X} \).
A monetary utility function is a concave non-decreasing map

\[U : L^\infty(\Omega, \mathcal{FP}) \rightarrow [-\infty, +\infty) \]

with \(\text{dom}(U) = \{X : U(X) \in \mathbb{R}\} \neq \emptyset \) and

\[U(X + c) = U(X) + c, \text{ for } X \in L^\infty, c \in \mathbb{R} \]

Defining \(\rho(X) = -U(X) \) the above definition of monetary utility function yields the definition of a convex risk measure

The space of financial positions \(\mathcal{X} \) verifies \(L^\infty \subseteq \mathcal{X} \subseteq L^0 \) and monetary risk measures \(\rho \) are defined on \(\mathcal{X} \)
Risk measures

Definition

A monetary utility function is a concave non-decreasing map

\[U : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow [-\infty, +\infty) \]

with \(\text{dom}(U) = \{X : U(X) \in \mathbb{R}\} \neq \emptyset \) and

\[U(X + c) = U(X) + c, \text{ for } X \in L^\infty, c \in \mathbb{R} \]

Defining \(\rho(X) = -U(X) \) the above definition of monetary utility function yields the definition of a convex risk measure

The space of financial positions \(\mathcal{X} \) verifies \(L^\infty \subseteq \mathcal{X} \subseteq L^0 \) and monetary risk measures \(\rho \) are defined on \(\mathcal{X} \)
Convex Monetary Risk Measure:

\[B(t) \]

\[\text{TODAY} \rightarrow \text{TIME HORIZON} \]

\[\left\{ \begin{array}{l}
\alpha) \rho(X) \leq \rho(\bar{X}) \\
\beta) \rho(\bar{X} + (1-\bar{X})Y) \\
\gamma) \rho(\bar{X} + \mu) = \rho(\bar{X} - \mu)
\end{array} \right. \]
Theorem (Jouini-Schachermayer-Touzi)

Let $U : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be a monetary utility function with the Fatou property and $U^* : L^\infty(\Omega, \mathcal{F}, \mathbb{P})^* \to [0, \infty]$ its Fenchel-Legendre transform. They are equivalent:

1. $\{U^* \leq c\}$ is $\sigma(L^1, L^\infty)$-compact subset for all $c \in \mathbb{R}$
2. For every $X \in L^\infty$ the infimum in the equality

$$U(X) = \inf_{Y \in L^1} \{U^*(Y) + \mathbb{E}[XY]\},$$

is attained
3. For every uniformly bounded sequence (X_n) tending a.s. to X we have

$$\lim_{n \to \infty} U(X_n) = U(X).$$
Convex Monetary Risk Measure:

\[B(t) \]

\[\begin{align*}
\alpha) \rho(X) & \leq \rho(Y) \\
\beta) \rho(\sum \lambda_i X_i) & = \sum \lambda_i \rho(X_i) \\
\gamma) \rho(X + m) & = \rho(X) - m
\end{align*} \]

Today has Fatou if \(X_n \downarrow X \Rightarrow \rho(X_n) \uparrow \rho(X) \iff \sigma(L^\infty, L^1) \) lower semicontinuous.

Order sequentially continuous \(\iff |X_n| \leq X \iff X_n \xrightarrow{a.s.} X \)

\(\lim_{n \to \infty} \rho(X_n) = \rho(X) \)

has Lebesgue property.
Let \(U : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R} \) be a monetary utility function with the Fatou property and \(U^* : L^\infty(\Omega, \mathcal{F}, \mathbb{P})^* \to [0, \infty] \) its Fenchel-Legendre transform. They are equivalent:

1. \(\{ U^* \leq c \} \) is \(\sigma(L^1, L^\infty) \)-compact subset for all \(c \in \mathbb{R} \).
2. For every \(X \in L^\infty \) the infimum in the equality
 \[U(X) = \inf_{Y \in L^1} \{ U^*(Y) + \mathbb{E}[XY] \}, \]
 is attained.
3. For every uniformly bounded sequence \((X_n) \) tending a.s. to \(X \) we have
 \[\lim_{n \to \infty} U(X_n) = U(X). \]
Minimizing $\{V(Y) + E(X \cdot Y) : Y \in L^1\}$

Theorem (Jouini-Schachermayer-Touzi)

Let $U : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be a monetary utility function with the Fatou property and $U^* : L^\infty(\Omega, \mathcal{F}, \mathbb{P})^* \to [0, \infty]$ its Fenchel-Legendre transform. They are equivalent:

1. \(\{U^* \leq c\}\) is \(\sigma(L^1, L^\infty)\)-compact subset for all \(c \in \mathbb{R}\)
2. For every \(X \in L^\infty\) the infimum in the equality
 \[
 U(X) = \inf_{Y \in L^1} \{U^*(Y) + E[XY]\},
 \]
 is attained
3. For every uniformly bounded sequence \((X_n)\) tending a.s. to \(X\) we have
 \[
 \lim_{n \to \infty} U(X_n) = U(X).
 \]
Minimizing $\{V(Y) + E(X \cdot Y) : Y \in L^1\}$

Theorem (Jouini-Schachermayer-Touzi)

Let $U : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \mathbb{R}$ be a monetary utility function with the Fatou property and $U^* : L^\infty(\Omega, \mathcal{F}, \mathbb{P})^* \rightarrow [0, \infty]$ its Fenchel-Legendre transform. They are equivalent:

1. $\{U^* \leq c\}$ is $\sigma(L^1, L^\infty)$-compact subset for all $c \in \mathbb{R}$
2. For every $X \in L^\infty$ the infimum in the equality

 $$U(X) = \inf_{Y \in L^1} \{U^*(Y) + E[XY]\},$$

 is attained
3. For every uniformly bounded sequence (X_n) tending a.s. to X we have
 $$\lim_{n \to \infty} U(X_n) = U(X).$$
Tools for the proof

- The proof in [JST] is for separable $L^1(\Omega, \mathcal{F}, \mathbb{P})$. The separability is needed to show $2) \Rightarrow 1)$ with a variant of the separable James’ compactness Theorem.

- Delbaen has given a proof for general non separable spaces using an homogenisation trick. He shows how to apply directly the non separable James’ compactness Theorem in the duality $\langle L^1(\Omega, \mathcal{F}, \mathbb{P}), L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \rangle$.
The proof in [JST] is for separable $L^1(\Omega, \mathcal{F}, \mathbb{P})$. The separability is needed to show $2) \Rightarrow 1)$ with a variant of the separable James’ compactness Theorem.

Delbaen has given a proof for general non separable spaces using an homogenisation trick. He shows how to apply directly the non separable James’ compactness Theorem in the duality $\langle L^1(\Omega, \mathcal{F}, \mathbb{P}), L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \rangle$.
The proof in [JST] is for separable $L^1(\Omega, \mathcal{F}, \mathbb{P})$. The separability is needed to show $2) \Rightarrow 1)$ with a variant of the separable James’ compactness Theorem.

Delbaen has given a proof for general non separable spaces using an homogenisation trick. He shows how to apply directly the non separable James’ compactness Theorem in the duality $\langle L^1(\Omega, \mathcal{F}, \mathbb{P}), L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \rangle$.

J. Orihuela Compactness, Optimization and Risk
Minimizing \(\{ V(y) + x^*(y) : y \in E \} \)

Theorem (J. Orihuela)

*Let \(E \) be a separable Banach space,\n
\[\alpha : E \to \mathbb{R} \cup \{ \infty \} \]

proper, convex l.s.c. with \(\text{dom}(\alpha) = \{ \alpha < \infty \} \) a bounded subset of \(E \). Suppose that there is \(c \in \mathbb{R} \) such that the level set \(\{ \alpha \leq c \} \) fails to be weakly compact. Then there is \(x^* \in E^* \) such that, the infimum

\[\inf_{x \in E} \{ \langle x, x^* \rangle + \alpha(x) \} \]

is not attained.*
Minimizing \(\{ V(y) + x^*(y) : y \in E \} \)

Theorem (J. Orihuela)

Let \(E \) be a separable Banach space,

\[
\alpha : E \to \mathbb{R} \cup \{\infty\}
\]

proper, convex l.s.c. with \(\text{dom}(\alpha) = \{ \alpha < \infty \} \) a bounded subset of \(E \). Suppose that there is \(c \in \mathbb{R} \) such that the level set \(\{ \alpha \leq c \} \) fails to be weakly compact. Then there is \(x^* \in E^* \) such that, the infimum

\[
\inf_{x \in E} \{ \langle x, x^* \rangle + \alpha(x) \}
\]

is not attained.
Minimizing \(\{ V(y) + x^*(y) : y \in E \} \)

Theorem (J. Orihuela)

Let \(E \) be a separable Banach space,

\[
\alpha : E \rightarrow \mathbb{R} \cup \{ \infty \}
\]

proper, convex l.s.c. with \(\text{dom}(\alpha) = \{ \alpha < \infty \} \) a bounded subset of \(E \). Suppose that there is \(c \in \mathbb{R} \) such that the level set \(\{ \alpha \leq c \} \) fails to be weakly compact. Then there is \(x^* \in E^* \) such that, the infimum

\[
\inf_{x \in E} \{ \langle x, x^* \rangle + \alpha(x) \}
\]

is not attained.
Lemma (Simons)

Let Γ be a set and $(z_n)_n$ a uniformly bounded sequence in $\ell^\infty(\Gamma)$. If Λ is a subset of Γ such that for every sequence of positive numbers $(\lambda_n)_n$ with $\sum_{n=1}^{\infty} \lambda_n = 1$ there exists $b \in \Lambda$ such that

$$\sup \left\{ \sum_{n=1}^{\infty} \lambda_n z_n(y) : y \in \Gamma \right\} = \sum_{n=1}^{\infty} \lambda_n z_n(b),$$

then

$$\sup_{b \in \Lambda} \limsup_{n \to \infty} z_n(b) \geq \inf_{\Gamma} \sup_{w} w \in \text{co}\{z_n : n \in \mathbb{N}\}.$$
Lemma (Simons)

Let Γ be a set and $(z_n)_n$ a uniformly bounded sequence in $\ell^\infty(\Gamma)$. If Λ is a subset of Γ such that for every sequence of positive numbers $(\lambda_n)_n$ with $\sum_{n=1}^{\infty} \lambda_n = 1$ there exists $b \in \Lambda$ such that

$$\sup \{ \sum_{n=1}^{\infty} \lambda_n z_n(y) : y \in \Gamma \} = \sum_{n=1}^{\infty} \lambda_n z_n(b),$$

then

$$\sup \{ \limsup_{n \to \infty} z_n(b) \} \geq \inf_{b \in \Lambda} \sup_{n \to \infty} \{ w \in \text{co}\{z_n : n \in \mathbb{N}\} : w \in \Gamma \}.$$
Weak Compactness through inequalities

Theorem

Let E be a separable Banach space and $K \subseteq E$ a closed convex and bounded subset. They are equivalent:

1. K is weakly compact.
2. For every sequence $(x_n^*) \subseteq B_{E^*}$ we have

$$\sup_{k \in K} \limsup_{n \to \infty} x_n^*(k) \geq \inf \left\{ \sup_{\kappa \in K^{w^*}} w(\kappa) : w \in \text{co}\{x_n^* : n \in \mathbb{N}\} \right\}$$
Simons inequality \(\Rightarrow\) Compactness

- If (2) happens and \(K\) is not weakly compact there is
 \[x_{0}^{**} \in \overline{K}^{w*} \subset E^{**} \text{ with } x_{0}^{**} \notin E \]

- The Hahn Banach Theorem provide us \(x^{***} \in B_{E^{***}} \cap E^\perp\) with
 \(x^{***}(x_{0}^{**}) = \alpha > 0\)

- The separability of \(E\), Ascoli’s and Bipolar Theorems permit to construct a sequence \((x_{n}^{*}) \subset B_{E^{*}}\) such that:
 - \(\lim_{n \to \infty} x_{n}^{*}(x) = 0\) for all \(x \in E\)
 - \(x_{n}^{*}(x_{0}^{**}) > \alpha/2\) for all \(n \in \mathbb{N}\)

- Then

\[
0 = \sup\{ \lim_{n \to \infty} x_{n}^{*}(k) \} = \sup\{ \limsup_{n \to \infty} x_{n}^{*}(k) \} \geq \inf \{ \sup_{\kappa \in \overline{K}^{w*}} w(\kappa) : w \in \text{co}\{x_{n}^{*} : n \in \mathbb{N}\} \} \geq \alpha/2 > 0
\]
Simons inequality \(\Rightarrow\) Compactness

- If (2) happens and \(K\) is not weakly compact there is \(x^{**}_0 \in K \subset E^{**}\) with \(x^{**}_0 \notin E\).

- The Hahn Banach Theorem provide us \(x^{***} \in B_{E^{***}} \cap E^\perp\) with
 \[x^{***}(x^{**}) = \alpha > 0\]

- The separability of \(E\), Ascoli’s and Bipolar Theorems permit to construct a sequence \((x^*_n) \subset B_{E^*}\) such that:
 1. \(\lim_{n \to \infty} x^*_n(x) = 0\) for all \(x \in E\)
 2. \(x^*_n(x^{**}) > \alpha/2\) for all \(n \in \mathbb{N}\)

- Then

\[
0 = \sup_{k \in K} \lim_{n \to \infty} x^*_n(k) = \sup_{k \in K} \limsup_{n \to \infty} x^*_n(k) \geq \inf_{\kappa \in \overline{K}^{w^*}} \sup_{w} \{w(\kappa) : w \in \text{co}\{x^*_n : n \in \mathbb{N}\}\} \geq \alpha/2 > 0
\]
Simons inequality \Rightarrow Compactness

- If (2) happens and K is not weakly compact there is $x_{0}^{**} \in \overline{K}^{w^*} \subset E^{**}$ with $x_{0}^{**} \notin E$
- The Hahn Banach Theorem provide us $x^{***} \in B_{E^{***}} \cap E_{\perp}$ with $x^{***}(x_{0}^{**}) = \alpha > 0$
- The separability of E, Ascoli’s and Bipolar Theorems permit to construct a sequence $(x_{n}^{*}) \subset B_{E^*}$ such that:
 1. $\lim_{n \to \infty} x_{n}^{*}(x) = 0$ for all $x \in E$
 2. $x_{n}^{*}(x_{0}^{**}) > \alpha/2$ for all $n \in \mathbb{N}$
- Then

$$0 = \sup_{k \in K} \lim_{n \to \infty} x_{n}^{*}(k) = \sup_{k \in K} \limsup_{n \to \infty} x_{n}^{*}(k) \geq \inf \{ \sup_{\kappa \in \overline{K}^{w^*}} w(\kappa) : w \in co\{x_{n}^{*} : n \in \mathbb{N}\} \} \geq \alpha/2 > 0$$
If (2) happens and K is not weakly compact there is $x_{0}^{**} \in \overline{K}^{w*} \subset E^{**}$ with $x_{0}^{**} \notin E$.

The Hahn Banach Theorem provide us $x^{***} \in B_{E^{***}} \cap E^{\perp}$ with $x^{***}(x_{0}^{**}) = \alpha > 0$.

The separability of E, Ascoli’s and Bipolar Theorems permit to construct a sequence $(x^{*}_{n}) \subset B_{E^{*}}$ such that:

1. $\lim_{n \to \infty} x^{*}_{n}(x) = 0$ for all $x \in E$

2. $x^{*}_{n}(x_{0}^{**}) > \alpha/2$ for all $n \in \mathbb{N}$

Then

$$0 = \sup_{k \in K} \lim_{n \to \infty} x^{*}_{n}(k) = \sup_{k \in K} \limsup_{n \to \infty} x^{*}_{n}(k) \geq \inf \left\{ \sup_{\kappa \in K^{w*}} w(\kappa) : w \in \text{co}\{x^{*}_{n} : n \in \mathbb{N}\} \right\} \geq \alpha/2 > 0$$
Theorem (Fonf and Lindenstrauss)

Let E be a separable Banach space and $K \subset E$ a closed convex and bounded subset. They are equivalent:

1. K is weakly compact.
2. For any covering $K \subset \bigcup_{n=1}^{\infty} D_n$ by an increasing sequence of closed convex subsets $D_n \subset K$, we have

$$
\bigcup_n D_n \overset{w^*}{\longrightarrow} \| \cdot \| = K^{w^*}.
$$

The proof uses Krein Milman and Bishop Phelps theorems.
Theorem (Fonf and Lindenstrauss)

Let E be a separable Banach space and $K \subset E$ a closed convex and bounded subset. They are equivalent:

1. K is weakly compact.
2. For any covering $K \subset \bigcup_{n=1}^{\infty} D_n$ by an increasing sequence of closed convex subsets $D_n \subset K$, we have

$$\bigcup_{n} D_n^{w^*} \| \cdot \| = K^{w^*}.$$

The proof uses Krein Milman and Bishop Phelps theorems.
I-generation \Rightarrow Weak Compactness

- Take $\{x_n : n \in \mathbb{N}\}$ norm dense in K
- $B_m := \text{co}(\{x_n : n \leq m\})$ is finite dimensional closed compact set
- $D_m := B_m + \delta B_{E^{**}}$ for $\delta > 0$ fixed
- Since $K \subset \bigcup_{m=1}^{\infty} D_m$, the I-generation says that
 \[
 \bigcup_{m}^{\infty} D_m^{w^*} = K^{w^*}.
 \]

- So $(\bigcup_{m}^{\infty} B_m) + 2\delta B_{E^{**}} \supseteq \overline{K}^{w^*}$.

- Finally $\bigcap_{\delta > 0} (\bigcup_{m}^{\infty} B_m) + 2\delta B_{E^{**}} = \overline{K}^{\|\cdot\|} = K = \overline{K}^{w^*}$.
I-generation \Rightarrow Weak Compactness

- Take $\{x_n : n \in \mathbb{N}\}$ norm dense in K
- $B_m := \text{co}(\{x_n : n \leq m\}) \|\cdot\|$ is finite dimensional closed compact set
- $D_m := B_m + \delta B_{E^{**}}$ for $\delta > 0$ fixed
- Since $K \subset \bigcup_{m=1}^{\infty} D_m$, the I-generation says that

$$\bigcup_{m}^{\infty} D_m^{w^*} = K^{w^*}.$$

- So $(\bigcup_{m}^{\infty} B_m) + 2\delta B_{E^{**}} \supset K^{w^*}$.
- Finally $\bigcap_{\delta > 0} (\bigcup_{m}^{\infty} B_m) + 2\delta B_{E^{**}} = K^{\|\cdot\|} = K = K^{w^*}$.
I-generation \Rightarrow Weak Compactness

- Take $\{x_n : n \in \mathbb{N}\}$ norm dense in K
- $B_m := \text{co}(\{x_n : n \leq m\})$ is finite dimensional closed compact set
- $D_m := B_m + \delta B_{E^{**}}$ for $\delta > 0$ fixed
- Since $K \subset \bigcup_{m=1}^{\infty} D_m$, the I-generation says that

$$\bigcup_{m} D_m^{w^*} = K^{w^*}.$$

- So $(\bigcup_{m} B_m) + 2\delta B_{E^{**}} \supset K^{w^*}$.
- Finally $\bigcap_{\delta > 0} (\bigcup_{m} B_m) + 2\delta B_{E^{**}} = K^{\|\cdot\|} = K = K^{w^*}$.

J. Orihuela
Compactness, Optimization and Risk
I-generation ⇒ Weak Compactness

- Take \(\{x_n : n \in \mathbb{N}\} \) norm dense in \(K \)
- \(B_m := \text{co}(\{x_n : n \leq m\}) \) is finite dimensional closed compact set
- \(D_m := B_m + \delta B_{E^{**}} \) for \(\delta > 0 \) fixed
- Since \(K \subset \bigcup_{m=1}^{\infty} D_m \), the I-generation says that
 \[
 \bigcup_{m}^{\infty} \overline{D_m}^{w^*} = \overline{K}^{w^*}.
 \]
- So \((\bigcup_{m}^{\infty} B_m) + 2\delta B_{E^{**}} \supset \overline{K}^{w^*} \).
- Finally \(\bigcap_{\delta > 0} (\bigcup_{m}^{\infty} B_m) + 2\delta B_{E^{**}} = \overline{K}^{\|\cdot\|} = K = \overline{K}^{w^*} \).
Take \(\{x_n : n \in \mathbb{N}\} \) norm dense in \(K \)

\[B_m := \text{co}(\{x_n : n \leq m\})\|\cdot\| \text{ is finite dimensional closed compact set} \]

\[D_m := B_m + \delta B_{E^{**}} \text{ for } \delta > 0 \text{ fixed} \]

Since \(K \subset \bigcup_{m=1}^{\infty} D_m \), the I-generation says that

\[\bigcup_{m}^{\infty} D_m^{w^*} = K^{w^*}. \]

So \((\bigcup_{m}^{\infty} B_m) + 2\delta B_{E^{**}} \supset K^{w^*} \).

Finally \(\bigcap_{\delta > 0} (\bigcup_{m}^{\infty} B_m) + 2\delta B_{E^{**}} = K^{\|\cdot\|} = K = K^{w^*} \).
Take $\{x_n : n \in \mathbb{N}\}$ norm dense in K

$B_m := \text{co}(\{x_n : n \leq m\})$ is finite dimensional closed compact set

$D_m := B_m + \delta B_{E^{**}}$ for $\delta > 0$ fixed

Since $K \subset \bigcup_{m=1}^{\infty} D_m$, the I-generation says that

$$\bigcup_{m} D_m^{w^*} = K^{w^*}.$$

So $(\bigcup_{m} B_m) + 2\delta B_{E^{**}} \supseteq K^{w^*}$.

Finally $\bigcap_{\delta > 0} (\bigcup_{m} B_m) + 2\delta B_{E^{**}} = K^\|\cdot\| = K = K^{w^*}$.
Let E be a Banach space, $K \subset E^*$ be w^*-compact convex, $B \subset K$, TFAE:

1. For any covering $B \subset \bigcup_{n=1}^{\infty} D_n$ by an increasing sequence of convex subsets $D_n \subset K$, we have
 \[
 \bigcup_{n}^{\infty} D_n^{w^*} = K.
 \]

2. $\sup_{f \in B} (\limsup_{k} f(x_k)) = \sup_{g \in K} (\limsup_{k} g(x_k))$ for every sequence $\{x_k\} \subset B_X$.

3. $\sup_{f \in B} (\limsup_{k} f(x_k)) \geq \inf_{\sum \lambda_i = 1, \lambda_i \geq 0} (\sup_{g \in K} g(\sum \lambda_i x_i))$ for every sequence $\{x_k\} \subset B_X$.
Simons versus Fonf-Lindenstrauss

Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010)

Let E be a Banach space, $K \subset E^*$ be w^*-compact convex, $B \subset K$, TFAE:

1. For any covering $B \subset \bigcup_{n=1}^{\infty} D_n$ by an increasing sequence of convex subsets $D_n \subset K$, we have
 \[\bigcup_{n=1}^{\infty} D_n^{w^*} = K. \]

2. $\sup_{f \in B} \left(\limsup_{k} f(x_k) \right) = \sup_{g \in K} \left(\limsup_{k} g(x_k) \right)$
 for every sequence $\{x_k\} \subset B_X$.

3. $\sup_{f \in B} \left(\limsup_{k} f(x_k) \right) \geq \inf_{\sum_{i=1}^{\infty} \lambda_i = 1, \lambda_i \geq 0} \left(\sup_{g \in K} g(\sum \lambda_i x_i) \right)$
 for every sequence $\{x_k\} \subset B_X$.
Theorem (Cascales, Fonf, Troyanski and Orihuela, J.F.A.-2010)

Let E be a Banach space, $K \subset E^*$ be w^*-compact convex, $B \subset K$, TFAE:

1. For any covering $B \subset \bigcup_{n=1}^{\infty} D_n$ by an increasing sequence of convex subsets $D_n \subset K$, we have

$$\bigcup_{n=1}^{\infty} D_n \overset{w^*}{=} K.$$

2. $\sup_{f \in B} (\limsup_k f(x_k)) = \sup_{g \in K} (\limsup_k g(x_k))$ for every sequence $\{x_k\} \subset B_X$.

3. $\sup_{f \in B} (\limsup_k f(x_k)) \geq \inf_{\sum \lambda_i = 1, \lambda_i \geq 0} (\sup_{g \in K} g(\sum \lambda_i x_i))$ for every sequence $\{x_k\} \subset B_X$.

J. Orihuela
Compactness, Optimization and Risk
Theorem (Inf-liminf Theorem in \mathbb{R}^Γ)

Let $\{\Phi_k\}_{k \geq 1}$ be a pointwise bounded sequence in \mathbb{R}^Γ. We set $\Lambda \subseteq \Gamma$ satisfying the following boundary condition:

For all $\Phi = \sum_{i=1}^{\infty} \lambda_i \Phi_i$, $\sum_{i=1}^{\infty} \lambda_i = 1$, $0 \leq \lambda_i \leq 1$, there exists $\lambda_0 \in \Lambda$ with $\Phi(\lambda_0) = \inf \{ \Phi(\gamma) : \gamma \in \Gamma \}$

Then

$$\inf \left\{ \lambda \in \Lambda \right\} \left(\lim_{k \geq 1} \inf \Phi_k(\lambda) \right) = \inf \left\{ \gamma \in \Gamma \right\} \left(\lim_{k \geq 1} \inf \Phi_k(\gamma) \right).$$
Theorem (Inf-liminf Theorem in \mathbb{R}^Γ)

Let $\{\Phi_k\}_{k \geq 1}$ be a pointwise bounded sequence in \mathbb{R}^Γ. We set $\Lambda \subseteq \Gamma$ satisfying the following boundary condition:

For all $\Phi = \sum_{i=1}^{\infty} \lambda_i \Phi_i$, $\sum_{i=1}^{\infty} \lambda_i = 1$, $0 \leq \lambda_i \leq 1$, there exists $\lambda_0 \in \Lambda$ with $\Phi(\lambda_0) = \inf\{\Phi(\gamma) : \gamma \in \Gamma\}$

Then

$$\inf_{\{\lambda \in \Lambda\}} \left(\liminf_{k \geq 1} \Phi_k(\lambda) \right) = \inf_{\{\gamma \in \Gamma\}} \left(\liminf_{k \geq 1} \Phi_k(\gamma) \right).$$
A Nonlinear James Theorem

Theorem

Let E be a Banach space with B_{E^*} convex-block compact for $\sigma(E^*, E)$. If

$$\alpha : E \to \mathbb{R} \cup \{+\infty\}$$

is a proper map such that for every $x^* \in E^*$ the minimization problem

$$\inf \{\alpha(y) + x^*(y) : y \in E\}$$

is attained at some point of E, then the level sets

$$\{y \in E : \alpha(y) \leq c\}$$

are relatively weakly compact for every $c \in \mathbb{R}$.
Theorem

Let E be a Banach space with B_{E^*} convex-block compact for $\sigma(E^*, E)$. If

$$\alpha : E \to \mathbb{R} \cup \{+\infty\}$$

is a proper map such that for every $x^* \in E^*$ the minimization problem

$$\inf \{ \alpha(y) + x^*(y) : y \in E \}$$

is attained at some point of E, then the level sets

$$\{ y \in E : \alpha(y) \leq c \}$$

are relatively weakly compact for every $c \in \mathbb{R}$.

J. Orihuela

Compactness, Optimization and Risk
A Nonlinear James Theorem

Theorem

Let E be a Banach space with B_{E^*} convex-block compact for $\sigma(E^*, E)$. If

$$\alpha : E \to \mathbb{R} \cup \{+\infty\}$$

is a proper map such that for every $x^* \in E^*$ the minimization problem

$$\inf \{\alpha(y) + x^*(y) : y \in E\}$$

is attained at some point of E, then the level sets

$$\{y \in E : \alpha(y) \leq c\}$$

are relatively weakly compact for every $c \in \mathbb{R}$.
Questions we answer

- The former Theorem applies to arbitrary $L^1(\Omega)$ including Delbaen-JST Theorem.
- The former Theorem extends the separable case of S. Calvert-Fitzpatrick’s work for arbitrary maps.
- B. Calvert and S. Fitzpatrick proved, in a 1985 paper:

Theorem (Calvert, Fitzpatrick)

If the subdifferential of a proper, convex and lower semicontinuous map $f : E \to \mathbb{R} \cup \{\infty\}$, with $\text{dom}(f) \neq \emptyset$, is such that $\partial f(E) = E^$, then the Banach space E must be reflexive.*
S. Simons showed omissions in their proof and the authors presented an Erratum in 2000. The paper reduce its generality assuming coercitivity everywhere. It become more difficult to read since referenced lemmas must be adjusted too.

Conjecture: The Nonlinear James Theorem is true in arbitrary Banach spaces without any control on the sequential compactness of the dual unit ball.
Erratum

- S. Simons showed omissions in their proof and the authors presented an Erratum in 2000. The paper reduce its generality assuming coercitivity everywhere. It become more difficult to read since referenced lemmas must be adjusted too.

- **Conjecture:** The Nonlinear James Theorem is true in arbitrary Banach spaces without any control on the sequential compactness of the dual unit ball.
Namioka-Klee Theorem

Theorem

Any linear and positive functional \(\varphi : \mathcal{X} \to \mathbb{R} \) on a Fréchet lattice \(\mathcal{X} \) is continuous.

Theorem (S.Biagini and M.Fritelli 2009)

Any proper convex monotone increasing functional \(U : \mathcal{X} \to (-\infty, +\infty] \) on a Frechet lattice \((\mathcal{X}, T) \) is continuous and subdifferentiable on the interior of its domain. Moreover, it admits a dual representation as

\[
U(x) = \max_{y' \in \mathcal{X}_+} \{ y'(x) - U^*(y') \}
\]

for all \(x \in \text{int}(\text{Dom}(U)) \).
Namioka-Klee Theorem

Theorem

Any linear and positive functional \(\varphi : \mathcal{X} \to \mathbb{R} \) on a Fréchet lattice \(\mathcal{X} \) is continuous

Theorem (S.Biagini and M.Fritelli 2009)

Any proper convex monotone increasing functional \(U : \mathcal{X} \to (-\infty, +\infty] \) on a Frechet lattice \((\mathcal{X}, T) \) is continuous and subdifferentiable on the interior of its domain. Moreover, it admits a dual representation as

\[
U(x) = \max_{y' \in \mathcal{X}_+'} \left\{ y'(x) - U^*(y') \right\}
\]

for all \(x \in \text{int}(\text{Dom}(U)) \)
Theorem (S. Biagini and M. Fritelli 2009)

Let \((X, \mathcal{T})\) be an order continuous Frechet lattice. Any convex monotone increasing functional \(U : X \rightarrow \mathbb{R}\) is order continuous and it admits a dual representation as

\[
U(x) = \max_{y' \in (X^*)^+} \{ y'(x) - U^*(y') \}
\]

for all \(x \in X\)
C-Property

Definition

A linear topology \mathcal{T} on a Riesz space \mathcal{X} has the C-property if for every $A \subset X$ and every $x \in \overline{A}$ there is a sequence $(x_n) \in A$ together with $z_n \in \text{co}\{x_p : p \geq n\}$ such that (z_n) is order convergent to x.

Theorem (S. Biagini and M. Fritelli 2009)

Let $(\mathcal{X}, \mathcal{T})$ a locally convex Frechet lattice and $U : \mathcal{X} \rightarrow (-\infty, +\infty]$ proper and convex. If $\sigma(\mathcal{X}, X^\sim)$ has the C-property then U is order lower semicontinuous if, and only if

$$U(x) = \sup_{y' \in (X^\sim_n)} \{y'(x) - U^*(y')\}$$

for all $x \in \mathcal{X}$.
Definition

A linear topology \mathcal{T} on a Riesz space \mathcal{X} has the C-property if for every $A \subset X$ and every $x \in \overline{A}$ there is a sequence $(x_n) \in A$ together with $z_n \in \text{co}\{x_p : p \geq n\}$ such that (z_n) is order convergent to x.

Theorem (S. Biagini and M. Fritelli 2009)

Let $(\mathcal{X}, \mathcal{T})$ a locally convex Frechet lattice and $U : \mathcal{X} \rightarrow (-\infty, +\infty]$ proper and convex. If $\sigma(\mathcal{X}, \mathcal{X}_n^{\sim})$ has the C-property then U is order lower semicontinuous if, and only if

$$U(x) = \sup_{y' \in (\mathcal{X}_n^{\sim})} \{ y'(x) - U^*(y') \}$$

for all $x \in \mathcal{X}$
Orlicz spaces

An even, convex function $\psi : E \to \mathbb{R} \cup \{\infty\}$ such that:

1. $\psi(0) = 0$
2. $\lim_{x \to \infty} \psi(x) = +\infty$
3. $\psi < +\infty$ in a neighbourhood of 0

is called a Young function

1. $L^\psi(\Omega, \mathcal{F}, \mathbb{P}) := \{X \in L^0 : \exists \alpha > 0, \mathbb{E}_\mathbb{P}[\psi(\alpha X)] < +\infty\}$
2. $N_\psi(X) := \inf\{c > 0 : \mathbb{E}_\mathbb{P}[\psi(\frac{1}{c}X)] \leq 1\}$
3. $L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \subset L^\psi(\Omega, \mathcal{F}, \mathbb{P}) \subset L^1(\Omega, \mathcal{F}, \mathbb{P})$
4. the Morse subspace $M^\psi = \{X \in L^\psi : \mathbb{E}_\mathbb{P}[\psi(\beta X)] < +\infty \text{ for all } \beta > 0\}$,
Orlicz spaces

An even, convex function \(\Psi : E \to \mathbb{R} \cup \{\infty\} \) such that:

1. \(\Psi(0) = 0 \)
2. \(\lim_{x \to \infty} \Psi(x) = +\infty \)
3. \(\Psi < +\infty \) in a neighbourhood of 0

is called a Young function

1. \(L^\Psi(\Omega, \mathcal{F}, \mathbb{P}) := \{ X \in L^0 : \exists \alpha > 0, \mathbb{E}_\mathbb{P}[\Psi(\alpha X)] < +\infty \} \)
2. \(N_\Psi(X) := \inf\{ c > 0 : \mathbb{E}_\mathbb{P}[\Psi(\frac{1}{c} X)] \leq 1 \} \)
3. \(L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \subset L^\Psi(\Omega, \mathcal{F}, \mathbb{P}) \subset L^1(\Omega, \mathcal{F}, \mathbb{P}) \)
4. the Morse subspace \(M^\Psi = \{ X \in L^\Psi : \mathbb{E}_\mathbb{P}[\Psi(\beta X)] < +\infty \text{ for all } \beta > 0 \} \),
Orlicz spaces

An even, convex function $\Psi : E \to \mathbb{R} \cup \{\infty\}$ such that:

1. $\Psi(0) = 0$
2. $\lim_{x \to \infty} \Psi(x) = +\infty$
3. $\Psi < +\infty$ in a neighbourhood of 0

is called a Young function

1. $L^\Psi(\Omega, \mathcal{F}, \mathbb{P}) := \{X \in L^0 : \exists \alpha > 0, \mathbb{E}_\mathbb{P}[\Psi(\alpha X)] < +\infty\}$
2. $N_\Psi(X) := \inf\{c > 0 : \mathbb{E}_\mathbb{P}[\Psi(\frac{1}{c} X)] \leq 1\}$
3. $L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \subset L^\Psi(\Omega, \mathcal{F}, \mathbb{P}) \subset L^1(\Omega, \mathcal{F}, \mathbb{P})$
4. the Morse subspace $M^\Psi = \{X \in L^\Psi : \mathbb{E}_\mathbb{P}[\Psi(\beta X)] < +\infty \text{ for all } \beta > 0\}$,
Orlicz spaces

An even, convex function $\psi : E \to \mathbb{R} \cup \{\infty\}$ such that:

1. $\psi(0) = 0$
2. $\lim_{x \to \infty} \psi(x) = +\infty$
3. $\psi < +\infty$ in a neighbourhood of 0

is called a Young function

1. $L^\psi(\Omega, \mathcal{F}, \mathbb{P}) := \{X \in L^0 : \exists \alpha > 0, \mathbb{E}_\mathbb{P}[\psi(\alpha X)] < +\infty\}$
2. $N_\psi(X) := \inf\{c > 0 : \mathbb{E}_\mathbb{P}[\psi(\frac{1}{c} X)] \leq 1\}$
3. $L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \subset L^\psi(\Omega, \mathcal{F}, \mathbb{P}) \subset L^1(\Omega, \mathcal{F}, \mathbb{P})$
4. the Morse subspace $M^\psi = \{X \in L^\psi : \mathbb{E}_\mathbb{P}[\psi(\beta X)] < +\infty \text{ for all } \beta > 0\}$,
Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)

Let \(\rho(X) = \sup_{Y \in \mathcal{M}^{\Psi^*}} \left\{ \mathbb{E}[XY] - \alpha(Y) \right\} \) be a strong convex risk measure on \(L^\Psi \) with \(\alpha : (L^\Psi(\Omega, \mathcal{F}, \mathbb{P})^* \to \mathbb{R} \cup \{+\infty\} \):

(i) For all \(c \in \mathbb{R} \), \(\alpha^{-1}((-\infty, c]) \) is a relatively weakly compact subset of \(\mathcal{M}^{\Psi^*}(\Omega, \mathcal{F}, \mathbb{P}) \).

(ii) For every \(X \in L^\Psi(\Omega, \mathcal{F}, \mathbb{P}) \), the supremum in the equality

\[
\rho(X) = \sup_{Y \in \mathcal{M}^{\Psi^*}} \left\{ \mathbb{E}[XY] - \alpha(Y) \right\}
\]

is attained.

(iii) \(\rho \) is sequentially order continuous.
Theorem (Lebesgue Risk Measures)

Let \(\rho(X) = \sup_{Y \in M^*} \{ \mathbb{E}[XY] - \alpha(Y) \} \) be a strong convex risk measure on \(L^\Psi \) with \(\alpha : (L^\Psi(\Omega, \mathcal{F}, \mathbb{P}))^* \rightarrow \mathbb{R} \cup \{+\infty\} \)

T.F.A.E.:

(i) For all \(c \in \mathbb{R} \), \(\alpha^{-1}((-\infty, c]) \) is a relatively weakly compact subset of \(M^*(\Omega, \mathcal{F}, \mathbb{P}) \).

(ii) For every \(X \in L^\Psi(\Omega, \mathcal{F}, \mathbb{P}) \), the supremum in the equality

\[
\rho(X) = \sup_{Y \in M^*} \{ \mathbb{E}[XY] - \alpha(Y) \}
\]

is attained.

(iii) \(\rho \) is sequentially order continuous
Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)

Let $\rho(X) = \sup_{Y \in M^*} \{ \mathbb{E}[XY] - \alpha(Y) \}$ be a strong convex risk measure on L^Ψ with $\alpha : (L^\Psi(\Omega, \mathcal{F}, P))^* \to \mathbb{R} \cup \{+\infty\}$. T.F.A.E.:

(i) For all $c \in \mathbb{R}$, $\alpha^{-1}((\infty, c])$ is a relatively weakly compact subset of $M^*(\Omega, \mathcal{F}, P)$.

(ii) For every $X \in L^\Psi(\Omega, \mathcal{F}, P)$, the supremum in the equality

$$\rho(X) = \sup_{Y \in M^*} \{ \mathbb{E}[XY] - \alpha(Y) \}$$

is attained.

(iii) ρ is sequentially order continuous.
Order Continuity of Risk Measures

Theorem (Lebesgue Risk Measures)

Let \(\rho(X) = \sup_{Y \in \mathcal{M}^*} \{ \mathbb{E}[XY] - \alpha(Y) \} \) be a strong convex risk measure on \(L^\Psi \) with \(\alpha : (L^\Psi(\Omega, \mathcal{F}, \mathbb{P})^* \to \mathbb{R} \cup \{+\infty\} \)

(i) For all \(c \in \mathbb{R} \), \(\alpha^{-1}((-\infty, c]) \) is a relatively weakly compact subset of \(\mathcal{M}^* \).

(ii) For every \(X \in L^\Psi(\Omega, \mathcal{F}, \mathbb{P}) \), the supremum in the equality

\[
\rho(X) = \sup_{Y \in \mathcal{M}^*} \{ \mathbb{E}[XY] - \alpha(Y) \}
\]

is attained.

(iii) \(\rho \) is sequentially order continuous
Variational problems

Theorem (Nonlinear James Theorem)

Let E be a real Banach space,

$$f : E \rightarrow \mathbb{R} \cup \{+\infty\}$$

a proper, coercive and weakly lower semicontinuous function. Then

$$\partial V(E) = E^*$$

if, and only if,

for all $c \in \mathbb{R}$ the sublevel set $f^{-1}((-\infty, c])$ is weakly compact.
Variational problems

Theorem (Nonlinear James Theorem)

Let E be a real Banach space,

$$f : E \to \mathbb{R} \cup \{+\infty\}$$

a proper, coercive and weakly lower semicontinuous function. Then

$$\partial V(E) = E^*$$

if, and only if,

for all $c \in \mathbb{R}$ the sublevel set $f^{-1}((-\infty, c])$ is weakly compact.
Theorem (Nonlinear James Theorem)

Let E be a real Banach space,

$$f : E \rightarrow \mathbb{R} \cup \{+\infty\}$$

a proper, coercive and weakly lower semicontinuous function. Then

$$\partial V(E) = E^*$$

if, and only if,

for all $c \in \mathbb{R}$ the sublevel set $f^{-1}((-\infty, c])$ is weakly compact.
Theorem

Let A be a weakly closed subset of a real Banach space and let

$$
\psi : A \longrightarrow \mathbb{R}
$$

be a bounded function such that for all $x^* \in E^*$ the function

$$
x^* - \psi,
$$

when restricted to A, attains its supremum.

Then A is weakly compact.
Nonlinear Variational Problems

Theorem (Reflexivity frame)

Let E be a real Banach space and

$$f : E \rightarrow \mathbb{R} \cup \{+\infty\}$$

a coercive function such that $\text{dom}(f)$ has nonempty interior and for all $x^* \in E^*$ there exists $x_0 \in E$ with

$$f(x_0) + x^*(x_0) = \inf_{x \in E} \{f(x) + x^*(x)\}$$

Then E is reflexive.

Moreover, if the dual ball B_{E^*} is a w^*-convex-block compact no coercive assumption is needed for f.
Theorem (Reflexivity frame)

Let E be a real Banach space and

$$f : E \rightarrow \mathbb{R} \cup \{+\infty\}$$

a coercive function such that $\text{dom}(f)$ has nonempty interior and for all $x^* \in E^*$ there exists $x_0 \in E$ with

$$f(x_0) + x^*(x_0) = \inf_{x \in E} \{f(x) + x^*(x)\}$$

Then E is reflexive.

Moreover, if the dual ball B_{E^*} is a w^*-convex-block compact no coercive assumption is needed for f.
Theorem (Reflexivity frame)

Let E be a real Banach space and

$$f : E \rightarrow \mathbb{R} \cup \{+\infty\}$$

a coercive function such that $\text{dom}(f)$ has nonempty interior and for all $x^* \in E^*$ there exists $x_0 \in E$ with

$$f(x_0) + x^*(x_0) = \inf_{x \in E} \left\{ f(x) + x^*(x) \right\}$$

Then E is reflexive.
Moreover, if the dual ball B_{E^*} is a w^*-convex-block compact no coercive assumption is needed for f
Nonlinear variational problems

Corollary

A real Banach space E is reflexive, provided there exists a monotone, coercive, symmetric and surjective operator

$$\phi : E \longrightarrow E^*$$

Corollary

A real Banach space with dual ball w^*-convex-block compact, for instance without copies of l^1, is reflexive whenever there exists a monotone, symmetric and surjective operator

$$\phi : E \longrightarrow E^*$$
Nonlinear variational problems

Corollary

A real Banach space E is reflexive, provided there exists a monotone, coercive, symmetric and surjective operator

$$\Phi : E \rightarrow E^*$$

Corollary

A real Banach space with dual ball w^*-convex-block compact, for instance without copies of l^1, is reflexive whenever there exists a monotone, symmetric and surjective operator

$$\Phi : E \rightarrow E^*$$
HAPPY BIRTHDAY AND A FREE RISK FUTURE FOR PROF. DR. JONATHAN BORWEIN

THANK YOU!!!!
HAPPY BIRTHDAY AND A FREE RISK FUTURE FOR PROF. DR. JONATHAN BORWEIN
THANK YOU!!!!