Variational Compactness

J. Orihuela

Department of Mathematics
University of Murcia

First Meeting in Topology and Functional Analysis.
On the occasion of Prof. J. Kakol 60th birthday.
Universidad Miguel Hernandez. Elche 2013

Supported by
A birthday Theorem

- P. Kenderov 2003
- J. Lindenstrauss 2006
- M. Valdivia 2010
- W. Schachermayer 2010
- J. Borwein 2011
- I. Karatzas 2012
- F. Delbaen 2012
- A. Defant 2013
- P. Kenderov 2013
- J. Kakol 2013
- More coming 2014....
$E \neq UA_n$

Let E be a Banach space. Does there exist a closed, separable subspace of E that is isomorphic to E? If so, find such a subspace.
The coauthors

- M. Ruiz Galán and J.O. *A coercive and nonlinear James’s weak compactness theorem* Nonlinear Analysis 75 (2012) 598-611.
Contents

- Compactness and Optimization.
- Variational problems and reflexivity.
- One-side James’ Theorem.
- Conic Godefroy’s Theorem.
- Dual variational problems.
One-Perturbation Variational Principle

Compact domain \Rightarrow lsc functions attain their minimum

Theorem (Borwein-Fabian-Revalski)

Let X be a Hausdorff topological space and $\alpha : X \to (-\infty, +\infty]$ proper, lsc map s.t. $\{\alpha \leq c\}$ is compact for all $c \in \mathbb{R}$. Then for any proper lsc map $f : X \to (-\infty, +\infty]$ bounded from below, the function $\alpha + f$ attains its minimum.

Theorem (Borwein-Fabian-Revalski)

If X is metrizable and $\alpha : X \to (-\infty, +\infty]$ is a proper function such that for all bounded continuous function $f : X \to (-\infty, +\infty]$, the function $\alpha + f$ attains its minimum, then α is a lsc map, bounded from below, whose sublevel sets $\{\alpha \leq c\}$ are all compact.
In a metric space X, the conditions imposed on the unique perturbation φ in Theorem 6.5.1 are also necessary.

Theorem 6.5.2 Let $\varphi : X \to \mathbb{R} \cup \{+\infty\}$ be a proper function on a metric space X. Suppose that for every bounded continuous function $f : X \to \mathbb{R}$, the function $f + \varphi$ attains its minimum. Then φ is a lsc function, bounded from below, whose sublevel sets are all compact.
Theorem

A Banach space is reflexive if, and only if, each continuous linear functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if, and only if, each continuous linear functional attains its supremum on K

Theorem

A Banach space is reflexive if, and only if, each continuous linear functional attains its supremum on the unit ball

Theorem

A bounded and weakly closed subset K of a Banach space is weakly compact if, and only if, each continuous linear functional attains its supremum on K

A Banach space is reflexive if, and only if, each continuous linear functional attains its supremum on the unit ball.

A bounded and weakly closed subset K of a Banach space is weakly compact if, and only if, each continuous linear functional attains its supremum on K.

Let us fix a Banach space E with dual E^*.

K is a closed convex set in the Banach space E.

- $\nu_K(x) = 0$ if $x \in K$ and $+\infty$ otherwise.
- $x^* \in E^*$ attains its supremum on K at $x_0 \in K$ if and only if $\nu_K(y) - \nu_K(x_0) \geq x^*(y - x_0)$ for all $y \in E$.

The minimization problem

$$\min \{ \nu_K(\cdot) - x^*(\cdot) \}$$

on E for every $x^* \in E^*$ has always solution if and only if the set K is weakly compact.

When the minimization problem

$$\min \{ \alpha(\cdot) + x^*(\cdot) \}$$

on E has solution for all $x^* \in E^*$ and a fixed proper function $\alpha : E \to (-\infty, +\infty]$?
The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E^*
- K is a closed convex set in the Banach space E
- $\nu_K(x) = 0$ if $x \in K$ and $+\infty$ otherwise
- $x^* \in E^*$ attains its supremum on K at $x_0 \in K \iff \nu_K(y) - \nu_K(x_0) \geq x^*(y - x_0)$ for all $y \in E$
- The minimization problem
 \[
 \min \{ \nu_K(\cdot) - x^*(\cdot) \}
 \]
 on E for every $x^* \in E^*$ has always solution if and only if the set K is weakly compact
- When the minimization problem
 \[
 \min \{ \alpha(\cdot) + x^*(\cdot) \}
 \]
 on E has solution for all $x^* \in E^*$ and a fixed proper function $\alpha : E \to (-\infty, +\infty]$?
The Theorem of James as a minimization problem

- Let us fix a Banach space E with dual E^*
- K is a closed convex set in the Banach space E
- $\iota_K(x) = 0$ if $x \in K$ and $+\infty$ otherwise
- $x^* \in E^*$ attains its supremum on K at $x_0 \in K$ if $\iota_K(y) - \iota_K(x_0) \geq x^*(y - x_0)$ for all $y \in E$
- The minimization problem

$$\min \{ \iota_K(\cdot) - x^*(\cdot) \}$$

on E for every $x^* \in E^*$ has always solution if and only if the set K is weakly compact

- When the minimization problem

$$\min \{ \alpha(\cdot) + x^*(\cdot) \}$$

on E has solution for all $x^* \in E^*$ and a fixed proper function $\alpha : E \rightarrow (-\infty, +\infty]$?
Theorem (M. Ruiz and J. O.)

Let \(E \) be a Banach space, \(\alpha : E \to (-\infty, +\infty] \) proper, (lower semicontinuous) function with

\[
\lim_{\|x\| \to \infty} \frac{\alpha(x)}{\|x\|} = +\infty
\]

Suppose that there is \(c \in \mathbb{R} \) such that the level set \(\{\alpha \leq c\} \) fails to be (relatively) weakly compact. Then there is \(x^* \in E^* \) such that the infimum

\[
\inf_{x \in E} \{\langle x, x^* \rangle + \alpha(x)\}
\]

is not attained.
Minimizing \(\{\alpha(x) + x^*(x) : x \in E\} \)

Theorem (M. Ruiz and J. O.)

Let \(E \) be a Banach space, \(\alpha : E \to (-\infty, +\infty] \) proper, (lower semicontinuous) function with

\[
\lim_{\|x\| \to \infty} \frac{\alpha(x)}{\|x\|} = +\infty
\]

Suppose that there is \(c \in \mathbb{R} \) such that the level set \(\{\alpha \leq c\} \) fails to be (relatively) weakly compact. Then there is \(x^* \in E^* \) such that, the infimum

\[
\inf_{x \in E} \{\langle x, x^* \rangle + \alpha(x)\}
\]

is not attained.
\[\partial \alpha(x_0) = \{ x^* \in E^* : x^*(x-x_0) \leq \alpha(x) - \alpha(x_0) \forall x \} \]

\[\alpha(x_0) - x^*(x_0) \leq \alpha(x) - x^*(x) \quad \forall x \in E \]
Lemma

Let A be a bounded but not relatively weakly compact subset of the Banach space E. If $(a_n) \subset A$ is a sequence without weak cluster point in E, then there is $(x^*_n) \subset B_{E^*}$, $g_0 = \sum_{n=1}^{\infty} \lambda_n x^*_n$ with $0 \leq \lambda_n \leq 1$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \lambda_n = 1$ such that: for every $h \in l^\infty(A)$, with

$$\lim \inf_{n} x^*_n(a) \leq h(a) \leq \lim \sup_{n} x^*_n(a)$$

for all $a \in A$, we will have that $g_0 + h$ does not attain its minimum on A.

J. Orihuela
Lemma

Let A be a bounded but not relatively weakly compact subset of the Banach space E. If $(a_n) \subset A$ is a sequence without weak cluster point in E, then there is $(x^*_n) \subset B_{E^*}$, $g_0 = \sum_{n=1}^{\infty} \lambda_n x^*_n$ with $0 \leq \lambda_n \leq 1$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \lambda_n = 1$ such that: for every $h \in l^\infty(A)$, with

$$\liminf_{n} x^*_n(a) \leq h(a) \leq \limsup_{n} x^*_n(a)$$

for all $a \in A$, we will have that $g_0 + h$ does not attain its minimum on A.
Let E be a Banach space, $\alpha : E \to (-\infty, +\infty]$ proper, lower semicontinuous function, then we have:

- If $\partial \alpha(E) = E^*$ then the level sets $\{\alpha \leq c\}$ are weakly compact for all $c \in \mathbb{R}$.

- If α has weakly compact level sets and the Fenchel-Legendre conjugate α^* is finite, i.e. $\sup\{x^*(x) - \alpha(x) : x \in E\} < +\infty$ for all $x^* \in E^*$, then $\partial \alpha(E) = E^*$
A monetary utility function is a concave non-decreasing map

\[U : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \to [-\infty, +\infty) \]

with \(\text{dom}(U) = \{X : U(X) \in \mathbb{R}\} \neq \emptyset \) and

\[U(X + c) = U(X) + c, \text{ for } X \in L^\infty, c \in \mathbb{R} \]

Defining \(\rho(X) = -U(X) \) the above definition of monetary utility function yields the definition of a convex risk measure. Both \(U, \rho \) are called coherent if \(U(0) = 0, U(\lambda X) = \lambda U(X) \) for all \(\lambda > 0, X \in L^\infty \)
TODAY has Fatou if \(\sum_n \alpha_n \Rightarrow \rho(\alpha_n) \Rightarrow \sigma(\mathbb{L}^\infty, \mathbb{L}^1) \) lower semivariation.

is order sequentially continuous \(\Leftrightarrow \sum_n |\alpha_n| \leq \beta \quad \forall \beta \in \mathbb{R} \quad \sum_n \alpha_n \Rightarrow \alpha \frac{\beta \Rightarrow \beta^+}{\beta \Rightarrow \beta^-}

\(\lim_{n \to \infty} \rho(\alpha_n) = \rho(\alpha) \)
Representing risk measures

Theorem

A convex (resp. coherent) risk measure $\rho : L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ admits a representation

$$\rho(X) = \sup\{\mu(-X) - \alpha(\mu) : \mu \in \text{ba}, \mu \geq 0, \mu(\Omega) = 1\}$$

(resp.

$$\rho(X) = \sup\{\mu(-X) : \mu \in \mathcal{S} \subseteq \{\mu \in \text{ba}, \mu \geq 0, \mu(\Omega) = 1\}\})$$

If in addition ρ is $\sigma(L^\infty, L^1)$-lower semicontinuous we have:

$$\rho(X) = \sup\{\mathbb{E}_Q(-X) - \alpha(Q) : Q \ll \mathbb{P} \text{ and } \mathbb{E}_\mathbb{P}(dQ/d\mathbb{P}) = 1\}$$

(resp.

$$\rho(X) = \sup\{\mathbb{E}_Q(-X) : Q \in \{Q \ll \mathbb{P} \text{ and } \mathbb{E}_\mathbb{P}(dQ/d\mathbb{P}) = 1\}\}$$

Theorem (Jouini-Schachermayer-Touzi)

Let \(U : \mathbb{L}^\infty(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R} \) be a monetary utility function with the Fatou property and \(U^* : \mathbb{L}^\infty(\Omega, \mathcal{F}, \mathbb{P})^* \to [0, \infty] \) its Fenchel-Legendre transform. They are equivalent:

1. \(\{ U^* \leq c \} \) is \(\sigma(\mathbb{L}^1, \mathbb{L}^\infty) \)-compact subset for all \(c \in \mathbb{R} \)
2. For every \(X \in \mathbb{L}^\infty \) the infimum in the equality

\[
U(X) = \inf_{Y \in \mathbb{L}^1} \{ U^*(Y) + \mathbb{E}[XY] \},
\]

is attained

3. For every uniformly bounded sequence \((X_n) \) tending a.s. to \(X \) we have

\[
\lim_{n \to \infty} U(X_n) = U(X).
\]
Theorem (Lebesgue Risk Measures on Orlicz spaces)

Let \(\rho(X) = \sup_{Y \in \mathcal{M}^\psi} \{ \mathbb{E}_P[-XY] - \alpha(Y) \} \) be a finite convex risk measure on \(L^\psi \) with \(\alpha : (L^\psi(\Omega, \mathcal{F}, \mathbb{P})^*) \rightarrow (-\infty, +\infty) \) a penalty function \(w^* \)-lower semicontinuous. T.F.A.E.:

(i) For all \(c \in \mathbb{R} \), \(\alpha^{-1}((-\infty, c]) \) is a relatively weakly compact subset of \(\mathcal{M}^\psi(\Omega, \mathcal{F}, \mathbb{P}) \).

(ii) For every \(X \in L^\psi(\Omega, \mathcal{F}, \mathbb{P}) \), the supremum in the equality

\[
\rho(X) = \sup_{Y \in \mathcal{M}^\psi} \{ \mathbb{E}_P[-XY] - \alpha(Y) \}
\]

is attained.

(iii) \(\rho \) is sequentially order continuous
Theorem (Reflexivity frame)

Let E be a real Banach space and

$$\alpha : E \rightarrow \mathbb{R} \cup \{+\infty\}$$

a a function such that $\text{dom}(\alpha)$ has nonempty interior and for all $x^* \in E^*$ there exists $x_0 \in E$ with

$$\alpha(x_0) + x^*(x_0) = \inf_{x \in E} \{\alpha(x) + x^*(x)\}$$

Then E is reflexive.
[\partial \alpha(E) = E^* \Rightarrow E = E^{**}]

- Fix an open ball \(B \subseteq \text{dom}(\alpha) \)
 \[
 B = \bigcup_{p=1}^{+\infty} B \cap \alpha^{-1}((-\infty, p])
 \]
- Baire Category Theorem \(\Rightarrow \) there is \(q \in \mathbb{N} : \)
 \[
 B \cap \alpha^{-1}((-\infty, q])
 \]
 has non void interior relative to \(B \)
- There is \(G \) open in \(E \) such that
 \[
 \emptyset \neq B \cap G \subset B \cap \alpha^{-1}((-\infty, q])
 \]
- \(\alpha^{-1}((-\inf, q]) \) weakly compact \(\Rightarrow \) \(G \) contains an open relatively weakly compact ball
- \(B_E \) is weakly compact
Fix an open ball $B \subseteq \text{dom}(\alpha)$.

$B = \bigcup_{p=1}^{+\infty} B \cap \alpha^{-1}((-\infty, p])$

Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$:

$B \cap \alpha^{-1}((-\infty, q])$

has non void interior relative to B.

There is G open in E such that

$\emptyset \neq B \cap G \subset B \cap \alpha^{-1}((-\infty, q])$

$\alpha^{-1}((-\text{inf, } q])$ weakly compact \Rightarrow G contains an open relatively weakly compact ball

B_E is weakly compact
Fix an open ball $B \subseteq \text{dom}(\alpha)$

$$B = \bigcup_{p=1}^{+\infty} B \cap \alpha^{-1}((-\infty, p])$$

Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$:

$$B \cap \alpha^{-1}((-\infty, q])$$

has non void interior relative to B

There is G open in E such that

$$\emptyset \neq B \cap G \subset B \cap \alpha^{-1}((-\infty, q])$$

$\alpha^{-1}((-\text{inf}, q)]$ weakly compact \Rightarrow G contains an open relatively weakly compact ball

B_E is weakly compact
[\partial \alpha(E) = E^*] \Rightarrow E = E^{**}

- Fix an open ball $B \subseteq \text{dom}(\alpha)$

- $B = \bigcup_{p=1}^{+\infty} B \cap \alpha^{-1}((-\infty, p])$

- Baire Category Theorem \Rightarrow there is $q \in \mathbb{N}$:

\[B \cap \alpha^{-1}((-\infty, q]) \]

has non void interior relative to B

- There is G open in E such that

\[\emptyset \neq B \cap G \subset B \cap \alpha^{-1}((-\infty, q]) \]

- $\alpha^{-1}((-\inf, q])$ weakly compact \Rightarrow G contains an open relatively weakly compact ball

- B_E is weakly compact
\[\partial \alpha(E) = E^* \Rightarrow E = E^{**} \]

- Fix an open ball \(B \subseteq \text{dom}(\alpha) \)
- \(B = \bigcup_{p=1}^{+\infty} B \cap \alpha^{-1}((-\infty,p]) \sigma(E,E^*) \)
- Baire Category Theorem \(\Rightarrow \) there is \(q \in \mathbb{N} : \)
 \[
 B \cap \alpha^{-1}((-\infty,q]) \sigma(E,E^*)
 \]
 has non void interior relative to \(B \)
- There is \(G \) open in \(E \) such that
 \[
 \emptyset \neq B \cap G \subset B \cap \alpha^{-1}((-\infty,q]) \sigma(E,E^*)
 \]
- \(\alpha^{-1}((-\infty,q]) \sigma(E,E^*) \) weakly compact \(\Rightarrow \) \(G \) contains an open relatively weakly compact ball
- \(B_E \) is weakly compact
[\partial \alpha(E) = E^*] \Rightarrow E = E^{**}

- Fix an open ball \(B \subseteq \text{dom}(\alpha) \)
- \(B = \bigcup_{p=1}^{+\infty} B \cap \alpha^{-1}((-\infty, p]) \)
- Baire Category Theorem \(\Rightarrow \) there is \(q \in \mathbb{N} \):
 \[B \cap \alpha^{-1}((-\infty, q]) \]
 has non void interior relative to \(B \)
- There is \(G \) open in \(E \) such that
 \(\emptyset \neq B \cap G \subset B \cap \alpha^{-1}((-\infty, q]) \)
 \[\alpha^{-1}((-\infty, q]) \]
 weakly compact \(\Rightarrow \) \(G \) contains an open relatively weakly compact ball
- \(B_E \) is weakly compact
Corollary 2.101 (Main Theorem on Monotone Operators). Let X be a real, reflexive Banach space, and let $A : X \to X^*$ be a monotone, hemicontinuous, bounded, and coercive operator, and $b \in X^*$. Then a solution of the equation $Au = b$ exists.

\[
\begin{align*}
\text{variational equation} & \quad a(u, v) = f(v) \\
& \quad \text{for all } v \in V \\
\end{align*}
\]

\[
\begin{align*}
\text{variational problem} & \quad \min_{v \in V} J(v) \\
\end{align*}
\]

\[
\begin{align*}
\text{Galerkin method} & \quad a(u_h, v_h) = f(v_h) \\
& \quad \text{for all } v_h \in V_h \\
\end{align*}
\]

\[
\begin{align*}
\text{Ritz method} & \quad \min_{v_h \in V_h} J(v_h) \\
\end{align*}
\]

\[\iff \quad \text{by symmetry} \]

\[\iff \quad \text{by symmetry} \]
Given an operator \(\Phi : E \rightarrow E^* \) it is said to be *monotone* provided that

for all \(x, y \in E \), \((\Phi x - \Phi y)(x - y) \geq 0 \),

and *symmetric* if for all \(x, y \in E \), \(\langle \Phi(x), y \rangle = \langle \Phi(y), x \rangle \).

Corollary

* A real Banach space \(E \) is reflexive whenever there exists a monotone, symmetric and surjective operator \(\Phi : E \rightarrow E^* \).

Question

Let \(E \) be a real Banach space and \(\Phi : E \rightarrow 2^{E^*} \) a monotone multivalued map with non void interior domain.

\[\Phi(E) = E^* \Rightarrow E = E^{**} ? \]
Given an operator $\Phi : E \rightarrow E^*$ it is said to be *monotone* provided that

$$\text{for all } x, y \in E, \quad (\Phi x - \Phi y)(x - y) \geq 0,$$

and *symmetric* if for all $x, y \in E$, $\langle \Phi(x), y \rangle = \langle \Phi(y), x \rangle$.

Corollary

A real Banach space E is reflexive whenever there exists a monotone, symmetric and surjective operator $\Phi : E \rightarrow E^$.*

Question

Let E be a real Banach space and $\Phi : E \rightarrow 2^{E^}$ a monotone multivalued map with non void interior domain. Then $[\Phi(E) = E^*] \implies E = E^{**}$?*
Theorem (Simons)

Let Γ be a set and $(z_n)_n$ a uniformly bounded sequence in $\ell^\infty(\Gamma)$. If Λ is a subset of Γ such that for every sequence of positive numbers $(\lambda_n)_n$ with $\sum_{n=1}^{\infty} \lambda_n = 1$ there exists $b \in \Lambda$ such that

$$\sup \left\{ \sum_{n=1}^{\infty} \lambda_n z_n(y) : y \in \Gamma \right\} = \sum_{n=1}^{\infty} \lambda_n z_n(b),$$

then we have:

$$\sup_{\lambda \in \Lambda} \limsup_{k \to \infty} x_k(\lambda) = \sup_{\gamma \in \Gamma} \limsup_{k \to \infty} x_k(\gamma)$$
Let Γ be a set and $(z_n)_n$ a uniformly bounded sequence in $\ell^\infty(\Gamma)$. If Λ is a subset of Γ such that for every sequence of positive numbers $(\lambda_n)_n$ with $\sum_{n=1}^{\infty} \lambda_n = 1$ there exists $b \in \Lambda$ such that

$$\sup\{\sum_{n=1}^{\infty} \lambda_n z_n(y) : y \in \Gamma\} = \sum_{n=1}^{\infty} \lambda_n z_n(b),$$

then we have:

$$\sup_{\lambda \in \Lambda} \limsup_{k \to \infty} x_k(\lambda) = \sup_{\gamma \in \Gamma} \limsup_{k \to \infty} x_k(\gamma)$$
Let E be a separable Banach space and $K \subset E$ a closed convex and bounded subset. They are equivalent:

1. K is weakly compact.

2. For every sequence $(x_n^*) \subset B_{E^*}$ we have

$$\sup_{k \in K} \{ \limsup_{n \to \infty} x_n^*(k) \} = \sup_{\kappa \in \overline{K}^{w^*}} \{ \limsup_{n \to \infty} x_n^*(\kappa) \}$$
If \(K \) is not weakly compact there is \(x_{0}^{**} \in \overline{K}^{w*} \subset E^{**} \) with \(x_{0}^{**} \notin E \).

The Hahn Banach Theorem provide us \(x^{***} \in B_{E^{***}} \cap E^{\perp} \) with \(x^{***}(x_{0}^{**}) = \alpha > 0 \).

The separability of \(E \), Ascoli's and Bipolar Theorems permit to construct a sequence \((x_{n}^{*}) \subset B_{E^{*}} \) such that:

1. \(\lim_{n \to \infty} x_{n}^{*}(x) = 0 \) for all \(x \in E \)
2. \(x_{n}^{*}(x_{0}^{**}) > \alpha/2 \) for all \(n \in \mathbb{N} \)

Then

\[
0 = \sup_{k \in K} \{ \lim_{n \to \infty} x_{n}^{*}(k) \} = \sup_{k \in K} \{ \limsup_{n \to \infty} x_{n}^{*}(k) \} \geq \sup_{v^{**} \in \overline{K}^{w*}} \{ \limsup_{n \to \infty} x_{n}^{*}(v^{**}) \} = \limsup_{n \to \infty} x_{n}^{*}(x_{0}^{**}) \geq \alpha/2 > 0
\]
Sup-limsup Theorem ⇒ Compactness

- If K is not weakly compact there is $x_0^{**} \in \overline{K}\,^w\,* \subset E^{**}$ with $x_0^{**} \notin E$

- The Hahn Banach Theorem provide us $x^{***} \in B_{E^{***}} \cap E^\perp$ with $x^{***}(x_0^{**}) = \alpha > 0$

- The separability of E, Ascoli’s and Bipolar Theorems permit to construct a sequence $(x_n^*) \subset B_{E^*}$ such that:
 1. $\lim_{n \to \infty} x_n^*(x) = 0$ for all $x \in E$
 2. $x_n^*(x_0^{**}) > \alpha/2$ for all $n \in \mathbb{N}$

Then

$$0 = \sup_{k \in K} \{ \lim_{n \to \infty} x_n^*(k) \} = \sup_{k \in K} \{ \limsup_{n \to \infty} x_n^*(k) \} \geq \sup_{v^{**} \in \overline{K}\,^w\,*} \{ \limsup_{n \to \infty} x_n^*(v^{**}) \} = \limsup_{n \to \infty} x_n^*(x_0^{**}) \geq \alpha/2 > 0$$
If K is not weakly compact there is $x_{0}^{**} \in \overline{K}^{W^*} \subset E^{**}$ with $x_{0}^{**} \notin E$.

The Hahn Banach Theorem provide us $x^{***} \in B_{E^{**}} \cap E^\perp$ with $x^{***} (x_{0}^{**}) = \alpha > 0$.

The separability of E, Ascoli’s and Bipolar Theorems permit to construct a sequence $(x_{n}^*) \subset B_{E^*}$ such that:

1. $\lim_{n \to \infty} x_{n}^*(x) = 0$ for all $x \in E$.
2. $x_{n}^*(x_{0}^{**}) > \alpha/2$ for all $n \in \mathbb{N}$.

Then

$$0 = \sup_{k \in K} \{ \lim_{n \to \infty} x_{n}^*(k) \} = \sup_{k \in K} \{ \limsup_{n \to \infty} x_{n}^*(k) \} \geq$$

$$= \sup_{v^{**} \in \overline{K}^{W^*}} \{ \limsup_{n \to \infty} x_{n}^*(v^{**}) \} = \limsup_{n \to \infty} x_{n}^*(x_{0}^{**}) \geq \alpha/2 > 0$$
Sup-limsup Theorem \Rightarrow \text{Compactness}

- If K is not weakly compact there is $x_0^{**} \in \overline{K}^{w^*} \subset E^{**}$ with $x_0^{**} \notin E$
- The Hahn Banach Theorem provide us $x^{***} \in B_{E^{***}} \cap E^\perp$ with $x^{***}(x_0^{**}) = \alpha > 0$
- The separability of E, Ascoli’s and Bipolar Theorems permit to construct a sequence $(x_n^*) \subset B_{E^*}$ such that:
 1. $\lim_{n \to \infty} x_n^*(x) = 0$ for all $x \in E$
 2. $x_n^*(x_0^{**}) > \alpha/2$ for all $n \in \mathbb{N}$
- Then

\[
0 = \sup_{k \in K} \left\{ \lim_{n \to \infty} x_n^*(k) \right\} = \sup_{k \in K} \left\{ \limsup_{n \to \infty} x_n^*(k) \right\} \geq \\
= \sup_{v^{**} \in \overline{K}^{w^*}} \left\{ \limsup_{n \to \infty} x_n^*(v^{**}) \right\} = \limsup_{n \to \infty} x_n^*(x_0^{**}) \geq \alpha/2 > 0
\]
Theorem (Fonf and Lindenstrauss)

Let E be a separable Banach space and $K \subset E$ a closed convex and bounded subset. They are equivalent:

1. K is weakly compact.
2. For any covering $K \subset \bigcup_{n=1}^{\infty} D_n$ by an increasing sequence of closed convex subsets $D_n \subset K$, we have

$$\bigcup_{n} D_n^{w^*} \| \cdot \|_{w^*} = K^{w^*}.$$

The proof uses Krein Milman and Bishop Phelps theorems
Theorem (Cascales, Fonf, Troyanski and J.O., J.F.A.-2010)

Let E be a Banach space, $K \subset E^*$ be w^*–compact convex, $B \subset K$, TFAE:

1. For any covering $B \subset \bigcup_{n=1}^{\infty} D_n$ by an increasing sequence of convex subsets $D_n \subset K$, we have

$$\bigcup_{n=1}^{\infty} \overline{D_n}^{w^*} = K.$$

2. $\sup_{f \in B} (\limsup_k f(x_k)) = \sup_{g \in K} (\limsup_k g(x_k))$

 for every sequence $\{x_k\} \subset B_X$.

3. $\sup_{f \in B} (\limsup_k f(x_k)) \geq \inf_{\sum_{i=1}^{\infty} \lambda_i = 1, \lambda_i \geq 0} (\sup_{g \in K} g(\sum \lambda_i x_i))$

 for every sequence $\{x_k\} \subset B_X$.
Theorem (Cascales, Fonf, Troyanski and J.O., J.F.A.-2010)

Let E be a Banach space, $K \subset E^*$ be w^*-compact convex, $B \subset K$, TFAE:

1. For any covering $B \subset \bigcup_{n=1}^{\infty} D_n$ by an increasing sequence of convex subsets $D_n \subset K$, we have

$$\bigcup_{n=1}^{\infty} D_n^{w^*} = K.$$

2. \(\sup_{f \in B} (\limsup_k f(x_k)) = \sup_{g \in K} (\limsup_k g(x_k))\) for every sequence \(\{x_k\} \subset B_X\).

3. \(\sup_{f \in B} (\limsup_k f(x_k)) \geq \inf \sum_{\lambda_i=1, \lambda_i \geq 0} (\sup_{g \in K} g(\sum \lambda_i x_i))\) for every sequence \(\{x_k\} \subset B_X\).
Theorem (Cascales, Fonf, Troyanski and J.O., J.F.A.-2010)

Let E be a Banach space, $K \subset E^*$ be w^*–compact convex, $B \subset K$, TFAE:

1. For any covering $B \subset \bigcup_{n=1}^{\infty} D_n$ by an increasing sequence of convex subsets $D_n \subset K$, we have
 $$\bigcup_{n=1}^{\infty} \overline{D_n}^{w^*} = K.$$

2. $\sup_{f \in B} \left(\limsup_{k} f(x_k) \right) = \sup_{g \in K} \left(\limsup_{k} g(x_k) \right)$ for every sequence $\{x_k\} \subset B_X$.

3. $\sup_{f \in B} \left(\limsup_{k} f(x_k) \right) \geq \inf_{\sum \lambda_i = 1, \lambda_i \geq 0} \left(\sup_{g \in K} g(\sum \lambda_i x_i) \right)$ for every sequence $\{x_k\} \subset B_X$.

J. Orihuela
Let C be a convex, bounded and closed, but not weakly compact subset of the Banach space E with $0 \notin C$. The following problem has been posed by F. Delbaen motivated by risk measures theory:

Question

Is it possible to find a linear functional not attaining its minimum on C and that stays strictly positive on C?

Example (R. Haydon)

In every non reflexive Banach space there is a closed, convex and bounded subset C with non void interior and $0 \notin C$ such that every linear form $x^* \in E^*$ such that $x^*(C) > 0$ attains its minimum on C.
Let C be a convex, bounded and closed, but not weakly compact subset of the Banach space E with $0 \not\in C$. The following problem has been posed by F. Delbaen motivated by risk measures theory:

Question

Is it possible to find a linear functional not attaining its minimum on C and that stays strictly positive on C?

Example (R. Haydon)

In every non reflexive Banach space there is a closed, convex and bounded subset C with non void interior and $0 \not\in C$ such that every linear form $x^ \in E^*$ such that $x^*(C) > 0$ attains its minimum on C.***
Let C be a convex, bounded and closed, but not weakly compact subset of the Banach space E with $0 \notin C$. The following problem has been posed by F. Delbaen motivated by risk measures theory:

Question

Is it possible to find a linear functional not attaining its minimum on C and that stays strictly positive on C?

Example (R. Haydon)

In every non reflexive Banach space there is a closed, convex and bounded subset C with non void interior and $0 \notin C$ such that every linear form $x^* \in E^*$ such that $x^*(C) > 0$ attains its minimum on C.
\[g(x) = c_0 + (-c)(g(x) - y) \]
\[\text{for } c_0 \in C \]

\[g(x) > \frac{1}{M} \]

\(S_i: f(c_i) > 0 \Rightarrow f(A_{c_i}) > 0 \)

\(\forall c_i, c = x_0 + \mu(y - x_0), x, 0 \)

and \(y \in A_1, h^{-} \)

and \(f \) at \(x_0 \)

\[g(x_0) = 1 \]

\[A_x = \{ x: g(x) > 1, \mu > 0, x \in E \} \]

\[f(A_1 > 0 \Rightarrow \| f - g \| \leq \frac{1}{M} \]

\[A_{x, f} = \{ x: g(x) > 1, \mu > 0, x \in E \} \]
Positive results

Theorem (Birthday’s Theorem)
Let E be a separable Banach space. Let C be a closed, convex and bounded subset of $E \setminus \{0\}$, $D \subset C$ a relatively weakly compact set of directions such that, for every $x^* \in E^*$, we have that

$$\inf\{x^*(c) : c \in C\}$$

is attained at some point of C whenever

$$x^*(d) > 0 \text{ for every } d \in D.$$

Then C is weakly compact.
Theorem (Birthday’s Theorem)

Let E be a separable Banach space. Let C be a closed, convex and bounded subset of $E \setminus \{0\}$, $D \subset C$ a relatively weakly compact set of directions such that, for every $x^* \in E^*$, we have that

$$\inf \{ x^*(c) : c \in C \}$$

is attained at some point of C whenever

$$x^*(d) > 0 \text{ for every } d \in D.$$

Then C is weakly compact.
Unbounded Simon’s inequality

Theorem (Simons’s Theorem in \(\mathbb{R}^X \))

Let \(X \) be a nonempty set, let \((f_n)\) be a pointwise bounded sequence in \(\mathbb{R}^X \) and let \(Y \) be a subset of \(X \) such that for every \(g \in \text{co}_{\sigma \rho}\{f_n: n \geq 1\} \) there exists \(y \in Y \) with

\[
g(y) = \sup\{g(x): x \in X\}.
\]

Then the following statements hold true:

\[
\inf\{\sup_{x \in X} g(x): g \in \text{co}_{\sigma \rho}\{f_n: n \geq 1\}\} \leq \sup_{y \in Y} (\limsup_n f_n(y)) \quad (1)
\]

and

\[
\sup_{n} (\limsup_{x \in X} f_n(x)) = \sup_{n} (\limsup_{y \in Y} f_n(y)) \quad (2)
\]
If E is a Banach space, $B \subset C$ are nonempty subsets of E^* and (x_n) is a bounded sequence in E such that for every $x \in \text{co}_\sigma\{x_n : n \geq 1\}$ there exists $b^* \in B$ with $\langle x, b^* \rangle = \sup\{\langle x, c^* \rangle : c^* \in C\}$, then

$$\sup_{b^* \in B} \left(\limsup_{n} \langle x_n, b^* \rangle \right) = \sup_{c^* \in C} \left(\limsup_{n} \langle x_n, c^* \rangle \right).$$

As a consequence

$$\sigma(E, B) - \lim_{n} x_n = 0 \Rightarrow \sigma(E, C) - \lim_{n} x_n = 0.$$
Theorem (Unbounded Godefroy’s Theorem)

Let E a Banach space and B a nonempty subset of E^*. Let us assume there is a relatively weakly compact subset $D \subset E^*$ such that:

1. $0 \notin \text{co}(B \cup D)^{\|\cdot\|}$

2. For every $x \in E$ with $x(d^*) < 0$ for all $d^* \in D$ we have $\sup\{x(c^*) : c^* \in B\} = x(b^*)$ for some $b^* \in B$.

3. For every convex bounded subset $L \subset E$ and every $x^{**} \in \overline{\sigma}(E^{**}, B \cup D^w)$ there is a sequence (x_n) in L such that
 \[\langle x^{**}, z^* \rangle = \lim_n \langle x_n, z^* \rangle \text{ for every } z^* \in B \cup D^w \]

Then
\[\text{co}(B)^{w^*} \subset \bigcup \{\text{co}(B)^{\|\cdot\|} + \lambda\text{co}(D)^{\|\cdot\|} : \lambda \in [0, +\infty)\} \]
Let E a Banach space and B a nonempty subset of E^*. Let us assume $0 \notin \text{co}(B)\|\cdot\|$ and fix $D \subset B$, a relatively weakly compact set so that:

1. For every $x \in E$ with $x(d^*) > 0$ for every $d^* \in D$, we have $\inf\{x(c^*) : c^* \in B\} = x(b^*) > 0$ for some $b^* \in B$.

2. For every convex bounded subset $L \subset E$, and every $x^{**} \in \overline{L}(E^{**}, B \cup D^w)$, there is a sequence (x_n) in L such that $\langle x^{**}, z^* \rangle = \lim_n \langle x_n, z^* \rangle$, for every $z^* \in B \cup \overline{D}^w$.

Then the norm closed convex truncated cone C generated by B, i.e. $C := \bigcup\{\lambda \text{co}(B) : \lambda \in [1, +\infty)\} \|\cdot\|$, is w^*-closed.
Theorem

Let E be a separable Banach space without copies of $\ell^1(\mathbb{N})$,

$$f : E^* \rightarrow \mathbb{R} \cup \{+\infty\}$$

norm lower semicontinuous, convex and proper map, such that

for all $x \in E$, $x - f$ attains its supremum on E^*.

Then the map f is w^*-lower semicontinuous and for every $\mu \in \mathbb{R}$, the sublevel set $f^{-1}((-\infty, \mu])$ is w^*-compact.
Theorem (Birhtday’s Theorem for Jerzcy)

Let E be a Banach space,

$$f : E^* \to \mathbb{R} \cup \{+\infty\}$$

convex, proper and lower semicontinuous map with a weakly web-compact (for instance Lindelöf-Σ) epigraph, such that

for all $x \in E$, $x - f$ attains its supremum on E^*.

Then f is w^*-lower semicontinuous and for every $\mu \in \mathbb{R}$, the sublevel set $f^{-1}((-\infty, \mu])$ is w^*-compact.
Theorem (Birhtday’s Theorem for Jerzcy)

Let E be a Banach space,

$$f : E^* \to \mathbb{R} \cup \{+\infty\}$$

convex, proper and lower semicontinuous map with a weakly web-compact (for instance Lindelöf-Σ) epigraph, such that

for all $x \in E$, $x - f$ attains its supremum on E^*.

Then f is w^*-lower semicontinuous and for every $\mu \in \mathbb{R}$, the sublevel set $f^{-1}((-\infty, \mu])$ is w^*-compact.
Let E be a Banach space without copies of $\ell^1(\mathbb{N})$,

$$f : E^* \longrightarrow \mathbb{R} \cup \{+\infty\}$$

convex, proper and norm lower semicontinuous map with

w^*-K-analytic epigraph, such that

for all $x \in E$, $x - f$ attains its supremum on E^*.

Then f is w^*-lower semicontinuous and for every $\mu \in \mathbb{R}$, the

sublevel set $f^{-1}((-\infty, \mu])$ is w^*-compact.
Dual variational problems

- \(L^\infty(\Omega, \mathcal{F}, \mathbb{P}) \subset \mathcal{X} \subset L^0(\Omega, \mathcal{F}, \mathbb{P}) \) a solid vector subspace
- \(\mathcal{X}_n = \{ Z \in L^0 : XZ \in L^1 \} \) its order continuous dual such that \(\langle \mathcal{X}, \mathcal{X}_n \rangle \) is a dual pair
- \(f : \mathcal{X} \to \mathbb{R} \cup \{ +\infty \} \) proper convex with the Fatou property (i.e. order lower semicontinuity)
- **CONJECTURE**: \(f \) is \(\sigma(\mathcal{X}, \mathcal{X}_n) \) lower semicontinuous
- Biagini-Fritelli: yes if we have \(C \)-property, 2009
- \(C \)-property tool: \(x \in \overline{\sigma(\mathcal{X}, \mathcal{X}_n)} \) \(\Rightarrow \) there is a sequence \((a_n) \subset A \) and \(z_p \in co(\{ a_m : m \geq p \}), p = 1, 2, \ldots \) such that \((z_n) \) order converges to \(x \)
- Owari, 2013: There is a gap in Biagini-Fritelli and problem remains open at this level of generality
THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR JERZCY:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivó la rosa blanca. I grow the white rose.

J. Orihuela
THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR JERZCY:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

J. Orihuela
THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR JERZCY:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

J. Orihuela
THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR JERZCY:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.
THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR JERZCY:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

J. Orihuela
THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR JERZCY:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivó la rosa blanca. I grow the white rose.

J. Orihuela
THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR JERZY:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivó la rosa blanca. I grow the white rose.
THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR JERZCY:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

J. Orihuela
THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR JERZCY:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivó la rosa blanca. I grow the white rose.

J. Orihuela
THANK YOU VERY MUCH FOR YOUR ATTENTION AND MY FAVORITE POEM FOR JERZCY:

- Cultivo la rosa blanca I grow the white rose
- tanto en julio como en enero, as much in July as January,
- para el amigo sincero for the real friend
- que me da su mano franca. who gives me his frank hand.
- Y para el cruel que arranca And for the cruel who drags
- el corazón con que vivo, the heart with I am living,
- cardo ni oruga cultivo neither thistle or larve I am growing
- cultivo la rosa blanca. I grow the white rose.

J. Orihuela