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Integration of functions

f : Ω→ X

where

(Ω,Σ,µ) is a (complete) probability space,

X is a Banach space.

A few names

Pioneers (30’s): Birkhoff, Bochner, Dunford, Gelfand, Pettis, . . .
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A funny story (according to J. Diestel)

The quote is from a 1975 lecture of B.J. Pettis at the Univ. of
Pittsburgh on “Recent advances in the study of the Pettis
integral”. Pettis led off the meeting with the plea:

We have plenty of integrals already, so please,
no new integrals!

The next three speakers started off their talks with three “new
integrals” apiece. Pettis wept.
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According to Fremlin and Mendoza (1994) . . .

The ordinary functional analyst is naturally impatient with the
multiplicity of definitions of ‘integral’ which have been proposed
for vector-valued functions, and would prefer to have a single
canonical one for general use.
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Our stars

B.J. Pettis
(1913-1979)

E.J. McShane
(1904-1989)
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Summary of the talk

1 Introduction

2 Meeting the integrals
The Pettis integral
The McShane integral
The separable case

3 Pettis versus McShane in non-separable spaces
First equivalence results
A unified approach
McShane integrability of scalarly null functions
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The Pettis integral

Definition (Pettis, 1938)

A function f : Ω→ X is Pettis integrable iff

(1) x∗f is integrable ∀x∗ ∈ X ∗;

(2) for each A ∈ Σ there is a vector
∫
A f dµ ∈ X such that

x∗(
∫
A

f dµ) =
∫
A

x∗f dµ ∀x∗ ∈ X ∗.

I Bochner integrable =⇒ Pettis integrable.

I Bochner ≡ Pettis ⇐⇒ dim(X ) < ∞.
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McShane’s approach to the Lebesgue integral

Theorem (McShane, 1969)

A function f : [0,1]→ R is Lebesgue integrable if and only if

there is I ∈ R with the following property:

for each ε > 0 there is a function δ : [0,1]→ R+ such that∣∣∣ n

∑
k=1

(bk −bk−1)f (tk)− I
∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points t1, . . . , tn ∈ [0,1] such that[

bk−1,bk

]
⊂

(
tk −δ (tk), tk +δ (tk)

)
.

In this case, I =
∫

f (t)dt.
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The McShane integral for vector-valued functions

Definition (Gordon, 1990)

A function f : [0,1]→ X is McShane integrable,
with integral x ∈ X , iff

for each ε > 0 there is a function δ : [0,1]→ R+ such that∥∥∥ n

∑
k=1

(bk −bk−1)f (tk)−x
∥∥∥ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points t1, . . . , tn ∈ [0,1] such that[

bk−1,bk

]
⊂

(
tk −δ (tk), tk +δ (tk)

)
.

Contributors: Di Piazza, Fremlin, Gordon, Mendoza, Musial, Preiss, . . .
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Relationship with other integrals

For any function f : [0,1]→ X we have:

McShane ≡ Lebesgue when X = R.
Bochner =⇒ McShane =⇒ Pettis.
No one of these arrows can be reversed in general.

McShane =⇒6 Bochner

f : [0,1]→ `2([0,1]) given by f (t) = et .

Pettis =⇒6 McShane (Fremlin-Mendoza, 1994)

f : [0,1]→ `∞ given by

f (t) = (χA1(t),χA2(t), . . .)

where A1,A2, . . . is an independent sequence of measurable subsets
of [0,1] with λ (An) = 1/n.
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The separable case: measurability

Definition

A function f : Ω→ X is called

(i) strongly measurable iff it is the µ-a.e. limit of a sequence of
simple functions;

(ii) scalarly measurable iff x∗f is measurable ∀x∗ ∈ X ∗.

Strongly measurable =⇒ scalarly measurable.

The converse is not true in general.

Pettis’ measurability theorem (1938)

A function f : Ω→ X is strongly measurable if and only if

f is scalarly measurable;

there is E ∈ Σ with µ(E ) = 1 such that f (E ) is separable.
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The separable case: McShane ≡ Pettis

Theorem (Gordon 1990, Fremlin-Mendoza 1994)

Suppose X is separable.
Then a function f : [0,1]→ X is McShane integrable if and only if
it is Pettis integrable.

Idea of the proof:

Pettis’ measurability theorem =⇒

=⇒ f = g +h with g Bochner integrable and h =
∞

∑
n=1

xnχAn

where xn ∈ X and A1,A2, . . . are disjoint measurable subsets of [0,1].

h is Pettis integrable =⇒
=⇒ ∑∞

n=1 λ (An)xn is unconditionally convergent in X .

Convergence theorem =⇒ h is McShane integrable.
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The non-separable case

Question

Are there non-separable Banach spaces for which

McShane ≡ Pettis ??

YES, for instance `1(c), because . . .

f : [0,1]→ `1(c) Pettis integrable =⇒ f is strongly measurable.

Idea of the proof:

`1(c) has the RNP =⇒ f is scalarly equivalent to a strongly
measurable function g : [0,1]→ `1(c).

`1(c)∗ is w∗-separable =⇒ f = g λ -a.e.

Definition

Two functions f ,g : Ω→ X are scalarly equivalent iff, for each x∗ ∈ X ∗,
we have x∗f = x∗g µ-a.e.
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`1(c) has the RNP =⇒ f is scalarly equivalent to a strongly
measurable function g : [0,1]→ `1(c).

`1(c)∗ is w∗-separable =⇒ f = g λ -a.e.

Definition

Two functions f ,g : Ω→ X are scalarly equivalent iff, for each x∗ ∈ X ∗,
we have x∗f = x∗g µ-a.e.



Introduction
Meeting the integrals

Pettis versus McShane in non-separable spaces

First equivalence results
A unified approach
McShane integrability of scalarly null functions

The non-separable case

Question

Are there non-separable Banach spaces for which

McShane ≡ Pettis ??

YES, for instance `1(c), because . . .

f : [0,1]→ `1(c) Pettis integrable =⇒ f is strongly measurable.

Idea of the proof:

`1(c) has the RNP =⇒ f is scalarly equivalent to a strongly
measurable function g : [0,1]→ `1(c).

`1(c)∗ is w∗-separable =⇒ f = g λ -a.e.

Definition

Two functions f ,g : Ω→ X are scalarly equivalent iff, for each x∗ ∈ X ∗,
we have x∗f = x∗g µ-a.e.



Introduction
Meeting the integrals

Pettis versus McShane in non-separable spaces

First equivalence results
A unified approach
McShane integrability of scalarly null functions

The non-separable case

Question

Are there non-separable Banach spaces for which

McShane ≡ Pettis ??

YES, for instance `1(c), because . . .

f : [0,1]→ `1(c) Pettis integrable =⇒ f is strongly measurable.

Idea of the proof:

`1(c) has the RNP =⇒ f is scalarly equivalent to a strongly
measurable function g : [0,1]→ `1(c).

`1(c)∗ is w∗-separable =⇒ f = g λ -a.e.

Definition

Two functions f ,g : Ω→ X are scalarly equivalent iff, for each x∗ ∈ X ∗,
we have x∗f = x∗g µ-a.e.



Introduction
Meeting the integrals

Pettis versus McShane in non-separable spaces

First equivalence results
A unified approach
McShane integrability of scalarly null functions

The non-separable case

YES, for instance `1(c), because . . .

f : [0,1]→ `1(c) Pettis integrable =⇒ f is strongly measurable.

Idea of the proof:

`1(c) has the RNP =⇒ f is scalarly equivalent to a strongly
measurable function g : [0,1]→ `1(c).

`1(c)∗ is w∗-separable =⇒ f = g λ -a.e.

Definition

Two functions f ,g : Ω→ X are scalarly equivalent iff, for each x∗ ∈ X ∗,
we have x∗f = x∗g µ-a.e.



Introduction
Meeting the integrals

Pettis versus McShane in non-separable spaces

First equivalence results
A unified approach
McShane integrability of scalarly null functions

McShane ≡ Pettis in non-trivial cases I

Theorem (Di Piazza-Preiss, 2003)

Suppose any of the following conditions holds:

X = c0(Γ) (for any set Γ);

X admits an equivalent uniformly convex norm

(i.e. X is super-reflexive).

Then a function f : [0,1]→ X is McShane integrable
if and only if it is Pettis integrable.

Their techniques . . .

I Projectional resolutions of the
identity (PRIs).
I Reduction to the case of
scalarly null functions
(i.e. scalarly equivalent to 0).

Theorem (Edgar, 1977)

Suppose X is weakly Lindelöf. Then
every scalarly measurable function
f : Ω→ X is scalarly equivalent to a
strongly measurable one g : Ω→ X .
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McShane ≡ Pettis in non-trivial cases II

Problem (Di Piazza-Preiss, 2003)

Are McShane and Pettis integrability equivalent for functions with
values in arbitrary WCG spaces ??

Another partial answer . . .

Theorem (R., 2008)

Let µ be a probability measure defined on a σ -algebra.
Then a function f : [0,1]→ L1(µ) is McShane integrable
if and only if it is Pettis integrable.

Some ideas of the proof . . .

I Reduction to the case µ = usual product probability on {0,1}κ .
I Approximation by L2(µ)-valued functions (using PRIs).
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Hilbert generated spaces and their subspaces

Definition

X is called Hilbert generated iff there exist a Hilbert space H and an
operator T : H → X with dense range.

Examples (Hilbert generated)

Separable spaces.

c0(Γ).

L1(µ).

Moreover . . .

super-reflexive
⇓

subspace of a
Hilbert generated space.

X is a subspace of a Hilbert generated space
m

X admits an equivalent uniformly Gâteaux differentiable norm
m

BX ∗ is a uniform Eberlein compact
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A unified approach

Theorem (Deville-R., 2008)

If X is a subspace of a Hilbert generated space, then a
function f : [0,1]→ X is McShane integrable
if and only if it is Pettis integrable.

Some ideas of the proof . . .

Reduction to the case of scalarly null functions

(X is weakly Lindelöf).

Markushevich basis (xi ,x
∗
i )i∈I of X .

Particular case: f ([0,1])⊂ {axi : i ∈ I , a ∈ R}.

General case: using “strong” Markushevich basis, i.e.

x ∈ span{x∗i (x)xi}i∈I ∀x ∈ X .
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Markushevich basis (xi ,x
∗
i )i∈I of X .

Particular case: f ([0,1])⊂ {axi : i ∈ I , a ∈ R}.

General case: using “strong” Markushevich basis, i.e.

x ∈ span{x∗i (x)xi}i∈I ∀x ∈ X .



Introduction
Meeting the integrals

Pettis versus McShane in non-separable spaces

First equivalence results
A unified approach
McShane integrability of scalarly null functions

A unified approach

Theorem (Deville-R., 2008)

If X is a subspace of a Hilbert generated space, then a
function f : [0,1]→ X is McShane integrable
if and only if it is Pettis integrable.

Some ideas of the proof . . .

Reduction to the case of scalarly null functions

(X is weakly Lindelöf).
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McShane integrability of scalarly null functions

Problem (Musial, 1999)

Scalarly null =⇒ McShane integrable ??

In general, the answer is “no”:

Under CH . . .

. . . there is a scalarly null function f : [0,1]→ `∞(c) which is not
McShane integrable (Di Piazza-Preiss, 2003).
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Idea: use absolutely summing operators

Theorem (Congxin-Xiaobo 1994, Di Piazza-Musial 2001)

A Pettis integrable function f : [0,1]→ X is Bochner integrable if and
only if for each ε > 0 there is a function δ : [0,1]→ R+ such that

n

∑
k=1

∥∥∥(bk −bk−1)f (tk)−
∫ bk

bk−1

f dλ

∥∥∥ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of points
t1, . . . , tn ∈ [0,1] such that[

bk−1,bk

]
⊂

(
tk −δ (tk), tk +δ (tk)

)
.

Application (Marraffa 2004, R. 2006)

If u : X → Y is an absolutely summing operator and f : [0,1]→ X is
McShane integrable, then u ◦ f : [0,1]→ Y is Bochner integrable.
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Some consequences

Example (R., 2008)

Under CH, there exist a weakly Lindelöf determined space X and a
scalarly null function f : [0,1]→ X which is not McShane
integrable.

Example (Deville-R., 2008)

There exist a Radon probability space (Ω,Σ,µ) and a scalarly null
function

f : Ω→ `1(c+)

which is not McShane integrable.
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THANKS FOR YOUR ATTENTION !!

http://personales.upv.es/jorodrui
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