Integration in Hilbert generated Banach spaces

Robert Deville (Bordeaux) and José Rodríguez (Murcia)

http://webs.um.es/joserr

Conference to honor Fernando Bombal Aranjuez – June 8th, 2009

◆□> ◆□> ◆目> ◆目> ◆□> ◆□>

Summary of the talk

- The Pettis integral
- The McShane integral

Pettis versus McShane in non-separable Banach spaces

- First equivalence results
- A unified approach
- McShane integrability of scalarly null functions

(ロ) (同) (E) (E) (E)

The general framework

Integration of functions

 $[0,1] \xrightarrow{f} X$

where:

• the unit interval [0,1] is equipped with the Lebesgue measure,

• X is a Banach space.

The Pettis integral The McShane integral

The Pettis integral

Definition (Pettis, 1938)

 $f:[0,1] \rightarrow X$ is **Pettis integrable** iff

The Pettis integral The McShane integral

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

The Pettis integral

Definition (Pettis, 1938)

- $f:[0,1] \rightarrow X$ is **Pettis integrable** iff
 - x^*f is (Lebesgue) integrable $\forall x^* \in X^*$,

The Pettis integral

Definition (Pettis, 1938)

- $f:[0,1] \rightarrow X$ is **Pettis integrable** iff
 - x^*f is (Lebesgue) integrable $\forall x^* \in X^*$,
 - for each measurable set $A \subset [0,1]$ there is a vector $\int_A f \in X$ such that

$$\left| x^* \left(\int_A f \right) = \int_A x^* f \right| \quad \forall x^* \in X^*.$$

The Pettis integral

Definition (Pettis, 1938)

- $f:[0,1] \rightarrow X$ is **Pettis integrable** iff
 - x^*f is (Lebesgue) integrable $\forall x^* \in X^*$,
 - for each measurable set $A \subset [0,1]$ there is a vector $\int_A f \in X$ such that

$$\left| x^* \left(\int_A f \right) = \int_A x^* f \right| \quad \forall x^* \in X^*$$

The Pettis integral

Definition (Pettis, 1938)

- $f:[0,1] \rightarrow X$ is **Pettis integrable** iff
 - x^*f is (Lebesgue) integrable $\forall x^* \in X^*$,
 - for each measurable set $A \subset [0,1]$ there is a vector $\int_A f \in X$ such that

$$x^*\left(\int_A f\right) = \int_A x^* f \qquad \forall x^* \in X^*.$$

 \blacktriangleright Bochner integrable \Longrightarrow Pettis integrable.

▶ Bochner \equiv Pettis \iff dim $(X) < \infty$.

McShane's approach to the Lebesgue integral

Theorem (McShane, 1969)

 $f:[0,1] \rightarrow \mathbb{R}$ is **(Lebesgue) integrable** if and only if there exists $I \in \mathbb{R}$ with the following property:

McShane's approach to the Lebesgue integral

Theorem (McShane, 1969)

 $f : [0,1] \to \mathbb{R}$ is **(Lebesgue) integrable** if and only if there exists $I \in \mathbb{R}$ with the following property:

for each $\epsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left|\sum_{k=1}^n (b_k - b_{k-1})f(t_k) - I\right| < \varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_1, \ldots, t_n \in [0, 1]$ such that

$$ig[b_{k-1},b_kig] \subset ig(t_k-\delta(t_k),t_k+\delta(t_k)ig).$$

The Pettis integral The McShane integral

McShane's approach to the Lebesgue integral

Theorem (McShane, 1969)

 $f : [0,1] \to \mathbb{R}$ is **(Lebesgue) integrable** if and only if there exists $I \in \mathbb{R}$ with the following property:

for each $\epsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left|\sum_{k=1}^n (b_k - b_{k-1})f(t_k) - I\right| < \varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_1, \ldots, t_n \in [0, 1]$ such that

$$ig[b_{k-1},b_kig] \subset ig(t_k-\delta(t_k),t_k+\delta(t_k)ig).$$

▶ In this case, $I = \int_{[0,1]} f$.

The Pettis integral The McShane integral

An example

The McShane integral for vector-valued functions

Definition (Gordon, 1990)

 $f : [0,1] \to X$ is **McShane integrable**, with integral $x \in X$, iff for each $\varepsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left\|\sum_{k=1}^n(b_k-b_{k-1})f(t_k)-x\right\|<\varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_1, \ldots, t_n \in [0, 1]$ such that

$$ig[b_{k-1},b_kig] \subset ig(t_k-\delta(t_k),t_k+\delta(t_k)ig).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへぐ

The McShane integral for vector-valued functions

Definition (Gordon, 1990)

 $f : [0,1] \to X$ is **McShane integrable**, with integral $x \in X$, iff for each $\varepsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left\|\sum_{k=1}^n(b_k-b_{k-1})f(t_k)-x\right\|<\varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_1, \ldots, t_n \in [0, 1]$ such that

$$ig[b_{k-1},b_kig] \subset ig(t_k-\delta(t_k),t_k+\delta(t_k)ig).$$

Contributors: Di Piazza, Fremlin, Gordon, Mendoza, Musial, Preiss, ...

The Pettis integral The McShane integral

Relationships

Relationships

For any $f : [0,1] \rightarrow X$ we have:

• McShane \equiv Lebesgue when $X = \mathbb{R}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Relationships

- McShane \equiv Lebesgue when $X = \mathbb{R}$.
- Bochner \implies McShane \implies Pettis.

Relationships

- McShane \equiv Lebesgue when $X = \mathbb{R}$.
- Bochner \implies McShane \implies Pettis.
- No one of these arrows can be reversed in general.

(ロ) (回) (三) (三) (三) (三) (○)

Relationships

- McShane \equiv Lebesgue when $X = \mathbb{R}$.
- Bochner \implies McShane \implies Pettis.
- No one of these arrows can be reversed in general.

Relationships

For any $f : [0,1] \rightarrow X$ we have:

- McShane \equiv Lebesgue when $X = \mathbb{R}$.
- Bochner \implies McShane \implies Pettis.
- No one of these arrows can be reversed in general.

Theorem (Gordon 1990, Fremlin-Mendoza 1994)

If X is **separable**, then for any $f : [0,1] \rightarrow X$ we have:

McShane integrable \iff Pettis integrable.

Relationships

For any $f : [0,1] \rightarrow X$ we have:

- McShane \equiv Lebesgue when $X = \mathbb{R}$.
- Bochner \implies McShane \implies Pettis.
- No one of these arrows can be reversed in general.

Theorem (Gordon 1990, Fremlin-Mendoza 1994)

If X is **separable**, then for any $f : [0,1] \rightarrow X$ we have:

McShane integrable \iff Pettis integrable.

• Key: strong measurability \equiv scalar measurability if X is separable.

Meeting the integrals Pettis versus McShane in non-separable Banach spaces	First equivalence results
	A unified approach
	McShane integrability of scalarly null functions

Question

Are there non-separable Banach spaces for which

$McShane \equiv Pettis \quad ?????$

●●● ● ▲田 ● ▲田 ● ▲ ● ●

Meeting the integrals Pettis versus McShane in non-separable Banach spaces	First equivalence results
	A unified approach
	McShane integrability of scalarly null functions

Question

Are there non-separable Banach spaces for which

 $McShane \equiv Pettis \quad ?????$

YES, for instance $\ell^1(\mathfrak{c})$, because ...

 $f:[0,1] \rightarrow \ell^1(\mathfrak{c})$ Pettis integrable $\Longrightarrow f$ is strongly measurable.

Meeting the integrals Pettis versus McShane in non-separable Banach spaces	First equivalence results
	A unified approach
	McShane integrability of scalarly null functions

Question

Are there non-separable Banach spaces for which

$$McShane \equiv Pettis \quad ?????$$

YES, for instance $\ell^1(\mathfrak{c})$, because ...

 $f:[0,1] \rightarrow \ell^1(\mathfrak{c})$ Pettis integrable $\Longrightarrow f$ is strongly measurable.

Indeed:

▶ $\ell^1(\mathfrak{c}) \text{ RNP} \Longrightarrow f$ is scalarly equivalent to a strongly measurable $g : [0,1] \to \ell^1(\mathfrak{c})$. ▶ $\ell^1(\mathfrak{c})^* w^*$ -separable $\Longrightarrow f = g$ a.e.

Meeting the integrals Pettis versus McShane in non-separable Banach spaces	First equivalence results
	A unified approach
	McShane integrability of scalarly null functions

Question

Are there non-separable Banach spaces for which

$$McShane \equiv Pettis \quad ?????$$

YES, for instance $\ell^1(\mathfrak{c})$, because . . .

 $f:[0,1] \rightarrow \ell^1(\mathfrak{c})$ Pettis integrable $\Longrightarrow f$ is strongly measurable.

Indeed:

▶ $\ell^1(\mathfrak{c}) \text{ RNP} \Longrightarrow f$ is scalarly equivalent to a strongly measurable $g : [0,1] \to \ell^1(\mathfrak{c})$. ▶ $\ell^1(\mathfrak{c})^* w^*$ -separable $\Longrightarrow f = g$ a.e. $f,g:[0,1] \to X$ are scalarly equivalent iff for each $x^* \in X^*$, we have: $x^*f = x^*g$ a.e.

First equivalence results A unified approach McShane integrability of scalarly null functions

イロン イロン イヨン イヨン 三日

$McShane \equiv Pettis in non-trivial cases I$

Theorem (Di Piazza-Preiss, 2003)

Suppose any of the following conditions holds:

First equivalence results A unified approach McShane integrability of scalarly null functions

イロン イロン イヨン イヨン 三日

$McShane \equiv Pettis in non-trivial cases I$

Theorem (Di Piazza-Preiss, 2003)

Suppose any of the following conditions holds:

• $X = c_0(\Gamma)$ (for any set Γ);

First equivalence results A unified approach McShane integrability of scalarly null functions

$McShane \equiv Pettis in non-trivial cases I$

Theorem (Di Piazza-Preiss, 2003)

Suppose any of the following conditions holds:

- $X = c_0(\Gamma)$ (for any set Γ);
- X admits an equivalent uniformly convex norm

(i.e. X is super-reflexive).

$McShane \equiv Pettis in non-trivial cases I$

Theorem (Di Piazza-Preiss, 2003)

Suppose any of the following conditions holds:

• $X = c_0(\Gamma)$ (for any set Γ);

• X admits an equivalent uniformly convex norm (i.e. X is super-reflexive).

Then for any $f : [0,1] \rightarrow X$ we have:

McShane integrable \iff Pettis integrable.

イロト (部) (日) (日) (日) (日)

$McShane \equiv Pettis in non-trivial cases I$

Theorem (Di Piazza-Preiss, 2003)

Suppose any of the following conditions holds:

• $X = c_0(\Gamma)$ (for any set Γ);

• X admits an equivalent uniformly convex norm (i.e. X is super-reflexive).

Then for any $f : [0,1] \rightarrow X$ we have:

McShane integrable \iff Pettis integrable.

Their techniques ...

 Projectional resolutions of the identity (PRI) on X.
Reduction to the case of scalarly null functions (i.e. scalarly equivalent to 0).

$McShane \equiv Pettis in non-trivial cases I$

Theorem (Di Piazza-Preiss, 2003)

Suppose any of the following conditions holds:

• $X = c_0(\Gamma)$ (for any set Γ);

• X admits an equivalent uniformly convex norm (i.e. X is super-reflexive).

Then for any $f : [0,1] \rightarrow X$ we have:

McShane integrable \iff Pettis integrable.

Their techniques ...

 Projectional resolutions of the identity (PRI) on X.
Reduction to the case of scalarly null functions (i.e. scalarly equivalent to 0).

Theorem (Edgar, 1977)

If X is weakly Lindelöf, then every scalarly measurable $f : [0,1] \rightarrow X$ is scalarly equivalent to a strongly measurable $g : [0,1] \rightarrow X$.

200

First equivalence results A unified approach McShane integrability of scalarly null functions

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへの

$McShane \equiv Pettis in non-trivial cases II$

Problem (Di Piazza-Preiss, 2003)

Are McShane and Pettis integrability equivalent for functions with values in arbitrary **WCG** spaces ?????

First equivalence results A unified approach McShane integrability of scalarly null functions

$McShane \equiv Pettis in non-trivial cases II$

Problem (Di Piazza-Preiss, 2003)

Are McShane and Pettis integrability equivalent for functions with values in arbitrary **WCG** spaces ?????

Another partial answer ...

Theorem (R., 2008)

Let μ be a probability measure defined on a σ -algebra. Then for any $f : [0,1] \rightarrow L^{1}(\mu)$ we have:

McShane integrable \iff Pettis integrable.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Hilbert generated spaces and their subspaces

Definition

X is called **Hilbert generated** iff there exist a Hilbert space H and an operator $T: H \rightarrow X$ with dense range.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Hilbert generated spaces and their subspaces

Definition

X is called **Hilbert generated** iff there exist a Hilbert space H and an operator $T: H \rightarrow X$ with dense range.

Examples (Hilbert generated)

- Separable spaces.
- c₀(Γ).
- *L*¹(μ).

Hilbert generated spaces and their subspaces

Definition

X is called **Hilbert generated** iff there exist a Hilbert space H and an operator $T: H \rightarrow X$ with dense range.

Examples (Hilbert generated)

- Separable spaces.
- c₀(Γ).
- *L*¹(μ).

Hilbert generated spaces and their subspaces

Definition

X is called **Hilbert generated** iff there exist a Hilbert space H and an operator $T: H \rightarrow X$ with dense range.

X is a subspace of a Hilbert generated space \uparrow X admits an equivalent uniformly Gâteaux differentiable norm \uparrow B_{X^*} is a uniform Eberlein compact

A unified approach

Theorem (Deville-R., Israel J. Math. 2010)

If X is a subspace of a Hilbert generated space, then for any $f:[0,1] \to X$ we have

 $\mathsf{McShane integrable} \iff \mathsf{Pettis integrable}.$

A unified approach

Theorem (Deville-R., Israel J. Math. 2010)

If X is a subspace of a Hilbert generated space, then for any $f:[0,1] \rightarrow X$ we have

McShane integrable \iff Pettis integrable.

Some ideas of the proof ...

- Reduction to the case of scalarly null functions.
- <u>Markushevich basis</u> $(x_i, x_i^*)_{i \in I}$ of X.
- Particular case: $f([0,1]) \subset \{\lambda x_i\}_{i \in I, \lambda \in \mathbb{R}}$.
- General case: using a strong Markushevich basis, i.e.

$$x \in \overline{\operatorname{span}}\{x_i^*(x)x_i\}_{i \in I} \quad \forall x \in X$$

First equivalence results A unified approach McShane integrability of scalarly null functions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

McShane integrability of scalarly null functions

Problem (Musial, 1999)

Scalarly null \implies McShane integrable ?????

McShane integrability of scalarly null functions

Problem (Musial, 1999)

Scalarly null \implies McShane integrable ?????

In general, the answer is "NO":

Under **CH** there exist...

- ... a scalarly null $f : [0,1] \rightarrow \ell^{\infty}(c)$ which is not McShane integrable (Di Piazza-Preiss, 2003),
- ... a WLD space X and a scalarly null f : [0,1] → X which is not McShane integrable (R., 2008).

McShane integrability of scalarly null functions

Problem (Musial, 1999)

Scalarly null \implies McShane integrable ?????

In general, the answer is "NO":

Under **CH** there exist...

- ... a scalarly null $f : [0,1] \rightarrow \ell^{\infty}(c)$ which is not McShane integrable (Di Piazza-Preiss, 2003),
- ... a WLD space X and a scalarly null f : [0,1] → X which is not McShane integrable (R., 2008).

ZFC Example (Deville-R., 2010) based on Fremlin (1987)

There exist a Radon probability space Ω and a scalarly null $f: \Omega \to \ell^1(\mathfrak{c}^+)$ which is not McShane integrable.