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The ordinary functional analyst is naturally impatient with the
multiplicity of definitions of ‘integral’ which have been proposed
for vector-valued functions, and would prefer to have a single
canonical one for general use.
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if for each € > 0 there is a function & : [0,1] — R" such that

i(bi— b,',l)f(t,') —OC’ < €
i=1

for every partition 0 = by < by < --- < b, =1 and every choice of
points t; € [b,'_l,b,'] such that [b,'_l,b,'] C [t,' = 5(t;), t,’—|-6(t,')].
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In this case, .
a:/ F dA.
0
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If X is separable, then a function f : [0,1] — X is McShane
integrable if and only if it is Pettis integrable.

Key of the proof

By Pettis’ measurability theorem we can write

f:g+ha h= Z\!XHXA,,)
ne

where g is Bochner integrable, x, € X and Aj,Ap,... are pairwise
disjoint measurable subsets of [0, 1].

y
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Example: /1(T), where I is any uncountable set

Any Pettis integrable function f :[0,1] — ¢1(T") is strongly
measurable !

-

Theorem (Di Piazza-Preiss, 2003)

If either X admits an equivalent uniformly convex norm or
X = co(I") (for some non-empty set IN),

then a function f : [0,1] — X is McShane integrable

if and only if it is Pettis integrable.
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@ Projectional resolutions of the identity (PRIs).

@ Reduction to the case of scalarly null functions.

A function f : [0,1] — X is scalarly null if
for each x* € X* we have x*f =0 a.e.

Theorem (Lewis 1970 and Edgar 1977)

Suppose X is weakly compactly generated (WCG).

Let f:]0,1] — X be a scalarly measurable function.

Then there is a strongly measurable function g : [0,1] — X such
that f — g is scalarly null.

Problem (Di Piazza-Preiss, 2003)

Are the McShane and Pettis integrals equivalent for functions
taking values in arbitrary WCG spaces?
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In general, the answer is “no”:
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... there exist scalarly null functions f : [0,1] — ¢*(c) which are
not McShane integrable (Di Piazza-Preiss, 2003).

Example (R., 2006)

Under CH, there exist a weakly Lindel6f determined (WLD)
Banach space X and a scalarly null function f: [0,1] — X
which is not McShane integrable.

» X is a WLD space such that (Bx-,w*) admits a Radon measure
having non-separable support (Kalenda-Plebanek, 2002).
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