On the equivalence of McShane and Pettis integrability in non-separable Banach spaces

José Rodríguez

University of Valencia (Spain)

Edward Marczewski Centennial Conference Bedlewo – September 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

[0,1] equipped with the Lebesgue measure $\boldsymbol{\lambda}$

[0,1] equipped with the Lebesgue measure λ

We consider functions of the form

 $f:[0,1] \rightarrow X$

[0,1] equipped with the Lebesgue measure λ

We consider functions of the form

 $f:[0,1] \rightarrow X$

Fremlin-Mendoza (1994)

The ordinary functional analyst is naturally impatient with the multiplicity of definitions of 'integral' which have been proposed for vector-valued functions, and would prefer to have a single canonical one for general use.

$f:[0,1] \rightarrow \mathbb{R}$ is Kurzweil-Henstock integrable,

 $f:[0,1] \rightarrow \mathbb{R}$ is Kurzweil-Henstock integrable, with integral $\alpha \in \mathbb{R}$,

 $f:[0,1] \to \mathbb{R}$ is Kurzweil-Henstock integrable, with integral $\alpha \in \mathbb{R}$, if for each $\varepsilon > 0$ there is a function $\delta:[0,1] \to \mathbb{R}^+$ such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つくぐ

 $f:[0,1] \to \mathbb{R}$ is Kurzweil-Henstock integrable, with integral $\alpha \in \mathbb{R}$, if for each $\varepsilon > 0$ there is a function $\delta:[0,1] \to \mathbb{R}^+$ such that

$$\left|\sum_{i=1}^n (b_i - b_{i-1})f(t_i) - \alpha\right| < \varepsilon$$

 $f:[0,1] \to \mathbb{R}$ is Kurzweil-Henstock integrable, with integral $\alpha \in \mathbb{R}$, if for each $\varepsilon > 0$ there is a function $\delta:[0,1] \to \mathbb{R}^+$ such that

$$\left|\sum_{i=1}^{n}(b_{i}-b_{i-1})f(t_{i})-\alpha\right|<\varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_i \in [b_{i-1}, b_i]$

 $f:[0,1] \to \mathbb{R}$ is Kurzweil-Henstock integrable, with integral $\alpha \in \mathbb{R}$, if for each $\varepsilon > 0$ there is a function $\delta:[0,1] \to \mathbb{R}^+$ such that

$$\left|\sum_{i=1}^n (b_i - b_{i-1})f(t_i) - \alpha\right| < \varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_i \in [b_{i-1}, b_i]$ such that $[b_{i-1}, b_i] \subset [t_i - \delta(t_i), t_i + \delta(t_i)]$.

 $f:[0,1] \rightarrow \mathbb{R}$ is Lebesgue integrable if and only if

 $f:[0,1] \rightarrow \mathbb{R}$ is **Lebesgue integrable** if and only if there exists $\alpha \in \mathbb{R}$ with the following property:

 $f:[0,1] \rightarrow \mathbb{R}$ is **Lebesgue integrable** if and only if there exists $\alpha \in \mathbb{R}$ with the following property:

for each $\epsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

 $f:[0,1] \rightarrow \mathbb{R}$ is **Lebesgue integrable** if and only if there exists $\alpha \in \mathbb{R}$ with the following property:

for each $\epsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left|\sum_{i=1}^{n}(b_{i}-b_{i-1})f(t_{i})-\alpha\right|<\varepsilon$$

 $f:[0,1] \to \mathbb{R}$ is **Lebesgue integrable** if and only if there exists $\alpha \in \mathbb{R}$ with the following property:

for each $\epsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left|\sum_{i=1}^{n} (b_i - b_{i-1}) f(t_i) - \alpha\right| < \varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_1, \ldots, t_n \in [0, 1]$

 $f:[0,1] \to \mathbb{R}$ is **Lebesgue integrable** if and only if there exists $\alpha \in \mathbb{R}$ with the following property:

for each $\epsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left|\sum_{i=1}^{n} (b_i - b_{i-1})f(t_i) - \alpha\right| < \varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_1, \ldots, t_n \in [0, 1]$ such that $[b_{i-1}, b_i] \subset [t_i - \delta(t_i), t_i + \delta(t_i)]$.

 $f:[0,1] \to \mathbb{R}$ is **Lebesgue integrable** if and only if there exists $\alpha \in \mathbb{R}$ with the following property:

for each $\epsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left|\sum_{i=1}^{n} (b_i - b_{i-1})f(t_i) - \alpha\right| < \varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_1, \ldots, t_n \in [0,1]$ such that $[b_{i-1}, b_i] \subset [t_i - \delta(t_i), t_i + \delta(t_i)]$. In this case,

$$lpha = \int_0^1 f \ d\lambda.$$

A function $f : [0,1] \rightarrow X$ is **McShane integrable**, with integral $x \in X$,

A function $f : [0,1] \to X$ is **McShane integrable**, with integral $x \in X$, if for each $\varepsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

A function $f : [0,1] \rightarrow X$ is **McShane integrable**, with integral $x \in X$, if for each $\varepsilon > 0$ there is a function $\delta : [0,1] \rightarrow \mathbb{R}^+$ such that

$$\left\|\sum_{i=1}^n (b_i - b_{i-1})f(t_i) - x\right\| < \varepsilon$$

A function $f : [0,1] \to X$ is **McShane integrable**, with integral $x \in X$, if for each $\varepsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left\|\sum_{i=1}^n (b_i - b_{i-1})f(t_i) - x\right\| < \varepsilon$$

for every partition $0 = b_0 < b_1 < \dots < b_n = 1$ and every choice of points $t_1, \dots, t_n \in [0,1]$

A function $f : [0,1] \to X$ is **McShane integrable**, with integral $x \in X$, if for each $\varepsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left\|\sum_{i=1}^n (b_i - b_{i-1})f(t_i) - x\right\| < \varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_1, \ldots, t_n \in [0, 1]$ such that $[b_{i-1}, b_i] \subset [t_i - \delta(t_i), t_i + \delta(t_i)]$.

A function $f : [0,1] \to X$ is **McShane integrable**, with integral $x \in X$, if for each $\varepsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left\|\sum_{i=1}^n (b_i - b_{i-1})f(t_i) - x\right\| < \varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_1, \ldots, t_n \in [0, 1]$ such that $[b_{i-1}, b_i] \subset [t_i - \delta(t_i), t_i + \delta(t_i)]$.

It is known (Gordon 1990, Fremlin-Mendoza 1994, Fremlin 1995):

A function $f : [0,1] \to X$ is **McShane integrable**, with integral $x \in X$, if for each $\varepsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left\|\sum_{i=1}^n (b_i - b_{i-1})f(t_i) - x\right\| < \varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_1, \ldots, t_n \in [0, 1]$ such that $[b_{i-1}, b_i] \subset [t_i - \delta(t_i), t_i + \delta(t_i)]$.

It is known (Gordon 1990, Fremlin-Mendoza 1994, Fremlin 1995):

• Bochner \implies McShane \implies Pettis

A function $f : [0,1] \to X$ is **McShane integrable**, with integral $x \in X$, if for each $\varepsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left\|\sum_{i=1}^n (b_i - b_{i-1})f(t_i) - x\right\| < \varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_1, \ldots, t_n \in [0, 1]$ such that $[b_{i-1}, b_i] \subset [t_i - \delta(t_i), t_i + \delta(t_i)]$.

It is known (Gordon 1990, Fremlin-Mendoza 1994, Fremlin 1995):

- Bochner \implies McShane \implies Pettis
- The reverse implications are not true in general.

A function $f : [0,1] \to X$ is **McShane integrable**, with integral $x \in X$, if for each $\varepsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left\|\sum_{i=1}^n (b_i - b_{i-1})f(t_i) - x\right\| < \varepsilon$$

for every partition $0 = b_0 < b_1 < \cdots < b_n = 1$ and every choice of points $t_1, \ldots, t_n \in [0, 1]$ such that $[b_{i-1}, b_i] \subset [t_i - \delta(t_i), t_i + \delta(t_i)]$.

It is known (Gordon 1990, Fremlin-Mendoza 1994, Fremlin 1995):

- Bochner \implies McShane \implies Pettis
- The reverse implications are not true in general.

If X is separable,

If X is **separable**, then a function $f : [0,1] \rightarrow X$ is McShane integrable if and only if it is Pettis integrable.

If X is **separable**, then a function $f : [0,1] \rightarrow X$ is McShane integrable if and only if it is Pettis integrable.

Key of the proof

If X is **separable**, then a function $f : [0,1] \rightarrow X$ is McShane integrable if and only if it is Pettis integrable.

Key of the proof

By Pettis' measurability theorem we can write

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

If X is **separable**, then a function $f : [0,1] \rightarrow X$ is McShane integrable if and only if it is Pettis integrable.

Key of the proof

By Pettis' measurability theorem we can write

$$f = g + h, \quad h = \sum_{n \in \mathbb{N}} x_n \chi_{A_n},$$

If X is **separable**, then a function $f : [0,1] \rightarrow X$ is McShane integrable if and only if it is Pettis integrable.

Key of the proof

By Pettis' measurability theorem we can write

$$f = g + h, \quad h = \sum_{n \in \mathbb{N}} x_n \chi_{A_n},$$

where g is **Bochner** integrable,

If X is **separable**, then a function $f : [0,1] \rightarrow X$ is McShane integrable if and only if it is Pettis integrable.

Key of the proof

By Pettis' measurability theorem we can write

$$f = g + h, \quad h = \sum_{n \in \mathbb{N}} x_n \chi_{A_n},$$

where g is **Bochner** integrable, $x_n \in X$ and A_1, A_2, \ldots are pairwise disjoint measurable subsets of [0, 1].

Are there **non-separable** Banach spaces for which

Question

McShane \equiv Pettis ??

Are there non-separable Banach spaces for which

 $\mathsf{McShane}\ \equiv\ \mathsf{Pettis}\ \ref{eq:matrix}$

Example: $\ell^1(\Gamma)$, where Γ is any uncountable set

◆□> <圖> < E> < E> E のQの

Are there non-separable Banach spaces for which

McShane \equiv Pettis ??

Example: $\ell^1(\Gamma)$, where Γ is any uncountable set

Any Pettis integrable function $f : [0,1] \rightarrow \ell^1(\Gamma)$ is **strongly** measurable !

Are there non-separable Banach spaces for which

McShane \equiv Pettis ??

Example: $\ell^1(\Gamma)$, where Γ is any uncountable set

Any Pettis integrable function $f : [0,1] \rightarrow \ell^1(\Gamma)$ is **strongly** measurable !

Theorem (Di Piazza-Preiss, 2003)

Are there non-separable Banach spaces for which

McShane \equiv Pettis ??

Example: $\ell^1(\Gamma)$, where Γ is any uncountable set

Any Pettis integrable function $f : [0,1] \rightarrow \ell^1(\Gamma)$ is **strongly** measurable !

Theorem (Di Piazza-Preiss, 2003)

If either X admits an equivalent uniformly convex norm

Are there non-separable Banach spaces for which

McShane \equiv Pettis ??

Example: $\ell^1(\Gamma)$, where Γ is any uncountable set

Any Pettis integrable function $f : [0,1] \rightarrow \ell^1(\Gamma)$ is **strongly** measurable !

Theorem (Di Piazza-Preiss, 2003)

If either X admits an equivalent uniformly convex norm or $X = c_0(\Gamma)$ (for some non-empty set Γ),

Are there non-separable Banach spaces for which

McShane \equiv Pettis ??

Example: $\ell^1(\Gamma)$, where Γ is any uncountable set

Any Pettis integrable function $f : [0,1] \rightarrow \ell^1(\Gamma)$ is **strongly** measurable !

Theorem (Di Piazza-Preiss, 2003)

If either X admits an equivalent **uniformly convex** norm or $X = c_0(\Gamma)$ (for some non-empty set Γ), then a function $f : [0,1] \to X$ is McShane integrable if and only if it is Pettis integrable.

・ロト ・個ト ・ヨト ・ヨト ・ヨー のへで

• Projectional resolutions of the identity (PRIs).

◆□> <回> <E> <E> <E> <</p>

- Projectional resolutions of the identity (PRIs).
- Reduction to the case of scalarly null functions.

- Projectional resolutions of the identity (PRIs).
- Reduction to the case of scalarly null functions.

- Projectional resolutions of the identity (PRIs).
- Reduction to the case of scalarly null functions.

A function $f:[0,1] \rightarrow X$ is scalarly null if

- Projectional resolutions of the identity (PRIs).
- Reduction to the case of scalarly null functions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

A function $f : [0,1] \rightarrow X$ is scalarly null if for each $x^* \in X^*$ we have $x^* f = 0$ a.e.

- Projectional resolutions of the identity (PRIs).
- Reduction to the case of scalarly null functions.

A function $f : [0,1] \to X$ is scalarly null if for each $x^* \in X^*$ we have $x^* f = 0$ a.e.

Theorem (Lewis 1970 and Edgar 1977)

Suppose X is weakly compactly generated (WCG).

- Projectional resolutions of the identity (PRIs).
- Reduction to the case of scalarly null functions.

A function $f : [0,1] \rightarrow X$ is scalarly null if for each $x^* \in X^*$ we have $x^* f = 0$ a.e.

Theorem (Lewis 1970 and Edgar 1977)

Suppose X is weakly compactly generated (WCG). Let $f : [0,1] \rightarrow X$ be a scalarly measurable function.

- Projectional resolutions of the identity (PRIs).
- Reduction to the case of scalarly null functions.

A function $f : [0,1] \rightarrow X$ is scalarly null if for each $x^* \in X^*$ we have $x^* f = 0$ a.e.

Theorem (Lewis 1970 and Edgar 1977)

Suppose X is weakly compactly generated (WCG). Let $f : [0,1] \to X$ be a scalarly measurable function. Then there is a **strongly measurable** function $g : [0,1] \to X$ such that f - g is scalarly null.

- Projectional resolutions of the identity (PRIs).
- Reduction to the case of scalarly null functions.

A function $f : [0,1] \rightarrow X$ is scalarly null if for each $x^* \in X^*$ we have $x^* f = 0$ a.e.

Theorem (Lewis 1970 and Edgar 1977)

Suppose X is weakly compactly generated (WCG). Let $f : [0,1] \to X$ be a scalarly measurable function. Then there is a **strongly measurable** function $g : [0,1] \to X$ such that f - g is scalarly null.

Problem (Di Piazza-Preiss, 2003)

Are the McShane and Pettis integrals equivalent for functions taking values in arbitrary WCG spaces?

scalarly null \Longrightarrow McShane integrable ??

◆□> <個> < E> < E> E のQ@

scalarly null \implies McShane integrable ??

In general, the answer is "no":

scalarly null \implies McShane integrable ??

In general, the answer is "no":

Under **CH** . . .

... there exist scalarly null functions $f : [0,1] \rightarrow \ell^{\infty}(\mathfrak{c})$ which are **not** McShane integrable (Di Piazza-Preiss, 2003).

scalarly null \implies McShane integrable ??

In general, the answer is "no":

Under **CH** . . .

... there exist scalarly null functions $f : [0,1] \rightarrow \ell^{\infty}(\mathfrak{c})$ which are **not** McShane integrable (Di Piazza-Preiss, 2003).

Example (R., 2006)

Under CH,

scalarly null \implies McShane integrable ??

In general, the answer is "no":

Under **CH** . . .

... there exist scalarly null functions $f : [0,1] \rightarrow \ell^{\infty}(\mathfrak{c})$ which are **not** McShane integrable (Di Piazza-Preiss, 2003).

Example (R., 2006)

Under CH, there exist a **weakly Lindelöf determined** (WLD) Banach space X

scalarly null \implies McShane integrable ??

In general, the answer is "no":

Under **CH** . . .

... there exist scalarly null functions $f : [0,1] \rightarrow \ell^{\infty}(\mathfrak{c})$ which are **not** McShane integrable (Di Piazza-Preiss, 2003).

Example (R., 2006)

Under CH, there exist a **weakly Lindelöf determined** (WLD) Banach space X and a scalarly null function $f : [0,1] \rightarrow X$ which is not McShane integrable.

scalarly null \implies McShane integrable ??

In general, the answer is "no":

Under **CH** . . .

... there exist scalarly null functions $f : [0,1] \rightarrow \ell^{\infty}(\mathfrak{c})$ which are **not** McShane integrable (Di Piazza-Preiss, 2003).

Example (R., 2006)

Under CH, there exist a **weakly Lindelöf determined** (WLD) Banach space X and a scalarly null function $f : [0,1] \rightarrow X$ which is not McShane integrable.

► X is a WLD space such that (B_{X^*}, w^*) admits a Radon measure having **non-separable** support (Kalenda-Plebanek, 2002).

Let μ be a finite, non-negative and countably additive measure defined on a σ -algebra.

Let μ be a finite, non-negative and countably additive measure defined on a σ -algebra.

Then a function $f : [0,1] \rightarrow L^{1}(\mu)$ is McShane integrable if and only if it is Pettis integrable.

Let μ be a finite, non-negative and countably additive measure defined on a σ -algebra. Then a function $f : [0,1] \rightarrow L^1(\mu)$ is McShane integrable if and only if it is Pettis integrable.

Let μ be a finite, non-negative and countably additive measure defined on a σ -algebra. Then a function $f : [0,1] \rightarrow L^1(\mu)$ is McShane integrable if and only if it is Pettis integrable.

Some ideas used in the proof

• Reduction to the case of scalarly null functions.

Let μ be a finite, non-negative and countably additive measure defined on a σ -algebra. Then a function $f : [0,1] \rightarrow L^{1}(\mu)$ is McShane integrable if and only if it is Pettis integrable.

- Reduction to the case of scalarly null functions.
- Reduction to the case $\mu = \lambda_{\kappa} =$ usual product probability on $\{0,1\}^{\kappa}$ for uncountable κ (via Maharam's theorem).

Let μ be a finite, non-negative and countably additive measure defined on a σ -algebra. Then a function $f : [0,1] \rightarrow L^1(\mu)$ is McShane integrable if and only if it is Pettis integrable.

- Reduction to the case of scalarly null functions.
- Reduction to the case μ = λ_κ = usual product probability on {0,1}^κ for uncountable κ (via Maharam's theorem).
- Approximation of $L^1(\lambda_{\kappa})$ -valued scalarly null functions by $L^2(\lambda_{\kappa})$ -valued ones (using PRIs on $L^1(\lambda_{\kappa})$).

Let μ be a finite, non-negative and countably additive measure defined on a σ -algebra. Then a function $f : [0,1] \rightarrow L^1(\mu)$ is McShane integrable if and only if it is Pettis integrable.

- Reduction to the case of scalarly null functions.
- Reduction to the case μ = λ_κ = usual product probability on {0,1}^κ for uncountable κ (via Maharam's theorem).
- Approximation of $L^1(\lambda_{\kappa})$ -valued scalarly null functions by $L^2(\lambda_{\kappa})$ -valued ones (using PRIs on $L^1(\lambda_{\kappa})$).
- Convergence theorem for the McShane integral.

Let μ be a finite, non-negative and countably additive measure defined on a σ -algebra. Then a function $f : [0,1] \rightarrow L^1(\mu)$ is McShane integrable if and only if it is Pettis integrable.

- Reduction to the case of scalarly null functions.
- Reduction to the case μ = λ_κ = usual product probability on {0,1}^κ for uncountable κ (via Maharam's theorem).
- Approximation of $L^1(\lambda_{\kappa})$ -valued scalarly null functions by $L^2(\lambda_{\kappa})$ -valued ones (using PRIs on $L^1(\lambda_{\kappa})$).
- Convergence theorem for the McShane integral.

References

- L. Di Piazza and D. Preiss, *When do McShane and Pettis integrals coincide?*, Illinois J. Math. **47** (2003).
- G.A. Edgar, *Measurability in a Banach space*, Indiana Univ. Math. J. **26** (1977).
- D.H. Fremlin, *The generalized McShane integral*, Illinois J. Math. **39** (1995).
- D.H. Fremlin and J. Mendoza, *On the integration of vector-valued functions*, Illinois J. Math. **38** (1994).
- R.A. Gordon, The McShane integral of Banach-valued functions, Illinois J. Math. 34 (1990).
- E.J. McShane, A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals, Mem. Amer. Math. Soc., No. 88, AMS, 1969.
- G. Plebanek, Convex Corson compacta and Radon measures, Fund. Math. 175 (2002). A □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >