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(X ,‖ · ‖)≡ Banach space

[0,1] equipped with the Lebesgue measure λ

We consider functions of the form

f : [0,1]→ X

Fremlin-Mendoza (1994)

The ordinary functional analyst is naturally impatient with the
multiplicity of definitions of ‘integral’ which have been proposed
for vector-valued functions, and would prefer to have a single
canonical one for general use.
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Definition

f : [0,1]→ R is Kurzweil-Henstock integrable,

with integral α ∈ R,
if for each ε > 0 there is a function δ : [0,1]→ R+ such that∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points ti ∈ [bi−1,bi ] such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].



Definition

f : [0,1]→ R is Kurzweil-Henstock integrable,
with integral α ∈ R,

if for each ε > 0 there is a function δ : [0,1]→ R+ such that∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points ti ∈ [bi−1,bi ] such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].



Definition

f : [0,1]→ R is Kurzweil-Henstock integrable,
with integral α ∈ R,
if for each ε > 0 there is a function δ : [0,1]→ R+ such that

∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points ti ∈ [bi−1,bi ] such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].



Definition

f : [0,1]→ R is Kurzweil-Henstock integrable,
with integral α ∈ R,
if for each ε > 0 there is a function δ : [0,1]→ R+ such that∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points ti ∈ [bi−1,bi ] such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].



Definition

f : [0,1]→ R is Kurzweil-Henstock integrable,
with integral α ∈ R,
if for each ε > 0 there is a function δ : [0,1]→ R+ such that∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points ti ∈ [bi−1,bi ]

such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].



Definition

f : [0,1]→ R is Kurzweil-Henstock integrable,
with integral α ∈ R,
if for each ε > 0 there is a function δ : [0,1]→ R+ such that∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points ti ∈ [bi−1,bi ] such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].



Theorem (McShane, 1969)
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α =
∫ 1

0
f dλ .



Theorem (McShane, 1969)

f : [0,1]→ R is Lebesgue integrable if and only if
there exists α ∈ R with the following property:

for each ε > 0 there is a function δ : [0,1]→ R+ such that∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points t1, . . . , tn ∈ [0,1] such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].
In this case,

α =
∫ 1

0
f dλ .



Theorem (McShane, 1969)

f : [0,1]→ R is Lebesgue integrable if and only if
there exists α ∈ R with the following property:

for each ε > 0 there is a function δ : [0,1]→ R+ such that

∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points t1, . . . , tn ∈ [0,1] such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].
In this case,

α =
∫ 1

0
f dλ .



Theorem (McShane, 1969)

f : [0,1]→ R is Lebesgue integrable if and only if
there exists α ∈ R with the following property:

for each ε > 0 there is a function δ : [0,1]→ R+ such that∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points t1, . . . , tn ∈ [0,1] such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].
In this case,

α =
∫ 1

0
f dλ .



Theorem (McShane, 1969)

f : [0,1]→ R is Lebesgue integrable if and only if
there exists α ∈ R with the following property:

for each ε > 0 there is a function δ : [0,1]→ R+ such that∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points t1, . . . , tn ∈ [0,1]

such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].
In this case,

α =
∫ 1

0
f dλ .



Theorem (McShane, 1969)

f : [0,1]→ R is Lebesgue integrable if and only if
there exists α ∈ R with the following property:

for each ε > 0 there is a function δ : [0,1]→ R+ such that∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points t1, . . . , tn ∈ [0,1] such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].

In this case,

α =
∫ 1

0
f dλ .



Theorem (McShane, 1969)

f : [0,1]→ R is Lebesgue integrable if and only if
there exists α ∈ R with the following property:

for each ε > 0 there is a function δ : [0,1]→ R+ such that∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points t1, . . . , tn ∈ [0,1] such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].
In this case,

α =
∫ 1

0
f dλ .



Definition

A function f : [0,1]→ X is McShane integrable,
with integral x ∈ X ,

if for each ε > 0 there is a function δ : [0,1]→ R+ such that∥∥∥ n

∑
i=1

(bi −bi−1)f (ti )−x
∥∥∥ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points t1, . . . , tn ∈ [0,1] such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].

It is known (Gordon 1990, Fremlin-Mendoza 1994, Fremlin 1995):

Bochner =⇒ McShane =⇒ Pettis

The reverse implications are not true in general.
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Theorem (Gordon 1990, Fremlin-Mendoza 1994)

If X is separable,

then a function f : [0,1]→ X is McShane
integrable if and only if it is Pettis integrable.

Key of the proof

By Pettis’ measurability theorem we can write

f = g +h, h = ∑
n∈N

xnχAn ,

where g is Bochner integrable, xn ∈ X and A1,A2, . . . are pairwise
disjoint measurable subsets of [0,1].
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Question

Are there non-separable Banach spaces for which

McShane ≡ Pettis ??

Example: `1(Γ), where Γ is any uncountable set

Any Pettis integrable function f : [0,1]→ `1(Γ) is strongly
measurable !

Theorem (Di Piazza-Preiss, 2003)

If either X admits an equivalent uniformly convex norm or
X = c0(Γ) (for some non-empty set Γ),
then a function f : [0,1]→ X is McShane integrable
if and only if it is Pettis integrable.
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Techniques used by Di Piazza and Preiss . . .

Projectional resolutions of the identity (PRIs).

Reduction to the case of scalarly null functions.

A function f : [0,1]→ X is scalarly null if
for each x∗ ∈ X ∗ we have x∗f = 0 a.e.

Theorem (Lewis 1970 and Edgar 1977)

Suppose X is weakly compactly generated (WCG).
Let f : [0,1]→ X be a scalarly measurable function.
Then there is a strongly measurable function g : [0,1]→ X such
that f −g is scalarly null.

Problem (Di Piazza-Preiss, 2003)

Are the McShane and Pettis integrals equivalent for functions
taking values in arbitrary WCG spaces?
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Problem (Musial, 1999)

scalarly null =⇒ McShane integrable ??

In general, the answer is “no”:

Under CH . . .

. . . there exist scalarly null functions f : [0,1]→ `∞(c) which are
not McShane integrable (Di Piazza-Preiss, 2003).

Example (R., 2006)

Under CH, there exist a weakly Lindelöf determined (WLD)
Banach space X and a scalarly null function f : [0,1]→ X
which is not McShane integrable.

I X is a WLD space such that (BX ∗ ,w∗) admits a Radon measure
having non-separable support (Kalenda-Plebanek, 2002).
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Banach space X and a scalarly null function f : [0,1]→ X
which is not McShane integrable.

I X is a WLD space such that (BX ∗ ,w∗) admits a Radon measure
having non-separable support (Kalenda-Plebanek, 2002).



Problem (Musial, 1999)

scalarly null =⇒ McShane integrable ??

In general, the answer is “no”:

Under CH . . .

. . . there exist scalarly null functions f : [0,1]→ `∞(c) which are
not McShane integrable (Di Piazza-Preiss, 2003).

Example (R., 2006)

Under CH, there exist a weakly Lindelöf determined (WLD)
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Theorem (R., 2006)

Let µ be a finite, non-negative and countably additive measure
defined on a σ -algebra.

Then a function f : [0,1]→ L1(µ) is McShane integrable
if and only if it is Pettis integrable.

Some ideas used in the proof . . .

Reduction to the case of scalarly null functions.

Reduction to the case µ = λκ = usual product probability
on {0,1}κ for uncountable κ (via Maharam’s theorem).

Approximation of L1(λκ)-valued scalarly null functions by
L2(λκ)-valued ones (using PRIs on L1(λκ)).
Convergence theorem for the McShane integral.
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