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@ The converse implication fails in general.




Strongly WCG spaces

A Banach space Y is called strongly weakly compactly generated (SWCG) if
there is a weakly compact set K C Y such that:

for every weakly compact set L C Y and every € >0

there is p > 0 such that | L C pK +€By




Strongly WCG spaces

A Banach space Y is called strongly weakly compactly generated (SWCG) if
there is a weakly compact set K C Y such that:

for every weakly compact set L C Y and every € >0

there is p > 0 such that | L C pK +€By

Examples of SWCG spaces

@ [! of any scalar measure




Strongly WCG spaces

A Banach space Y is called strongly weakly compactly generated (SWCG) if
there is a weakly compact set K C Y such that:

for every weakly compact set L C Y and every € >0

there is p > 0 such that | L C pK +€By

Examples of SWCG spaces

@ [! of any scalar measure

@ reflexive




Strongly WCG spaces

A Banach space Y is called strongly weakly compactly generated (SWCG) if
there is a weakly compact set K C Y such that:

for every weakly compact set L C Y and every € >0

there is p > 0 such that | L C pK +€By

Examples of SWCG spaces

@ [! of any scalar measure
@ reflexive

@ separable with Schur property




Strongly WCG spaces

A Banach space Y is called strongly weakly compactly generated (SWCG) if
there is a weakly compact set K C Y such that:

for every weakly compact set L C Y and every € >0

there is p > 0 such that | L C pK +€By

Examples of SWCG spaces

@ [! of any scalar measure
@ reflexive

@ separable with Schur property

Non SWCG spaces: ¢y, C[0,1], ... J




Strongly WCG spaces

A Banach space Y is called strongly weakly compactly generated (SWCG) if
there is a weakly compact set K C Y such that:

for every weakly compact set L C Y and every € >0

there is p > 0 such that | L C pK +€By
Examples of SWCG spaces More examples (L1 of a vector measure)

@ [! of any scalar measure @ 3Y C L10,1] with uncond. basis which is
not SWCG. (Mercourakis-Stamati 2006)

@ reflexive

@ separable with Schur property

Non SWCG spaces: ¢y, C[0,1], ... J




Strongly WCG spaces

A Banach space Y is called strongly weakly compactly generated (SWCG) if
there is a weakly compact set K C Y such that:

for every weakly compact set L C Y and every € >0

there is p > 0 such that | L C pK +€By
Examples of SWCG spaces More examples (L1 of a vector measure)

@ [! of any scalar measure @ 3Y C L10,1] with uncond. basis which is
not SWCG. (Mercourakis-Stamati 2006)

@ (?(¢Y) does not embed into any SWCG
space. (Kampoukos-Mercourakis 2013)

@ reflexive

@ separable with Schur property

Non SWCG spaces: ¢y, C[0,1], ... J




Strongly WCG spaces

A Banach space Y is called strongly weakly compactly generated (SWCG) if
there is a weakly compact set K C Y such that:

for every weakly compact set L C Y and every € >0

there is p > 0 such that | L C pK +€By
Examples of SWCG spaces More examples (L1 of a vector measure)

@ [! of any scalar measure @ 3Y C L10,1] with uncond. basis which is
not SWCG. (Mercourakis-Stamati 2006)

@ (?(¢Y) does not embed into any SWCG
space. (Kampoukos-Mercourakis 2013)

@ 2(L1[0,1]) (= L1(v) for an ¢?-valued V)
does not embed into any SWCG space.

@ reflexive

@ separable with Schur property

Non SWCG spaces: ¢y, C[0,1], ... J




Strongly WCG spaces

A Banach space Y is called strongly weakly compactly generated (SWCG) if
there is a weakly compact set K C Y such that:

for every weakly compact set L C Y and every € >0

there is p > 0 such that | L C pK +€By
Examples of SWCG spaces More examples (L1 of a vector measure)

@ [! of any scalar measure @ 3Y C L10,1] with uncond. basis which is
not SWCG. (Mercourakis-Stamati 2006)

@ (?(¢Y) does not embed into any SWCG
space. (Kampoukos-Mercourakis 2013)

@ 2(L1[0,1]) (= L1(v) for an ¢?-valued V)
does not embed into any SWCG space.

@ reflexive

@ separable with Schur property

Non SWCG spaces: ¢y, C[0,1], ... J

Theorem (Schliichtermann-Wheeler 1988)

SWCG

U
weakly sequentially complete (WSC)




Strongly WCG spaces

A Banach space Y is called strongly weakly compactly generated (SWCG) if
there is a weakly compact set K C Y such that:

for every weakly compact set L C Y and every € >0

there is p > 0 such that | L C pK +€By
Examples of SWCG spaces More examples (L1 of a vector measure)

@ [! of any scalar measure @ 3Y C L10,1] with uncond. basis which is
not SWCG. (Mercourakis-Stamati 2006)

@ (?(¢Y) does not embed into any SWCG
space. (Kampoukos-Mercourakis 2013)

@ 2(L1[0,1]) (= L1(v) for an ¢?-valued V)

Non SWCG spaces: ¢, C[0,1], ... ) does not embed into any SWCG space.

@ reflexive

@ separable with Schur property

Theorem (Schliichtermann-Wheeler 1988)

Theorem (==: Curbera 1992)

SWCG
4 Xpco= L1(V) Dy < L(v) WSC
weakly sequentially complete (WSC)




Positive Schur property

Folk fact (again)

C C LY(v) is bounded and equi-integrable if and only if Y& > 0 3p > 0 such that

Cc pBLm(\,) + 83[_1(\,)




Positive Schur property

Folk fact (again)

C C LY(v) is bounded and equi-integrable if and only if Y& > 0 3p > 0 such that

Cc pBLm(\,) + 83[_1(\,)

A Banach lattice is said to have the positive Schur property (PSP) if every
weakly null sequence of positive vectors is norm null.



Positive Schur property

Folk fact (again)

C C LY(v) is bounded and equi-integrable if and only if Y& > 0 3p > 0 such that

Cc pBLm(\,) + 83[_1(\,)

A Banach lattice is said to have the positive Schur property (PSP) if every
weakly null sequence of positive vectors is norm null.

@ [! of any scalar measure




Positive Schur property

Folk fact (again)

C C LY(v) is bounded and equi-integrable if and only if Y& > 0 3p > 0 such that

Cc pBLm(\,) + 83[_1(\,)

A Banach lattice is said to have the positive Schur property (PSP) if every
weakly null sequence of positive vectors is norm null.

@ [! of any scalar measure
@ L(v) if X has the Schur property (Curbera 1995)




Positive Schur property

Folk fact (again)

C C LY(v) is bounded and equi-integrable if and only if Y& > 0 3p > 0 such that

Cc pBLm(v) + 83[_1(\,)

A Banach lattice is said to have the positive Schur property (PSP) if every
weakly null sequence of positive vectors is norm null.

@ [! of any scalar measure
@ L(v) if X has the Schur property (Curbera 1995)

Another folk fact
L1(v) has PSP <= all weakly compact subsets of L1(v) are equi-integrable.




Positive Schur property

Folk fact (again)

C C LY(v) is bounded and equi-integrable if and only if Y& > 0 3p > 0 such that

Cc pBLm(v) + 83[_1(\,)

A Banach lattice is said to have the positive Schur property (PSP) if every
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@ [! of any scalar measure
@ L(v) if X has the Schur property (Curbera 1995)

Another folk fact
L1(v) has PSP <= all weakly compact subsets of L1(v) are equi-integrable.

Consequence: If L(v) has the PSP, then it is SWCG.
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@ rt-compact — equi-integrable
Q B~y is T-compact <= V(X) is relatively norm compact.

@ If v(X) is relatively norm compact, then for any subset of L!(v) we have:

relatively T-compact <= bounded and equi-integrable.

Application of (2): an improvement of Manjabacas’' theorem *

If v(X) is relatively norm compact, then:

(1) Tis w*-compact and ext(By1(y)-) CT, (2) T is a boundary.




@ L! spaces of vector measures
© Equi-integrability and compactness

© Completely continuous integration operators
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then the ideal of completely continuous operators satisfies (1)-(2).

Open Problem

What about arbitrary Banach spaces not containing /1 ?
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A partial answer

THEOREM III (Calabuig, R., Sdnchez-Pérez 2014)

If X is Asplund and I, is completely continuous, then L(v) = L1(|v]).

This solves affirmatively the problem of Okada et al. for Banach lattices X. )

Ingredients of the proof

@ We follow the approach of (Okada, Ricker, Rodriguez-Piazza 2011).
@ Simplification, using the Radstrom embedding

{norm compact non-empty subsets of X} 2, C(Bx+,w™)
O(K)(x*) := sup x*(x)
xeK

© Every Banach space with separable dual embeds into a Banach space
with shrinking basis. (Zippin 1988)
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Positive Schur property and integration operators

Theorem (Curbera 1992)

I, completely continuous = L'(v) WSC

THEOREM IV (Calabuig, Lajara, R., Sdnchez-Pérez)

TFAE:

@ /, is completely continuous if and only if
L1(v) has the PSP and v(X) is relatively norm compact.

@ Iy is almost completely continuous if and only if L*(v) has the PSP.

An operator from a Banach lattice to a Banach space is almost completely
continuous if it maps weakly null disjoint sequences to norm null ones.



Many thanks for your attention!
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Definition

B C Bx- is called a boundary if Vx € X 3x* € B such that ||x|| = x*(x).

» Typical example of boundary: ext(Bx-) (set of all extreme points of Bx:)

Weak vs 6(X, B) for a boundary B

Inside a norm bounded subset of X:

@ Pointwise convergent sequences are weakly convergent in X = C(K).
(Grothendieck 1952)

@ o(X,B)-convergent sequences are weakly convergent for B = ext(Bx-).
(Rainwater 1963)

@ 0(X,B)-convergent sequences are weakly convergent. (Simons 1972)

@ 0(X,B)-compact sets are weakly compact. (Pfitzner 2010)




