Compactness in L^1 of a vector measure

José Rodríguez

Universidad de Murcia

Integration, Vector Measures and Related Topics VI Bedlewo, June 18, 2014

Partially supported by MINECO and FEDER, project MTM2011-25377

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

J.M. CALABUIG, J.R., E.A. SÁNCHEZ-PÉREZ, On completely continuous integration operators of a vector measure, J. Convex. Anal. 21 (2014), no. 3.

J.M. CALABUIG, S. LAJARA, J.R., E.A. SÁNCHEZ-PÉREZ, Compactness in L^1 of a vector measure, in preparation.

- L^1 spaces of vector measures
- Q Equi-integrability and compactness
- Ompletely continuous integration operators

• L^1 spaces of vector measures

- 2 Equi-integrability and compactness
- S Completely continuous integration operators

X Banach space, (Ω, Σ) measurable space, $v : \Sigma \to X \sigma$ -additive measure

X Banach space, (Ω, Σ) measurable space, $v : \Sigma \to X \sigma$ -additive measure

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Definition

A measurable function $f : \Omega \to \mathbb{R}$ is *v*-integrable if:

- f is x^*v -integrable $\forall x^* \in X^*$,
- for every $A \in \Sigma$ there is $\int_A f \, dv \in X$ such that

$$x^*\left(\int_A f\,dv\right) = \int_A f\,d(x^*v) \quad \forall x^* \in X^*.$$

X Banach space, (Ω, Σ) measurable space, $v : \Sigma \to X \sigma$ -additive measure

Definition

A measurable function $f : \Omega \to \mathbb{R}$ is *v*-integrable if:

- f is x^*v -integrable $\forall x^* \in X^*$,
- for every $A \in \Sigma$ there is $\int_A f \, dv \in X$ such that

$$x^*\left(\int_A f\,dv\right) = \int_A f\,d(x^*v) \quad \forall x^* \in X^*.$$

$$\|f\|_{L^{1}(V)} := \sup_{x^{*} \in B_{X^{*}}} \int_{\Omega} |f| d|x^{*} V|$$

イロト (部) (日) (日) (日) (日)

X Banach space, (Ω, Σ) measurable space, $v : \Sigma \to X \sigma$ -additive measure

Definition

A measurable function $f : \Omega \to \mathbb{R}$ is *v*-integrable if:

- f is x^*v -integrable $\forall x^* \in X^*$,
- for every $A \in \Sigma$ there is $\int_A f \, dv \in X$ such that

$$x^*\left(\int_A f\,dv\right) = \int_A f\,d(x^*v) \quad \forall x^* \in X^*.$$

$$\|f\|_{L^1(v)} := \sup_{x^* \in B_{X^*}} \int_{\Omega} |f| \, d|x^* v|$$

The space $L^1(v)$ of all (equivalence classes of) *v*-integrable functions is a **Banach lattice** with the ||v||-a.e. order and the norm $||\cdot||_{L^1(v)}$.

X Banach space, (Ω, Σ) measurable space, $v : \Sigma \to X \sigma$ -additive measure

Definition

A measurable function $f : \Omega \to \mathbb{R}$ is *v*-integrable if:

- f is x^*v -integrable $\forall x^* \in X^*$,
- for every $A \in \Sigma$ there is $\int_A f \, dv \in X$ such that

$$\mathbf{x}^*\left(\int_A f \, d\mathbf{v}\right) = \int_A f \, d(\mathbf{x}^*\mathbf{v}) \quad \forall \mathbf{x}^* \in X^*.$$

$$\|f\|_{L^{1}(v)} := \sup_{x^{*} \in B_{X^{*}}} \int_{\Omega} |f| d| x^{*} v|$$

The space $L^1(v)$ of all (equivalence classes of) *v*-integrable functions is a **Banach lattice** with the ||v||-a.e. order and the norm $||\cdot||_{L^1(v)}$.

 $L^{1}(v)$ spaces represent all order continuous Banach lattices having a weak unit.

X Banach space, (Ω, Σ) measurable space, $v : \Sigma \to X \sigma$ -additive measure

Definition

A measurable function $f : \Omega \to \mathbb{R}$ is *v*-integrable if:

- f is x^*v -integrable $\forall x^* \in X^*$,
- for every $A \in \Sigma$ there is $\int_A f \, dv \in X$ such that

$$x^*\left(\int_A f \, dv\right) = \int_A f \, d(x^*v) \quad \forall x^* \in X^*.$$

$$\|f\|_{L^{1}(v)} := \sup_{x^{*} \in B_{X^{*}}} \int_{\Omega} |f| d|x^{*} v|$$

ヘロン 人間 とくほ とくほ とう

The space $L^1(v)$ of all (equivalence classes of) *v*-integrable functions is a **Banach lattice** with the ||v||-a.e. order and the norm $||\cdot||_{L^1(v)}$.

 $L^{1}(v)$ spaces represent all order continuous Banach lattices having a weak unit.

Examples

$$L^{p}(\mu)$$
 $(\mu$ probability, $1 \leq p < \infty)$,

X Banach space, (Ω, Σ) measurable space, $v : \Sigma \to X \sigma$ -additive measure

Definition

A measurable function $f : \Omega \to \mathbb{R}$ is *v*-integrable if:

- f is x^*v -integrable $\forall x^* \in X^*$,
- for every $A \in \Sigma$ there is $\int_A f \, dv \in X$ such that

$$x^*\left(\int_A f \, dv\right) = \int_A f \, d(x^*v) \quad \forall x^* \in X^*.$$

$$\|f\|_{L^{1}(v)} := \sup_{x^{*} \in B_{X^{*}}} \int_{\Omega} |f| d|x^{*} v|$$

The space $L^1(v)$ of all (equivalence classes of) *v*-integrable functions is a **Banach lattice** with the ||v||-a.e. order and the norm $||\cdot||_{L^1(v)}$.

 $L^{1}(v)$ spaces represent all order continuous Banach lattices having a weak unit.

Examples

 $L^p(\mu)$ (μ probability, $1 \le p < \infty$), spaces with unconditional basis, etc.

From now on μ denotes a **Rybakov control measure** of v

From now on μ denotes a **Rybakov control measure** of v

Duality

•
$$f \in L^1(v)$$
 and $g \in L^{\infty}(v) \Rightarrow fg \in L^1(v)$ and $\int_{\Omega} fg \, dv \in X$

(ロ) (四) (E) (E) (E)

From now on μ denotes a **Rybakov control measure** of v

Duality

- $f \in L^1(v)$ and $g \in L^{\infty}(v) \Rightarrow fg \in L^1(v)$ and $\int_{\Omega} fg \, dv \in X$
- $L^1(v)^* = L^1(v)^{\times} = \{h \in L^1(\mu) : fh \in L^1(\mu) \ \forall f \in L^1(v)\}$ (Köthe dual)

イロト (部) (日) (日) (日) (日)

From now on μ denotes a **Rybakov control measure** of v

Duality

•
$$f \in L^1(v)$$
 and $g \in L^{\infty}(v) \Rightarrow fg \in L^1(v)$ and $\int_{\Omega} fg \, dv \in X$

• $L^1(v)^* = L^1(v)^{\times} = \{h \in L^1(\mu) : fh \in L^1(\mu) \ \forall f \in L^1(v)\}$ (Köthe dual)

Basic norming set

For
$$g \in B_{L^{\infty}(v)}$$
 and $x^* \in B_{X^*}$, define $\gamma_{g,x^*} \in B_{L^1(v)^*}$ by $\gamma_{g,x^*}(f) = \int_{\Omega} fg \, d(x^*v)$.

イロト (部) (日) (日) (日) (日)

From now on μ denotes a **Rybakov control measure** of v

Duality

- $f \in L^1(v)$ and $g \in L^{\infty}(v) \Rightarrow fg \in L^1(v)$ and $\int_{\Omega} fg \, dv \in X$
- $L^1(v)^* = L^1(v)^{\times} = \{h \in L^1(\mu) : fh \in L^1(\mu) \ \forall f \in L^1(v)\}$ (Köthe dual)

Basic norming set

For $g \in B_{L^{\infty}(v)}$ and $x^* \in B_{X^*}$, define $\gamma_{g,x^*} \in B_{L^1(v)^*}$ by $\gamma_{g,x^*}(f) = \int_{\Omega} fg d(x^*v)$.

The set Γ of such functionals is **norming**

From now on μ denotes a **Rybakov control measure** of v

Duality

•
$$f \in L^1(v)$$
 and $g \in L^{\infty}(v) \Rightarrow fg \in L^1(v)$ and $\int_{\Omega} fg \, dv \in X$

•
$$L^1(v)^* = L^1(v)^{\times} = \{h \in L^1(\mu) : fh \in L^1(\mu) \ \forall f \in L^1(v)\}$$
 (Köthe dual)

Basic norming set

For $g \in B_{L^{\infty}(v)}$ and $x^* \in B_{X^*}$, define $\gamma_{g,x^*} \in B_{L^1(v)^*}$ by $\gamma_{g,x^*}(f) = \int_{\Omega} fg d(x^*v)$.

イロト (部) (日) (日) (日) (日)

The set Γ of such functionals is **norming** and w^* -thick.

From now on μ denotes a **Rybakov control measure** of v

Duality

- $f \in L^1(v)$ and $g \in L^{\infty}(v) \Rightarrow fg \in L^1(v)$ and $\int_{\Omega} fg \, dv \in X$
- $L^1(v)^* = L^1(v)^{\times} = \{h \in L^1(\mu) : fh \in L^1(\mu) \ \forall f \in L^1(v)\}$ (Köthe dual)

Basic norming set

For $g \in B_{L^{\infty}(v)}$ and $x^* \in B_{X^*}$, define $\gamma_{g,x^*} \in B_{L^1(v)^*}$ by $\gamma_{g,x^*}(f) = \int_{\Omega} fg d(x^*v)$.

イロト (部) (日) (日) (日) (日)

The set Γ of such functionals is **norming** and w^* -thick.

For bounded nets...

 $f_{\alpha} \rightarrow f$ in the $\sigma(L^1(v), \Gamma)$ -topology iff

$$\int_A f_\alpha \, d\nu \to \int_A f \, d\nu$$

weakly in X for every $A \in \Sigma$.

From now on μ denotes a **Rybakov control measure** of v

Duality

•
$$f \in L^1(v)$$
 and $g \in L^{\infty}(v) \Rightarrow fg \in L^1(v)$ and $\int_{\Omega} fg \, dv \in X$

• $L^1(v)^* = L^1(v)^{\times} = \{h \in L^1(\mu) : fh \in L^1(\mu) \ \forall f \in L^1(v)\}$ (Köthe dual)

Basic norming set

For
$$g \in B_{L^{\infty}(v)}$$
 and $x^* \in B_{X^*}$, define $\gamma_{g,x^*} \in B_{L^1(v)^*}$ by $\gamma_{g,x^*}(f) = \int_{\Omega} fg d(x^*v)$

The set Γ of such functionals is **norming** and w^* -thick.

For bounded nets...

 $f_{\alpha} \rightarrow f$ in the $\sigma(L^1(v), \Gamma)$ -topology iff

$$\int_A f_\alpha \, d\nu \to \int_A f \, d\nu$$

weakly in X for every $A \in \Sigma$.

Remark

1 The identity $i: L^1(v) \to L^1(\mu)$ is

- injective,
- $\sigma(L^1(v), \Gamma)$ -weak continuous.

From now on μ denotes a **Rybakov control measure** of v

Duality

- $f \in L^1(v)$ and $g \in L^{\infty}(v) \Rightarrow fg \in L^1(v)$ and $\int_{\Omega} fg \, dv \in X$
- $L^1(v)^* = L^1(v)^{\times} = \{h \in L^1(\mu) : fh \in L^1(\mu) \ \forall f \in L^1(v)\}$ (Köthe dual)

Basic norming set

For
$$g \in B_{L^{\infty}(v)}$$
 and $x^* \in B_{X^*}$, define $\gamma_{g,x^*} \in B_{L^1(v)^*}$ by $\gamma_{g,x^*}(f) = \int_{\Omega} fg \, d(x^*v)$.

The set Γ of such functionals is **norming** and w^* -thick.

For bounded nets...

 $f_{\alpha} \rightarrow f$ in the $\sigma(L^1(v), \Gamma)$ -topology iff

$$\int_A f_\alpha \, d\nu \to \int_A f \, d\nu$$

weakly in X for every $A \in \Sigma$.

Remark

1 The identity $i: L^1(v) \to L^1(\mu)$ is

- injective,
- $\sigma(L^1(v), \Gamma)$ -weak continuous.
- **2** $\sigma(L^1(v), \Gamma)$ is angelic.

 $v(\Sigma) = \{v(A) : A \in \Sigma\} \subset X$ (the range of v)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

 $v(\Sigma) = \{v(A) : A \in \Sigma\} \subset X$ (the range of v)

 $\sigma(L^1(v), \Gamma)$ = weak topology on bounded sets in each of the following cases:

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

1 $L^1(v) \not\supseteq \ell^1$. (Curbera 1994, Okada 1993)

 $v(\Sigma) = \{v(A) : A \in \Sigma\} \subset X$ (the range of v)

 $\sigma(L^1(v), \Gamma)$ = weak topology on bounded sets in each of the following cases:

- **1** $L^1(v) \not\supseteq \ell^1$. (Curbera 1994, Okada 1993)
- **2** $v(\Sigma)$ is relatively **norm** compact and X is Asplund. (Graves-Ruess 1984)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

 $v(\Sigma) = \{v(A) : A \in \Sigma\} \subset X$ (the range of v)

 $\sigma(L^1(v), \Gamma)$ = weak topology on bounded sets in each of the following cases:

- **1** $L^1(v) \not\supseteq \ell^1$. (Curbera 1994, Okada 1993)
- **2** $v(\Sigma)$ is relatively **norm** compact and X is Asplund. (Graves-Ruess 1984)

Theorem (Lewis 1973, Okada 1993)

If $v(\Sigma)$ is relatively **norm** compact, then every $\sigma(L^1(v), \Gamma)$ -convergent **sequence** is weakly convergent.

 $v(\Sigma) = \{v(A) : A \in \Sigma\} \subset X$ (the range of v)

 $\sigma(L^1(v), \Gamma)$ = weak topology on bounded sets in each of the following cases:

- **1** $L^1(v) \not\supseteq \ell^1$. (Curbera 1994, Okada 1993)
- **2** $v(\Sigma)$ is relatively **norm** compact and X is Asplund. (Graves-Ruess 1984)

Theorem (Lewis 1973, Okada 1993)

If $v(\Sigma)$ is relatively **norm** compact, then every $\sigma(L^1(v), \Gamma)$ -convergent **sequence** is weakly convergent.

Theorem (Manjabacas 1998)

If $v(\Sigma)$ is relatively **norm** compact, then Γ is a **boundary**.

 $v(\Sigma) = \{v(A) : A \in \Sigma\} \subset X$ (the range of v)

 $\sigma(L^1(v), \Gamma)$ = weak topology on bounded sets in each of the following cases:

- **1** $L^1(v) \not\supseteq \ell^1$. (Curbera 1994, Okada 1993)
- **2** $v(\Sigma)$ is relatively **norm** compact and X is Asplund. (Graves-Ruess 1984)

Theorem (Lewis 1973, Okada 1993)

If $v(\Sigma)$ is relatively norm compact, then every $\sigma(L^1(v), \Gamma)$ -convergent sequence is weakly convergent. Theorem (Manjabacas 1998) 🕨 🕐

If $v(\Sigma)$ is relatively **norm** compact, then Γ is a **boundary**.

Example (Curbera 1994)

There exists a vector measure v with relatively norm compact range such that $\sigma(L^1(v), \Gamma) \neq$ weak topology on bounded sets.

 $v(\Sigma) = \{v(A) : A \in \Sigma\} \subset X$ (the range of v)

 $\sigma(L^1(v), \Gamma)$ = weak topology on bounded sets in each of the following cases:

- **1** $L^1(v) \not\supseteq \ell^1$. (Curbera 1994, Okada 1993)
- **2** $v(\Sigma)$ is relatively **norm** compact and X is Asplund. (Graves-Ruess 1984)

Theorem (Lewis 1973, Okada 1993)

If $v(\Sigma)$ is relatively norm compact, then every $\sigma(L^1(v), \Gamma)$ -convergent sequence is weakly convergent. Theorem (Manjabacas 1998)

If $v(\Sigma)$ is relatively **norm** compact, then Γ is a **boundary**.

Example (Curbera 1994)

There exists a vector measure v with relatively norm compact range such that $\sigma(L^1(v), \Gamma) \neq$ weak topology on bounded sets.

Example (Curbera 1995)

There exist a vector measure v and a $\sigma(L^1(v), \Gamma)$ -null sequence in $L^1(v)$ which is equivalent to the ℓ^1 -basis.

• L^1 spaces of vector measures

2 Equi-integrability and compactness

Ompletely continuous integration operators

Definition

A set $C \subset L^1(v)$ is **equi-integrable** if for every $\varepsilon > 0$ there is $\delta > 0$ such that

$$\mu(A) < \delta \implies \sup_{\mathbf{f} \in \mathbf{C}} \left\| \mathbf{f} \mathbf{1}_{\mathbf{A}} \right\|_{L^{1}(v)} < \varepsilon$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Definition

A set $C \subset L^1(v)$ is equi-integrable if for every $\varepsilon > 0$ there is $\delta > 0$ such that

$$\mu(A) < \delta \implies \sup_{\mathbf{f} \in \mathbf{C}} \|\mathbf{f}\mathbf{1}_{\mathbf{A}}\|_{L^{1}(v)} < \varepsilon$$

The classical Dunford-Pettis theorem

In the L^1 space of a scalar measure:

relatively weakly compact \iff bounded and equi-integrable.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Definition

A set $C \subset L^1(v)$ is equi-integrable if for every $\varepsilon > 0$ there is $\delta > 0$ such that

$$\mu(A) < \delta \implies \sup_{\mathbf{f} \in \mathbf{C}} \left\| \mathbf{f} \mathbf{1}_{\mathbf{A}} \right\|_{L^{1}(\mathbf{v})} < \varepsilon$$

The classical Dunford-Pettis theorem

In the L^1 space of a scalar measure:

relatively weakly compact \iff bounded and equi-integrable.

In the L^1 space of a vector measure:

 $I Bounded and equi-integrable \implies relatively weakly compact.$

Definition

A set $\mathcal{C} \subset L^1(v)$ is **equi-integrable** if for every $\varepsilon > 0$ there is $\delta > 0$ such that

$$\mu(A) < \delta \implies \sup_{\mathbf{f} \in \mathbf{C}} \left\| \mathbf{f} \mathbf{1}_{\mathbf{A}} \right\|_{L^{1}(\mathbf{v})} < \varepsilon$$

The classical Dunford-Pettis theorem

In the L^1 space of a scalar measure:

 $\mathsf{relatively} \ \mathsf{weakly} \ \mathsf{compact} \ \iff \ \mathsf{bounded} \ \mathsf{and} \ \mathsf{equi-integrable}.$

In the L^1 space of a vector measure:

 $I Bounded and equi-integrable \implies relatively weakly compact.$

Folk fact

 $C \subset L^1(v)$ is bounded and equi-integrable if and only if $\forall \varepsilon > 0 \ \exists \rho > 0$ such that

$$C \subset \rho B_{L^{\infty}(v)} + \varepsilon B_{L^{1}(v)}$$

Definition

A set $C \subset L^1(v)$ is equi-integrable if for every $\varepsilon > 0$ there is $\delta > 0$ such that

$$\mu(A) < \delta \implies \sup_{\mathbf{f} \in \mathbf{C}} \left\| \mathbf{f} \mathbf{1}_{\mathbf{A}} \right\|_{L^{1}(\mathbf{v})} < \varepsilon$$

The classical Dunford-Pettis theorem

In the L^1 space of a scalar measure:

 $\mathsf{relatively} \ \mathsf{weakly} \ \mathsf{compact} \ \iff \ \mathsf{bounded} \ \mathsf{and} \ \mathsf{equi-integrable}.$

In the L^1 space of a vector measure:

 $I Bounded and equi-integrable \implies relatively weakly compact.$

Folk fact

 $C \subset L^1(v)$ is bounded and equi-integrable if and only if $\forall \varepsilon > 0 \ \exists \rho > 0$ such that

$$C \subset \rho B_{L^{\infty}(v)} + \varepsilon B_{L^{1}(v)}$$

2 The converse implication fails in general.

Strongly WCG spaces

A Banach space Y is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $K \subset Y$ such that:

for every weakly compact set $L \subset Y$ and every $\varepsilon > 0$

there is $\rho > 0$ such that $L \subset \rho K + \varepsilon B_Y$

Strongly WCG spaces

A Banach space Y is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $K \subset Y$ such that:

for every weakly compact set $\underline{L}\subset Y$ and every $\varepsilon>0$

there is $\rho > 0$ such that $L \subset \rho K + \varepsilon B_Y$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Examples of SWCG spaces

• L¹ of any scalar measure

Strongly WCG spaces

A Banach space Y is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $K \subset Y$ such that:

for every weakly compact set $\underline{L\subset Y}$ and every $\varepsilon>0$

there is $\rho > 0$ such that $L \subset \rho K + \varepsilon B_Y$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Examples of SWCG spaces

- L¹ of any scalar measure
- reflexive

A Banach space Y is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $K \subset Y$ such that:

for every weakly compact set $L\subset Y$ and every $\varepsilon>0$

there is $\rho > 0$ such that $| L \subset \rho K + \varepsilon B_Y$

・ロト ・四ト ・ヨト ・ヨト - ヨ

Examples of SWCG spaces

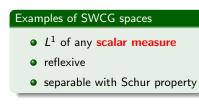
- L¹ of any scalar measure
- reflexive
- separable with Schur property

A Banach space Y is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $K \subset Y$ such that:

for every weakly compact set $L \subset Y$ and every $\varepsilon > 0$

there is $\rho > 0$ such that $| L \subset \rho K + \varepsilon B_Y$

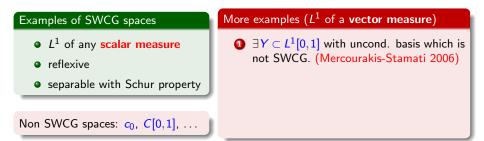
・ロト ・四ト ・ヨト ・ヨト - ヨ



Non SWCG spaces: c_0 , C[0,1], ...

A Banach space Y is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $K \subset Y$ such that:

for every weakly compact set $L \subset Y$ and every $\varepsilon > 0$ there is $\rho > 0$ such that $L \subset \rho K + \varepsilon B_Y$



・ロト ・四ト ・ヨト ・ヨト - ヨ

A Banach space Y is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $K \subset Y$ such that:

for every weakly compact set $L \subset Y$ and every $\varepsilon > 0$ there is $\rho > 0$ such that $L \subset \rho K + \varepsilon B_Y$

Examples of SWCG spaces

- L¹ of any scalar measure
- reflexive
- separable with Schur property

Non SWCG spaces: c_0 , C[0,1], ...

More examples (L^1 of a vector measure)

 ∃Y ⊂ L¹[0,1] with uncond. basis which is not SWCG. (Mercourakis-Stamati 2006)

・ロト ・四ト ・ヨト ・ヨト - ヨ

 (l²(l¹) does not embed into any SWCG space. (Kampoukos-Mercourakis 2013)

A Banach space Y is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $K \subset Y$ such that:

for every weakly compact set $L \subset Y$ and every $\varepsilon > 0$ there is $\rho > 0$ such that $L \subset \rho K + \varepsilon B_Y$

Examples of SWCG spaces

- L¹ of any scalar measure
- reflexive
- separable with Schur property

Non SWCG spaces: c_0 , C[0,1], ...

More examples (L^1 of a vector measure)

- ∃Y ⊂ L¹[0,1] with uncond. basis which is not SWCG. (Mercourakis-Stamati 2006)
- 2 l²(l¹) does not embed into any SWCG space. (Kampoukos-Mercourakis 2013)
- ℓ²(L¹[0,1]) (= L¹(v) for an ℓ²-valued v) does not embed into any SWCG space.

A Banach space Y is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $K \subset Y$ such that:

for every weakly compact set $L \subset Y$ and every $\varepsilon > 0$ there is $\rho > 0$ such that $L \subset \rho K + \varepsilon B_Y$

Examples of SWCG spaces

- *L*¹ of any scalar measure
- reflexive
- separable with Schur property

Non SWCG spaces: c_0 , C[0,1], ...

More examples (L^1 of a vector measure)

- ∃Y ⊂ L¹[0,1] with uncond. basis which is not SWCG. (Mercourakis-Stamati 2006)
- 2 l²(l¹) does not embed into any SWCG space. (Kampoukos-Mercourakis 2013)
- ℓ²(L¹[0,1]) (= L¹(v) for an ℓ²-valued v) does not embed into any SWCG space.

イロン イロン イヨン イヨン 三日

A Banach space Y is called **strongly weakly compactly generated (SWCG)** if there is a weakly compact set $K \subset Y$ such that:

for every weakly compact set $L \subset Y$ and every $\varepsilon > 0$ there is $\rho > 0$ such that $L \subset \rho K + \varepsilon B_Y$

More examples (L¹ of a **vector <u>measure</u>)** Examples of SWCG spaces **1** $\exists Y \subset L^1[0,1]$ with uncond. basis which is • L¹ of any scalar measure not SWCG. (Mercourakis-Stamati 2006) reflexive 2 $\ell^2(\ell^1)$ does not embed into any SWCG separable with Schur property space. (Kampoukos-Mercourakis 2013) **3** $\ell^2(L^1[0,1]) (= L^1(v)$ for an ℓ^2 -valued v) Non SWCG spaces: c_0 , C[0,1], ... does not embed into any SWCG space. Theorem (Schlüchtermann-Wheeler 1988) Theorem ($\stackrel{\star}{\Longrightarrow}$: Curbera 1992) SWCG $X \not\supseteq c_0 \stackrel{\star}{\Longrightarrow} L^1(v) \not\supseteq c_0 \iff L^1(v)$ WSC weakly sequentially complete (WSC)

Positive Schur property

Folk fact (again)

 $C \subset L^1(v)$ is bounded and equi-integrable if and only if $\forall \varepsilon > 0 \ \exists \rho > 0$ such that

 $C \subset \rho B_{L^{\infty}(v)} + \varepsilon B_{L^{1}(v)}$

 $C \subset L^1(v)$ is bounded and equi-integrable if and only if $\forall \varepsilon > 0 \ \exists \rho > 0$ such that

 $C \subset \rho B_{L^{\infty}(v)} + \varepsilon B_{L^{1}(v)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

A Banach lattice is said to have the **positive Schur property (PSP)** if every weakly null sequence of **positive vectors** is norm null.

 $C \subset L^1(v)$ is bounded and equi-integrable if and only if $\forall \varepsilon > 0 \ \exists \rho > 0$ such that

 $C \subset \rho B_{L^{\infty}(v)} + \varepsilon B_{L^{1}(v)}$

A Banach lattice is said to have the **positive Schur property (PSP)** if every weakly null sequence of **positive vectors** is norm null.

Examples

• L¹ of any scalar measure

 $C \subset L^1(v)$ is bounded and equi-integrable if and only if $\forall \epsilon > 0 \ \exists \rho > 0$ such that

 $C \subset \rho B_{L^{\infty}(v)} + \varepsilon B_{L^{1}(v)}$

A Banach lattice is said to have the **positive Schur property (PSP)** if every weakly null sequence of **positive vectors** is norm null.

Examples

- L¹ of any scalar measure
- $L^1(v)$ if X has the Schur property (Curbera 1995)

 $C \subset L^1(v)$ is bounded and equi-integrable if and only if $\forall \epsilon > 0 \ \exists \rho > 0$ such that

 $C \subset \rho B_{L^{\infty}(v)} + \varepsilon B_{L^{1}(v)}$

A Banach lattice is said to have the **positive Schur property (PSP)** if every weakly null sequence of **positive vectors** is norm null.

Examples

- L¹ of any scalar measure
- $L^1(v)$ if X has the Schur property (Curbera 1995)

Another folk fact

 $L^1(v)$ has PSP \iff all weakly compact subsets of $L^1(v)$ are equi-integrable.

 $C \subset L^1(v)$ is bounded and equi-integrable if and only if $\forall \epsilon > 0 \ \exists \rho > 0$ such that

 $C \subset \rho B_{L^{\infty}(v)} + \varepsilon B_{L^{1}(v)}$

A Banach lattice is said to have the **positive Schur property (PSP)** if every weakly null sequence of **positive vectors** is norm null.

Examples

- L¹ of any scalar measure
- $L^1(v)$ if X has the Schur property (Curbera 1995)

Another folk fact

 $L^1(v)$ has PSP \iff all weakly compact subsets of $L^1(v)$ are equi-integrable.

Consequence: If $L^{1}(v)$ has the PSP, then it is SWCG.

Definition

A subset of a Banach space is called **weakly precompact** if every sequence in it admits a weakly Cauchy subsequence.

Definition

A subset of a Banach space is called **weakly precompact** if every sequence in it admits a weakly Cauchy subsequence.

 $X \not\supseteq \ell^1 \Leftrightarrow$ every bounded subset of X is weakly precompact. (Rosenthal 1974)

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Definition

A subset of a Banach space is called **weakly precompact** if every sequence in it admits a weakly Cauchy subsequence.

 $X \not\supseteq \ell^1 \Leftrightarrow$ every bounded subset of X is weakly precompact. (Rosenthal 1974)

Theorem (Dieudonné 1951)

A bounded set $C \subset L^1(v)$ is weakly precompact if and only if

 $hC = \{hf : f \in C\}$ is equi-integrable in $L^{1}(\mu)$ for every $h \in L^{1}(\nu)^{\times} = L^{1}(\nu)^{\times}$.

Definition

A subset of a Banach space is called **weakly precompact** if every sequence in it admits a weakly Cauchy subsequence.

 $X \not\supseteq \ell^1 \Leftrightarrow$ every bounded subset of X is weakly precompact. (Rosenthal 1974)

Theorem (Dieudonné 1951)

A bounded set $C \subset L^1(v)$ is weakly precompact if and only if

 $hC = \{hf : f \in C\}$ is equi-integrable in $L^{1}(\mu)$ for every $h \in L^{1}(\nu)^{\times} = L^{1}(\nu)^{\times}$.

THEOREM I (Calabuig, Lajara, R., Sánchez-Pérez)

TFAE for a bounded set $C \subset L^1(v)$:

1 C is $\sigma(L^1(v), \Gamma)$ -precompact.

Definition

A subset of a Banach space is called **weakly precompact** if every sequence in it admits a weakly Cauchy subsequence.

 $X \not\supseteq \ell^1 \Leftrightarrow$ every bounded subset of X is weakly precompact. (Rosenthal 1974)

Theorem (Dieudonné 1951)

A bounded set $C \subset L^1(v)$ is weakly precompact if and only if

 $hC = \{hf : f \in C\}$ is equi-integrable in $L^{1}(\mu)$ for every $h \in L^{1}(\nu)^{\times} = L^{1}(\nu)^{\times}$.

THEOREM I (Calabuig, Lajara, R., Sánchez-Pérez)

TFAE for a bounded set $C \subset L^1(v)$:

1 C is $\sigma(L^1(v), \Gamma)$ -precompact.

2 The set $\frac{d(x^*v)}{d\mu}C$ is equi-integrable in $L^1(\mu)$ for every $x^* \in X^*$.

Definition

A subset of a Banach space is called **weakly precompact** if every sequence in it admits a weakly Cauchy subsequence.

 $X \not\supseteq \ell^1 \Leftrightarrow$ every bounded subset of X is weakly precompact. (Rosenthal 1974)

Theorem (Dieudonné 1951)

A bounded set $C \subset L^1(v)$ is weakly precompact if and only if

 $hC = \{hf : f \in C\}$ is equi-integrable in $L^{1}(\mu)$ for every $h \in L^{1}(\nu)^{\times} = L^{1}(\nu)^{\times}$.

THEOREM I (Calabuig, Lajara, R., Sánchez-Pérez)

TFAE for a bounded set $C \subset L^1(v)$:

- **1** C is $\sigma(L^1(v), \Gamma)$ -precompact.
- **2** The set $\frac{d(x^*v)}{d\mu}C$ is equi-integrable in $L^1(\mu)$ for every $x^* \in X^*$.

3 *C* is **relatively weakly compact** in $L^1(x^*v)$ for every $x^* \in X^*$.

Definition

The topology τ on $L^1(v)$ is defined by

$$f_{\alpha} \xrightarrow{\tau} f \iff \int_{\Omega} f_{\alpha} h \, d\nu \to \int_{\Omega} f h \, d\nu \quad \text{in norm} \quad \forall h \in L^{\infty}(\nu).$$

(ロ) (四) (三) (三) (三)

Definition

The topology τ on $L^1(v)$ is defined by

$$f_{\alpha} \xrightarrow{\tau} f \iff \int_{\Omega} f_{\alpha} h \, dv \to \int_{\Omega} f h \, dv \quad \text{in norm} \quad \forall h \in L^{\infty}(v).$$

 \blacktriangleright τ is locally convex,

Definition

The topology τ on $L^1(v)$ is defined by

$$f_{\alpha} \xrightarrow{\tau} f \iff \int_{\Omega} f_{\alpha} h \, dv \to \int_{\Omega} f h \, dv \quad \text{in norm} \quad \forall h \in L^{\infty}(v).$$

▶ au is locally convex, $\sigma(L^1(v), \Gamma) \preceq au \preceq$ norm topology,

Definition

The topology τ on $L^1(v)$ is defined by

$$f_{\alpha} \xrightarrow{\tau} f \iff \int_{\Omega} f_{\alpha} h \, dv \to \int_{\Omega} f h \, dv \quad \text{in norm} \quad \forall h \in L^{\infty}(v).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

▶ τ is locally convex, $\sigma(L^1(v), \Gamma) \preceq \tau \preceq$ norm topology, τ is angelic.

Definition

The topology τ on $L^1(v)$ is defined by

$$f_{\alpha} \xrightarrow{\tau} f \quad \Longleftrightarrow \quad \int_{\Omega} f_{\alpha} h \, d\nu \to \int_{\Omega} f h \, d\nu \quad \text{in norm} \quad \forall h \in L^{\infty}(\nu).$$

イロト (部) (日) (日) (日) (日)

▶ τ is locally convex, $\sigma(L^1(v), \Gamma) \preceq \tau \preceq$ norm topology, τ is angelic.

THEOREM II (Calabuig, Lajara, R., Sánchez-Pérez)

Definition

The topology τ on $L^1(v)$ is defined by

$$f_{\alpha} \xrightarrow{\tau} f \quad \Longleftrightarrow \quad \int_{\Omega} f_{\alpha} h \, d\nu \to \int_{\Omega} f h \, d\nu \quad \text{in norm} \quad \forall h \in L^{\infty}(\nu).$$

イロト (部) (日) (日) (日) (日)

▶ τ is locally convex, $\sigma(L^1(v), \Gamma) \preceq \tau \preceq$ norm topology, τ is angelic.

THEOREM II (Calabuig, Lajara, R., Sánchez-Pérez)

- Image: Image
- **2** $B_{L^{\infty}(v)}$ is τ -compact $\iff v(\Sigma)$ is relatively **norm** compact.

Definition

The topology τ on $L^1(v)$ is defined by

$$f_{\alpha} \xrightarrow{\tau} f \iff \int_{\Omega} f_{\alpha} h \, dv \to \int_{\Omega} f h \, dv \quad \text{in norm} \quad \forall h \in L^{\infty}(v).$$

▶ τ is locally convex, $\sigma(L^1(v), \Gamma) \preceq \tau \preceq$ norm topology, τ is angelic.

THEOREM II (Calabuig, Lajara, R., Sánchez-Pérez)

- Image: Image
- **2** $B_{L^{\infty}(v)}$ is τ -compact $\iff v(\Sigma)$ is relatively **norm** compact.
- **()** If $v(\Sigma)$ is relatively **norm** compact, then for any subset of $L^1(v)$ we have:

relatively au-compact \iff bounded and equi-integrable.

・ロ・・日・・日・・日・ ・ 日・ うくつ

Definition

The topology τ on $L^1(v)$ is defined by

$$f_{\alpha} \xrightarrow{\tau} f \iff \int_{\Omega} f_{\alpha} h \, dv \to \int_{\Omega} f h \, dv \quad \text{in norm} \quad \forall h \in L^{\infty}(v).$$

▶ τ is locally convex, $\sigma(L^1(v), \Gamma) \preceq \tau \preceq$ norm topology, τ is angelic.

THEOREM II (Calabuig, Lajara, R., Sánchez-Pérez)

- Image: Image
- $B_{L^{\infty}(v)} \text{ is } \tau \text{-compact } \iff v(\Sigma) \text{ is relatively } norm \text{ compact.}$
- **3** If $v(\Sigma)$ is relatively **norm** compact, then for any subset of $L^1(v)$ we have:

relatively τ -compact \iff bounded and equi-integrable.

Application of (2): an improvement of Manjabacas' theorem 🕐

Definition

The topology τ on $L^1(v)$ is defined by

$$f_{\alpha} \stackrel{\tau}{\rightarrow} f \quad \Longleftrightarrow \quad \int_{\Omega} f_{\alpha} h \, d\nu \rightarrow \int_{\Omega} f h \, d\nu \quad \text{in norm} \quad \forall h \in L^{\infty}(\nu).$$

▶ τ is locally convex, $\sigma(L^1(v), \Gamma) \preceq \tau \preceq$ norm topology, τ is angelic.

THEOREM II (Calabuig, Lajara, R., Sánchez-Pérez)

- Image: Image
- $B_{L^{\infty}(v)} \text{ is } \tau \text{-compact } \iff v(\Sigma) \text{ is relatively } norm \text{ compact.}$
- **(3)** If $v(\Sigma)$ is relatively **norm** compact, then for any subset of $L^1(v)$ we have:

relatively τ -compact \iff bounded and equi-integrable.

Application of (2): an improvement of Manjabacas' theorem 🕐

If $v(\Sigma)$ is relatively **norm** compact, then:

(1) Γ is w^* -compact and $ext(B_{L^1(v)^*}) \subset \Gamma$,

Definition

The topology τ on $L^1(v)$ is defined by

$$f_{\alpha} \stackrel{\tau}{\rightarrow} f \quad \Longleftrightarrow \quad \int_{\Omega} f_{\alpha} h \, d\nu \rightarrow \int_{\Omega} f h \, d\nu \quad \text{in norm} \quad \forall h \in L^{\infty}(\nu).$$

▶ τ is locally convex, $\sigma(L^1(v), \Gamma) \preceq \tau \preceq$ norm topology, τ is angelic.

THEOREM II (Calabuig, Lajara, R., Sánchez-Pérez)

- Image: Image
- **2** $B_{L^{\infty}(v)}$ is τ -compact $\iff v(\Sigma)$ is relatively **norm** compact.
- **(3)** If $v(\Sigma)$ is relatively **norm** compact, then for any subset of $L^1(v)$ we have:

relatively au-compact \iff bounded and equi-integrable.

Application of (2): an improvement of Manjabacas' theorem 🕨

If $v(\Sigma)$ is relatively **norm** compact, then:

(1) Γ is w^* -compact and $ext(B_{L^1(v)^*}) \subset \Gamma$, (2) Γ is a boundary.

- L^1 spaces of vector measures
- 2 Equi-integrability and compactness
- **③** Completely continuous integration operators

The **integration operator** $I_v : L^1(v) \to X$ is defined by $I_v(f) := \int_{\Omega} f \, dv$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めんの

The **integration operator** $I_v : L^1(v) \to X$ is defined by $I_v(f) := \int_{\Omega} f \, dv$.

"Operator Ideal Principle" (Okada, Ricker, Rodríguez-Piazza 2011)

TFAE for an operator ideal \mathscr{A} :

(For every X-valued v) $I_v \in \mathscr{A} \implies v$ has finite variation.

The integration operator $I_{v}: L^{1}(v) \to X$ is defined by $I_{v}(f) := \int_{\Omega} f \, dv$.

イロト (部) (日) (日) (日) (日)

"Operator Ideal Principle" (Okada, Ricker, Rodríguez-Piazza 2011)

TFAE for an operator ideal \mathscr{A} :

- (For every X-valued v) $I_v \in \mathscr{A} \implies v$ has finite variation.
- 2 (For every X-valued v) $I_v \in \mathscr{A} \implies L^1(v) = L^1(|v|)$.

The integration operator $I_{\nu}: L^{1}(\nu) \to X$ is defined by $I_{\nu}(f) := \int_{\Omega} f \, d\nu$.

"Operator Ideal Principle" (Okada, Ricker, Rodríguez-Piazza 2011)

TFAE for an operator ideal \mathscr{A} :

(For every X-valued v) $I_v \in \mathscr{A} \implies v$ has finite variation.

(For every X-valued v) $I_v \in \mathscr{A} \implies L^1(v) = L^1(|v|)$.

Operator ideals satisfying (1)-(2)

• compact operators

The **integration operator**
$$I_{\mathcal{V}}: L^1(\mathcal{V}) \to X$$
 is defined by $I_{\mathcal{V}}(f) := \int_{\Omega} f \, d\mathcal{V}$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

"Operator Ideal Principle" (Okada, Ricker, Rodríguez-Piazza 2011)

TFAE for an operator ideal \mathscr{A} :

(For every X-valued v) $I_v \in \mathscr{A} \implies v$ has finite variation.

(For every X-valued v) $I_v \in \mathscr{A} \implies L^1(v) = L^1(|v|)$.

Operator ideals satisfying (1)-(2)

- compact operators
- *p*-summing operators, $1 \le p < \infty$

The integration operator $I_{v}: L^{1}(v) \to X$ is defined by $I_{v}(f) := \int_{\Omega} f \, dv$.

"Operator Ideal Principle" (Okada, Ricker, Rodríguez-Piazza 2011)

TFAE for an operator ideal \mathscr{A} :

(For every X-valued v) $I_v \in \mathscr{A} \implies v$ has finite variation.

2 (For every X-valued v) $I_v \in \mathscr{A} \implies L^1(v) = L^1(|v|)$.

Operator ideals satisfying (1)-(2)

- compact operators
- *p*-summing operators, $1 \le p < \infty$

Operator ideals failing (1)-(2)

• weakly compact operators

・ロ・・日・・日・・日・ ・ 日・ うくつ

Integration operator

The integration operator $I_{\nu}: L^{1}(\nu) \to X$ is defined by $I_{\nu}(f) := \int_{\Omega} f \, d\nu$.

"Operator Ideal Principle" (Okada, Ricker, Rodríguez-Piazza 2011)

TFAE for an operator ideal \mathscr{A} :

(For every X-valued v) $I_v \in \mathscr{A} \implies v$ has finite variation.

2 (For every X-valued v) $I_v \in \mathscr{A} \implies L^1(v) = L^1(|v|)$.

Operator ideals satisfying (1)-(2)

- compact operators
- *p*-summing operators, $1 \le p < \infty$

Operator ideals failing (1)-(2)

- weakly compact operators
- completely continuous operators

(ロ) (四) (三) (三) (三) (○) (○)

Integration operator

The integration operator $I_{\nu}: L^{1}(\nu) \to X$ is defined by $I_{\nu}(f) := \int_{\Omega} f \, d\nu$.

"Operator Ideal Principle" (Okada, Ricker, Rodríguez-Piazza 2011)

TFAE for an operator ideal \mathscr{A} :

(For every X-valued v) $I_v \in \mathscr{A} \implies v$ has finite variation.

2 (For every X-valued v) $I_v \in \mathscr{A} \implies L^1(v) = L^1(|v|)$.

Operator ideals satisfying (1)-(2)

- compact operators
- *p*-summing operators, $1 \le p < \infty$

Operator ideals failing (1)-(2)

- weakly compact operators
- completely continuous operators

Theorem (Okada, Ricker, Rodríguez-Piazza 2011)

If X has an **unconditional basis** and $X \not\supseteq \ell^1$, then the ideal of **completely continuous** operators satisfies (1)-(2).

Integration operator

The integration operator $I_{v}: L^{1}(v) \to X$ is defined by $I_{v}(f) := \int_{\Omega} f \, dv$.

"Operator Ideal Principle" (Okada, Ricker, Rodríguez-Piazza 2011)

TFAE for an operator ideal \mathscr{A} :

- **(**For every X-valued v) $I_v \in \mathscr{A} \implies v$ has finite variation.
- 2 (For every X-valued v) $I_v \in \mathscr{A} \implies L^1(v) = L^1(|v|)$.

Operator ideals satisfying (1)-(2)

- compact operators
- *p*-summing operators, $1 \le p < \infty$

Operator ideals failing (1)-(2)

- weakly compact operators
- completely continuous operators

Theorem (Okada, Ricker, Rodríguez-Piazza 2011)

If X has an **unconditional basis** and $X \not\supset \ell^1$, then the ideal of **completely continuous** operators satisfies (1)-(2).

Open Problem

What about arbitrary Banach spaces not containing ℓ^1 ?

If X is Asplund and I_V is completely continuous, then $L^1(v) = L^1(|v|)$.

If X is Asplund and I_V is completely continuous, then $L^1(v) = L^1(|v|)$.

This solves affirmatively the problem of Okada et al. for **Banach lattices** X.

If X is Asplund and I_v is completely continuous, then $L^1(v) = L^1(|v|)$.

This solves affirmatively the problem of Okada et al. for **Banach lattices** X.

Ingredients of the proof

• We follow the approach of (Okada, Ricker, Rodríguez-Piazza 2011).

If X is Asplund and I_v is completely continuous, then $L^1(v) = L^1(|v|)$.

This solves affirmatively the problem of Okada et al. for **Banach lattices** X.

Ingredients of the proof

• We follow the approach of (Okada, Ricker, Rodríguez-Piazza 2011).

② Simplification, using the Rådström embedding

{norm compact non-empty subsets of X} $\xrightarrow{\Phi} C(B_{X^*}, w^*)$

$$\Phi(\mathbf{K})(x^*) := \sup_{x \in \mathbf{K}} x^*(x)$$

If X is Asplund and I_v is completely continuous, then $L^1(v) = L^1(|v|)$.

This solves affirmatively the problem of Okada et al. for **Banach lattices** X.

Ingredients of the proof

• We follow the approach of (Okada, Ricker, Rodríguez-Piazza 2011).

Simplification, using the Rådström embedding

{norm compact non-empty subsets of X} $\xrightarrow{\Phi} C(B_{X^*}, w^*)$

$$\Phi(\mathbf{K})(x^*) := \sup_{x \in \mathbf{K}} x^*(x)$$

Every Banach space with separable dual embeds into a Banach space with shrinking basis. (Zippin 1988)

Positive Schur property and integration operators

Theorem (Curbera 1992)

 I_v completely continuous $\implies L^1(v)$ WSC

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

 I_v completely continuous $\implies L^1(v)$ WSC

THEOREM IV (Calabuig, Lajara, R., Sánchez-Pérez)

TFAE:

1 I_v is completely continuous if and only if

 I_v completely continuous $\implies L^1(v)$ WSC

THEOREM IV (Calabuig, Lajara, R., Sánchez-Pérez)

TFAE:

I_v is completely continuous if and only if *L*¹(*v*) has the PSP and

 I_v completely continuous $\implies L^1(v)$ WSC

THEOREM IV (Calabuig, Lajara, R., Sánchez-Pérez)

TFAE:

() I_{v} is completely continuous if and only if $L^{1}(v)$ has the **PSP** and $v(\Sigma)$ is relatively **norm** compact.

 I_v completely continuous $\implies L^1(v)$ WSC

THEOREM IV (Calabuig, Lajara, R., Sánchez-Pérez)

TFAE:

- () I_{v} is completely continuous if and only if $L^{1}(v)$ has the **PSP** and $v(\Sigma)$ is relatively **norm** compact.
- **2** I_v is almost completely continuous if and only if $L^1(v)$ has the **PSP**.

 I_v completely continuous $\implies L^1(v)$ WSC

THEOREM IV (Calabuig, Lajara, R., Sánchez-Pérez)

TFAE:

- *I_v* is completely continuous if and only if *L*¹(*v*) has the PSP and *v*(Σ) is relatively norm compact.
- **2** I_v is almost completely continuous if and only if $L^1(v)$ has the **PSP**.

An operator from a Banach lattice to a Banach space is **almost completely continuous** if it maps weakly null disjoint sequences to norm null ones.

Many thanks for your attention!

 $B \subset B_{X^*}$ is called a **boundary** if $\forall x \in X \exists x^* \in B$ such that $||x|| = x^*(x)$.

 $B \subset B_{X^*}$ is called a **boundary** if $\forall x \in X \exists x^* \in B$ such that $||x|| = x^*(x)$.

▶ Typical example of boundary: $ext(B_{X^*})$ (set of all extreme points of B_{X^*})

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

 $B \subset B_{X^*}$ is called a **boundary** if $\forall x \in X \exists x^* \in B$ such that $||x|| = x^*(x)$.

▶ Typical example of boundary: $ext(B_{X^*})$ (set of all extreme points of B_{X^*})

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Weak vs $\sigma(X, B)$ for a boundary B

 $B \subset B_{X^*}$ is called a **boundary** if $\forall x \in X \exists x^* \in B$ such that $||x|| = x^*(x)$.

▶ Typical example of boundary: $ext(B_{X^*})$ (set of all extreme points of B_{X^*})

Weak vs $\sigma(X, B)$ for a boundary B

Inside a norm bounded subset of X:

 Pointwise convergent sequences are weakly convergent in X = C(K). (Grothendieck 1952)

 $B \subset B_{X^*}$ is called a **boundary** if $\forall x \in X \exists x^* \in B$ such that $||x|| = x^*(x)$.

▶ Typical example of boundary: $ext(B_{X^*})$ (set of all extreme points of B_{X^*})

Weak vs $\sigma(X,B)$ for a boundary B

- Pointwise convergent sequences are weakly convergent in X = C(K). (Grothendieck 1952)
- $\sigma(X,B)$ -convergent sequences are weakly convergent for $B = \text{ext}(B_{X^*})$. (Rainwater 1963)

 $B \subset B_{X^*}$ is called a **boundary** if $\forall x \in X \exists x^* \in B$ such that $||x|| = x^*(x)$.

▶ Typical example of boundary: $ext(B_{X^*})$ (set of all extreme points of B_{X^*})

Weak vs $\sigma(X,B)$ for a boundary B

- Pointwise convergent sequences are weakly convergent in X = C(K). (Grothendieck 1952)
- $\sigma(X,B)$ -convergent sequences are weakly convergent for $B = \text{ext}(B_{X^*})$. (Rainwater 1963)
- $\sigma(X,B)$ -convergent sequences are weakly convergent. (Simons 1972)

 $B \subset B_{X^*}$ is called a **boundary** if $\forall x \in X \exists x^* \in B$ such that $||x|| = x^*(x)$.

▶ Typical example of boundary: $ext(B_{X^*})$ (set of all extreme points of B_{X^*})

Weak vs $\sigma(X,B)$ for a boundary B

- Pointwise convergent sequences are weakly convergent in X = C(K). (Grothendieck 1952)
- $\sigma(X,B)$ -convergent sequences are weakly convergent for $B = \text{ext}(B_{X^*})$. (Rainwater 1963)
- $\sigma(X,B)$ -convergent sequences are weakly convergent. (Simons 1972)
- $\sigma(X,B)$ -compact sets are weakly compact. (Pfitzner 2010)