
Compactness in L1 of a vector measure
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L1 of a vector measure

X Banach space, (Ω,Σ) measurable space, ν : Σ→ X σ -additive measure

Definition

A measurable function f : Ω→ R is ν-integrable if:

• f is x∗ν-integrable ∀x∗ ∈ X ∗,

• for every A ∈Σ there is
∫
A
f dν ∈ X such that

x∗
(∫

A
f dν

)
=
∫
A
f d(x∗ν) ∀x∗ ∈ X ∗.

‖f ‖L1(ν) := sup
x∗∈BX∗

∫
Ω
|f |d |x∗ν |

The space L1(ν) of all (equivalence classes of) ν-integrable functions is a

Banach lattice with the ‖ν‖-a.e. order and the norm ‖ · ‖L1(ν).

L1(ν) spaces represent all order continuous Banach lattices having a weak unit.

Examples

Lp(µ) (µ probability, 1≤ p < ∞), spaces with unconditional basis, etc.
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The dual of L1(ν)

From now on µ denotes a Rybakov control measure of ν

Duality

f ∈ L1(ν) and g ∈ L∞(ν) ⇒ fg ∈ L1(ν) and
∫

Ω
fg dν ∈ X

L1(ν)∗ = L1(ν)× = {h ∈ L1(µ) : fh ∈ L1(µ) ∀f ∈ L1(ν)} (Köthe dual)

Basic norming set

For g ∈ BL∞(ν) and x∗ ∈ BX ∗ , define γg ,x∗ ∈ BL1(ν)∗ by γg ,x∗(f ) =
∫

Ω
fg d(x∗ν) .

The set Γ of such functionals is norming and w∗-thick.

For bounded nets. . .

fα → f in the σ(L1(ν),Γ)-topology iff∫
A
fα dν →

∫
A
f dν

weakly in X for every A ∈Σ.

Remark

1 The identity i : L1(ν)→ L1(µ) is

• injective,

• σ(L1(ν),Γ)-weak continuous.

2 σ(L1(ν),Γ) is angelic.
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Basic norming set

For g ∈ BL∞(ν) and x∗ ∈ BX ∗ , define γg ,x∗ ∈ BL1(ν)∗ by γg ,x∗(f ) =
∫

Ω
fg d(x∗ν) .

The set Γ of such functionals is norming and w∗-thick.

For bounded nets. . .

fα → f in the σ(L1(ν),Γ)-topology iff∫
A
fα dν →

∫
A
f dν

weakly in X for every A ∈Σ.

Remark

1 The identity i : L1(ν)→ L1(µ) is

• injective,

• σ(L1(ν),Γ)-weak continuous.

2 σ(L1(ν),Γ) is angelic.



The dual of L1(ν)

From now on µ denotes a Rybakov control measure of ν

Duality

f ∈ L1(ν) and g ∈ L∞(ν) ⇒ fg ∈ L1(ν) and
∫

Ω
fg dν ∈ X

L1(ν)∗ = L1(ν)× = {h ∈ L1(µ) : fh ∈ L1(µ) ∀f ∈ L1(ν)} (Köthe dual)
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Weak convergence vs σ(L1(ν),Γ)-convergence

ν(Σ) = {ν(A) : A ∈Σ} ⊂ X (the range of ν)

σ(L1(ν),Γ) = weak topology on bounded sets in each of the following cases:

1 L1(ν) 6⊃ `1. (Curbera 1994, Okada 1993)

2 ν(Σ) is relatively norm compact and X is Asplund. (Graves-Ruess 1984)

Theorem (Lewis 1973, Okada 1993)

If ν(Σ) is relatively norm compact,
then every σ(L1(ν),Γ)-convergent
sequence is weakly convergent.

Theorem (Manjabacas 1998)

If ν(Σ) is relatively norm compact,
then Γ is a boundary.

Example (Curbera 1994)

There exists a vector measure ν with relatively norm compact range such that
σ(L1(ν),Γ) 6= weak topology on bounded sets.

Example (Curbera 1995)

There exist a vector measure ν and a σ(L1(ν),Γ)-null sequence in L1(ν) which
is equivalent to the `1-basis.
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Equi-integrability

Definition

A set C ⊂ L1(ν) is equi-integrable if for every ε > 0 there is δ > 0 such that

µ(A) < δ =⇒ sup
f ∈C

∥∥f 1A
∥∥
L1(ν) < ε

The classical Dunford-Pettis theorem

In the L1 space of a scalar measure:

relatively weakly compact ⇐⇒ bounded and equi-integrable.

In the L1 space of a vector measure:

1 Bounded and equi-integrable =⇒ relatively weakly compact.

Folk fact

C ⊂ L1(ν) is bounded and equi-integrable if and only if ∀ε > 0 ∃ρ > 0 such that

C ⊂ ρBL∞(ν) + εBL1(ν)

2 The converse implication fails in general.
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Strongly WCG spaces

A Banach space Y is called strongly weakly compactly generated (SWCG) if
there is a weakly compact set K ⊂ Y such that:

for every weakly compact set L⊂ Y and every ε > 0

there is ρ > 0 such that L⊂ ρK + εBY

Examples of SWCG spaces

L1 of any scalar measure

reflexive

separable with Schur property

Non SWCG spaces: c0, C [0,1], . . .

More examples (L1 of a vector measure)

1 ∃Y ⊂ L1[0,1] with uncond. basis which is
not SWCG. (Mercourakis-Stamati 2006)

2 `2(`1) does not embed into any SWCG
space. (Kampoukos-Mercourakis 2013)

3 `2(L1[0,1]) (= L1(ν) for an `2-valued ν)
does not embed into any SWCG space.

Theorem (Schlüchtermann-Wheeler 1988)

SWCG
⇓

weakly sequentially complete (WSC)

Theorem (
?

=⇒: Curbera 1992)

X 6⊃ c0
?

=⇒ L1(ν) 6⊃ c0 ⇐⇒ L1(ν) WSC



Strongly WCG spaces

A Banach space Y is called strongly weakly compactly generated (SWCG) if
there is a weakly compact set K ⊂ Y such that:

for every weakly compact set L⊂ Y and every ε > 0

there is ρ > 0 such that L⊂ ρK + εBY

Examples of SWCG spaces

L1 of any scalar measure

reflexive

separable with Schur property

Non SWCG spaces: c0, C [0,1], . . .

More examples (L1 of a vector measure)

1 ∃Y ⊂ L1[0,1] with uncond. basis which is
not SWCG. (Mercourakis-Stamati 2006)

2 `2(`1) does not embed into any SWCG
space. (Kampoukos-Mercourakis 2013)

3 `2(L1[0,1]) (= L1(ν) for an `2-valued ν)
does not embed into any SWCG space.
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Theorem (Schlüchtermann-Wheeler 1988)

SWCG
⇓

weakly sequentially complete (WSC)

Theorem (
?

=⇒: Curbera 1992)

X 6⊃ c0
?

=⇒ L1(ν) 6⊃ c0 ⇐⇒ L1(ν) WSC



Strongly WCG spaces

A Banach space Y is called strongly weakly compactly generated (SWCG) if
there is a weakly compact set K ⊂ Y such that:

for every weakly compact set L⊂ Y and every ε > 0

there is ρ > 0 such that L⊂ ρK + εBY

Examples of SWCG spaces

L1 of any scalar measure

reflexive

separable with Schur property

Non SWCG spaces: c0, C [0,1], . . .

More examples (L1 of a vector measure)

1 ∃Y ⊂ L1[0,1] with uncond. basis which is
not SWCG. (Mercourakis-Stamati 2006)

2 `2(`1) does not embed into any SWCG
space. (Kampoukos-Mercourakis 2013)

3 `2(L1[0,1]) (= L1(ν) for an `2-valued ν)
does not embed into any SWCG space.
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Positive Schur property

Folk fact (again)

C ⊂ L1(ν) is bounded and equi-integrable if and only if ∀ε > 0 ∃ρ > 0 such that

C ⊂ ρBL∞(ν) + εBL1(ν)

A Banach lattice is said to have the positive Schur property (PSP) if every
weakly null sequence of positive vectors is norm null.

Examples

L1 of any scalar measure

L1(ν) if X has the Schur property (Curbera 1995)

Another folk fact

L1(ν) has PSP ⇐⇒ all weakly compact subsets of L1(ν) are equi-integrable.

Consequence: If L1(ν) has the PSP, then it is SWCG.



Positive Schur property

Folk fact (again)

C ⊂ L1(ν) is bounded and equi-integrable if and only if ∀ε > 0 ∃ρ > 0 such that

C ⊂ ρBL∞(ν) + εBL1(ν)

A Banach lattice is said to have the positive Schur property (PSP) if every
weakly null sequence of positive vectors is norm null.

Examples

L1 of any scalar measure

L1(ν) if X has the Schur property (Curbera 1995)

Another folk fact

L1(ν) has PSP ⇐⇒ all weakly compact subsets of L1(ν) are equi-integrable.

Consequence: If L1(ν) has the PSP, then it is SWCG.



Positive Schur property

Folk fact (again)

C ⊂ L1(ν) is bounded and equi-integrable if and only if ∀ε > 0 ∃ρ > 0 such that

C ⊂ ρBL∞(ν) + εBL1(ν)

A Banach lattice is said to have the positive Schur property (PSP) if every
weakly null sequence of positive vectors is norm null.

Examples

L1 of any scalar measure

L1(ν) if X has the Schur property (Curbera 1995)

Another folk fact

L1(ν) has PSP ⇐⇒ all weakly compact subsets of L1(ν) are equi-integrable.

Consequence: If L1(ν) has the PSP, then it is SWCG.



Positive Schur property

Folk fact (again)

C ⊂ L1(ν) is bounded and equi-integrable if and only if ∀ε > 0 ∃ρ > 0 such that

C ⊂ ρBL∞(ν) + εBL1(ν)

A Banach lattice is said to have the positive Schur property (PSP) if every
weakly null sequence of positive vectors is norm null.

Examples

L1 of any scalar measure

L1(ν) if X has the Schur property (Curbera 1995)

Another folk fact

L1(ν) has PSP ⇐⇒ all weakly compact subsets of L1(ν) are equi-integrable.

Consequence: If L1(ν) has the PSP, then it is SWCG.



Positive Schur property

Folk fact (again)

C ⊂ L1(ν) is bounded and equi-integrable if and only if ∀ε > 0 ∃ρ > 0 such that

C ⊂ ρBL∞(ν) + εBL1(ν)

A Banach lattice is said to have the positive Schur property (PSP) if every
weakly null sequence of positive vectors is norm null.

Examples

L1 of any scalar measure

L1(ν) if X has the Schur property (Curbera 1995)

Another folk fact

L1(ν) has PSP ⇐⇒ all weakly compact subsets of L1(ν) are equi-integrable.

Consequence: If L1(ν) has the PSP, then it is SWCG.



Positive Schur property

Folk fact (again)

C ⊂ L1(ν) is bounded and equi-integrable if and only if ∀ε > 0 ∃ρ > 0 such that

C ⊂ ρBL∞(ν) + εBL1(ν)

A Banach lattice is said to have the positive Schur property (PSP) if every
weakly null sequence of positive vectors is norm null.

Examples

L1 of any scalar measure

L1(ν) if X has the Schur property (Curbera 1995)

Another folk fact

L1(ν) has PSP ⇐⇒ all weakly compact subsets of L1(ν) are equi-integrable.

Consequence: If L1(ν) has the PSP, then it is SWCG.



σ(L1(ν),Γ)-precompactness

Definition

A subset of a Banach space is called weakly precompact if every sequence in it
admits a weakly Cauchy subsequence.

X 6⊃ `1 ⇔ every bounded subset of X is weakly precompact. (Rosenthal 1974)

Theorem (Dieudonné 1951)

A bounded set C ⊂ L1(ν) is weakly precompact if and only if

hC = {hf : f ∈ C} is equi-integrable in L1(µ) for every h ∈ L1(ν)∗ = L1(ν)×.

Theorem I (Calabuig, Lajara, R., Sánchez-Pérez)

TFAE for a bounded set C ⊂ L1(ν):

1 C is σ(L1(ν),Γ)-precompact.

2 The set d(x∗ν)
dµ

C is equi-integrable in L1(µ) for every x∗ ∈ X ∗.

3 C is relatively weakly compact in L1(x∗ν) for every x∗ ∈ X ∗.
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A bounded set C ⊂ L1(ν) is weakly precompact if and only if

hC = {hf : f ∈ C} is equi-integrable in L1(µ) for every h ∈ L1(ν)∗ = L1(ν)×.

Theorem I (Calabuig, Lajara, R., Sánchez-Pérez)
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The topology of norm convergence of the integrals

Definition

The topology τ on L1(ν) is defined by

fα
τ→ f ⇐⇒

∫
Ω
fαhdν →

∫
Ω
fhdν in norm ∀h ∈ L∞(ν).

I τ is locally convex, σ(L1(ν),Γ) � τ � norm topology, τ is angelic.

Theorem II (Calabuig, Lajara, R., Sánchez-Pérez)

1 τ-compact =⇒ equi-integrable

2 BL∞(ν) is τ-compact ⇐⇒ ν(Σ) is relatively norm compact.

3 If ν(Σ) is relatively norm compact, then for any subset of L1(ν) we have:

relatively τ-compact ⇐⇒ bounded and equi-integrable.

Application of (2): an improvement of Manjabacas’ theorem

If ν(Σ) is relatively norm compact, then:

(1) Γ is w∗-compact and ext(BL1(ν)∗)⊂ Γ, (2) Γ is a boundary.
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Integration operator

The integration operator Iν : L1(ν)→ X is defined by Iν (f ) :=
∫

Ω
f dν .

“Operator Ideal Principle” (Okada, Ricker, Rodŕıguez-Piazza 2011)

TFAE for an operator ideal A :

1 (For every X -valued ν) Iν ∈A =⇒ ν has finite variation.

2 (For every X -valued ν) Iν ∈A =⇒ L1(ν) = L1(|ν |).

Operator ideals satisfying (1)-(2)

compact operators

p-summing operators, 1≤ p < ∞

Operator ideals failing (1)-(2)

weakly compact operators

completely continuous operators

Theorem (Okada, Ricker, Rodŕıguez-Piazza 2011)

If X has an unconditional basis and X 6⊃ `1,
then the ideal of completely continuous operators satisfies (1)-(2).

Open Problem

What about arbitrary Banach spaces not containing `1 ?
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TFAE for an operator ideal A :

1 (For every X -valued ν) Iν ∈A =⇒ ν has finite variation.

2 (For every X -valued ν) Iν ∈A =⇒ L1(ν) = L1(|ν |).

Operator ideals satisfying (1)-(2)

compact operators

p-summing operators, 1≤ p < ∞

Operator ideals failing (1)-(2)

weakly compact operators

completely continuous operators

Theorem (Okada, Ricker, Rodŕıguez-Piazza 2011)
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A partial answer

Theorem III (Calabuig, R., Sánchez-Pérez 2014)

If X is Asplund and Iν is completely continuous, then L1(ν) = L1(|ν |).

This solves affirmatively the problem of Okada et al. for Banach lattices X .

Ingredients of the proof

1 We follow the approach of (Okada, Ricker, Rodŕıguez-Piazza 2011).

2 Simplification, using the Rådström embedding

{norm compact non-empty subsets of X} Φ−→ C(BX ∗ ,w
∗)

Φ(K)(x∗) := sup
x∈K

x∗(x)

3 Every Banach space with separable dual embeds into a Banach space
with shrinking basis. (Zippin 1988)
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If X is Asplund and Iν is completely continuous, then L1(ν) = L1(|ν |).

This solves affirmatively the problem of Okada et al. for Banach lattices X .

Ingredients of the proof

1 We follow the approach of (Okada, Ricker, Rodŕıguez-Piazza 2011).
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Positive Schur property and integration operators

Theorem (Curbera 1992)

Iν completely continuous =⇒ L1(ν) WSC

Theorem IV (Calabuig, Lajara, R., Sánchez-Pérez)

TFAE:

1 Iν is completely continuous if and only if
L1(ν) has the PSP and ν(Σ) is relatively norm compact.

2 Iν is almost completely continuous if and only if L1(ν) has the PSP.

An operator from a Banach lattice to a Banach space is almost completely
continuous if it maps weakly null disjoint sequences to norm null ones.
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Boundaries

Definition

B ⊂ BX ∗ is called a boundary if ∀x ∈ X ∃x∗ ∈ B such that ‖x‖= x∗(x).

I Typical example of boundary: ext(BX ∗) (set of all extreme points of BX ∗)

Weak vs σ(X ,B) for a boundary B

Inside a norm bounded subset of X :

Pointwise convergent sequences are weakly convergent in X = C(K).
(Grothendieck 1952)

σ(X ,B)-convergent sequences are weakly convergent for B = ext(BX ∗).
(Rainwater 1963)

σ(X ,B)-convergent sequences are weakly convergent. (Simons 1972)

σ(X ,B)-compact sets are weakly compact. (Pfitzner 2010)
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