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INTRODUCTION



Integration of functions

f : Ω→ X

where

(Ω,Σ,µ) is a (complete) probability space,

X is a Banach space.

Some contributors

Pioneers (30’s): Birkhoff, Bochner, Dunford, Gelfand, Pettis, . . .

Madurity (70-80’s): Edgar, Fremlin, Musial, Stegall, Talagrand . . .

Recently:
Cascales, Di Piazza, Fremlin, Mendoza, Musial, Preiss, R. . . .
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Fremlin-Mendoza (1994)

The ordinary functional analyst is naturally impatient with the
multiplicity of definitions of ‘integral’ which have been proposed
for vector-valued functions, and would prefer to have a single
canonical one for general use.



Measurability in Banach spaces

Recall that TFAE for a real-valued function h : Ω→ R

(1) h is the µ-a.e. limit of a sequence of simple functions.

(2) h−1(G ) ∈ Σ for every open G ⊂ R.

(3) h−1((a,+∞)) ∈ Σ for every a ∈ R.

Definition

A function f : Ω→ X is called

(i) strongly measurable if it is the µ-a.e. limit of a sequence of
simple functions;

(ii) scalarly measurable if f −1(H) ∈ Σ for every open half-space
H ⊂ X or, equivalently, if x∗f is measurable ∀x∗ ∈ X ∗.

Strongly measurable =⇒ scalarly measurable.

The converse does not hold in general.
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Pettis’ measurability theorem

Theorem (Pettis, 1938)

Let f : Ω→ X be a function. TFAE:

(1) f is strongly measurable.

(2) f is scalarly measurable and there is E ∈ Σ with µ(E ) = 1
such that f (E ) is separable.

Corollary

Strong and scalar measurability are equivalent for functions taking
values in a separable Banach space.
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Integration of strongly measurable functions

Well-known fact

Any strongly measurable function f : Ω→ X can be written as

f = g +h, with g Bochner integrable and h =
∞

∑
n=1

xnχAn ,

where xn ∈ X and A1,A2, . . . are pairwise disjoint measurable sets.

Moreover:

f is Bochner integrable ⇔ ∑n µ(An)xn is absolutely convergent.

f is Pettis integrable ⇔ ∑n µ(An)xn is unconditionally convergent.

f is Dunford integrable ⇔ ∑n µ(An)xn is weakly uncond. Cauchy.

Recall that a function f : Ω→ X is called Pettis integrable if

(1) x∗f is integrable ∀x∗ ∈ X ∗;

(2) for each A ∈ Σ there is xA ∈ X such that

x∗(xA) =
∫
A x∗f dµ ∀x∗ ∈ X ∗.
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Pathologies in non-separable spaces I: measurability

Cyl(X ) ≡ σ -algebra on X generated by all half-spaces

Cyl(X )⊂ Borel(X ,weak)⊂ Borel(X ,norm)

In general, the inclusions are strict (Talagrand, 1978).

Borel(X ,weak) = Borel(X ,norm)
if X admits an equivalent Kadec norm (Edgar, 1977).

All σ -algebras coincide if X is separable.

All σ -algebras coincide if X = `1(ω1) (Fremlin, 1980).

Measurability of the balls (R., 2008)

(1) There is an equivalent norm on `∞ such that its unit ball
does not belong to Cyl(`∞).

(2) There is an equivalent norm on `∞ such that its unit ball belongs to
Cyl(`∞) but the corresponding dual unit ball is not weak∗-separable.
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Pathologies in non-separable spaces II: Pettis integrability

For a function f : Ω→ X we have

strongly measurable + bounded ⇒ Bochner integrable.

But in general . . .

scalarly measurable + bounded ; Pettis integrable.

Example under CH, f : [0,1]→ `∞([0,1]) (Phillips, 1940).

ZFC example, `∞-valued function (Fremlin-Talagrand, 1979).

Positive results

Under CH, every scalarly measurable bounded function
f : [0,1]→ `∞ is Pettis integrable (Fremlin-Talagrand, 1979).

If X is WCG, then every scalarly measurable bounded function
f : Ω→ X is Pettis integrable (Lewis, 1970).
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THE BIRKHOFF INTEGRAL



Fréchet’s approach to the Lebesgue integral

Let f : Ω→ R be a function.

Definition

Given a countable partition Γ = (An) of Ω in Σ, we say that f is
Γ-summable if

f (An) is bounded whenever µ(An) > 0;

the series

J∗(f ,Γ) = ∑
n

µ(An) inf f (An), J∗(f ,Γ) = ∑
n

µ(An)sup f (An),

are absolutely convergent.

Theorem (Fréchet, 1915)

f is Lebesgue integrable if and only if the intersection⋂
{[J∗(f ,Γ),J∗(f ,Γ)] : f is Γ-summable}

is a single point α. In this case, α =
∫

f dµ.
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Fréchet (1915)

This way of presenting the theory of integration due to
M. Lebesgue has the advantage, over the way M. Lebesgue
presented his theory himself, that is very much close to the views
of Riemann-Darboux to which many students are familiar with.



The Birkhoff integral

Let f : Ω→ X be a function.

Definition

Given a countable partition Γ = (An) of Ω in Σ, we say that f is
Γ-summable if

f (An) is bounded whenever µ(An) > 0;

the set
J(f ,Γ) =

{
∑
n

µ(An)f (ωn) : ωn ∈ An

}
is made up of unconditionally convergent series.

Definition

f is Birkhoff integrable if for every ε > 0 there is a countable partition
Γ of Ω in Σ for which f is summable and diam(J(f ,Γ)) < ε.

In this case, the Birkhoff integral of f is the only point in the intersection⋂
{co(J(f ,Γ)) : f is Γ-summable}.
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Relationship with other integrals

Classical facts (Birkhoff, Pettis, Phillips, 30’s)

For a function f : Ω→ X we always have

Bochner =⇒ Birkhoff =⇒ Pettis

None of the reverse implications hold in general.

If X is separable, then Birkhoff ≡ Pettis.

Theorem (R., 2005)

Suppose X is WCG. TFAE:

(1) X is separable.

(2) Birkhoff ≡ Pettis for X -valued functions.
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The Bourgain controlled-oscillation property

Folk characterization of measurability

A function h : Ω→ R is measurable if and only if
for every ε > 0 and every A ∈ Σ with µ(A) > 0 there is B ⊂ A, B ∈ Σ
with µ(B) > 0, such that diam(h(B)) < ε.

Definition

A family H ⊂ RΩ has the Bourgain property if
for every ε > 0 and every A ∈ Σ with µ(A) > 0 there are finitely many
B1, . . . ,Bn ⊂ A, Bi ∈ Σ with µ(Bi ) > 0, such that

∀h ∈H ∃ i ∈ {1, . . . ,n} for which diam(h(Bi )) < ε.

I For a function f : Ω→ X we have:

f strongly measurable
⇓

{x∗f : x∗ ∈ BX ∗} has the Bourgain property
⇓

f scalarly measurable.
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Characterization of Birkhoff integrability

Theorem (Cascales-R., 2005)

Let f : Ω→ X be a bounded function. TFAE:

(1) f is Birkhoff integrable.

(2) {x∗f : x∗ ∈ BX ∗} has the Bourgain property.

Theorem (Cascales-R., 2005)

Let f : Ω→ X be a function. TFAE:

(1) f is Birkhoff integrable.

(2) {x∗f : x∗ ∈ BX ∗} is uniformly integrable
and has the Bourgain property.

An application (Cascales-R., 2005)

Suppose X contains no isomorphic copy of `1.
Then every µ-continuous X ∗-valued measure with σ -finite variation
admits a Birkhoff integrable “Radon-Nikodým derivative”.
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Convergence theorems for the Birkhoff integral I

The classical convergence theorems of Lebesgue’s integration
theory fail in general for the Birkhoff integral:

Theorem (R., 2005-2006)

Suppose either:

X = c0([0,1]), or

X admits a uniformly convex equivalent norm
and dens(X )≥ 2ℵ0 (for instance, X = `2([0,1])).

Then there is a uniformly bounded sequence of Birkhoff integrable
functions fn : [0,1]→ X converging pointwise to a function which is
not Birkhoff integrable.

Problem

When do the classical convergence theorems (e.g. Lebesgue,
Vitali) hold true for the Birkhoff integral?
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Convergence theorems for the Birkhoff integral II

Theorem (R., 2006)

Suppose X is isomorphic to a subspace of `∞.

Let fn : Ω→ X be a sequence of Birkhoff integrable functions and
f : Ω→ X be a function such that:

fn(ω)→ f (ω) weakly (resp. in norm) for every ω ∈Ω.

{x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

Then f is Birkhoff integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ weakly (resp. in norm).

Theorem (R., 2008)

Let fn : Ω→ X be a sequence of Pettis integrable functions converging
pointwise in norm to a function f : Ω→ X . TFAE:

(1) {x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

(2) f is Pettis integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ in norm.



Convergence theorems for the Birkhoff integral II

Theorem (R., 2006)

Suppose X is isomorphic to a subspace of `∞.
Let fn : Ω→ X be a sequence of Birkhoff integrable functions and
f : Ω→ X be a function such that:

fn(ω)→ f (ω) weakly (resp. in norm) for every ω ∈Ω.

{x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

Then f is Birkhoff integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ weakly (resp. in norm).

Theorem (R., 2008)

Let fn : Ω→ X be a sequence of Pettis integrable functions converging
pointwise in norm to a function f : Ω→ X . TFAE:

(1) {x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

(2) f is Pettis integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ in norm.



Convergence theorems for the Birkhoff integral II

Theorem (R., 2006)

Suppose X is isomorphic to a subspace of `∞.
Let fn : Ω→ X be a sequence of Birkhoff integrable functions and
f : Ω→ X be a function such that:

fn(ω)→ f (ω) weakly (resp. in norm) for every ω ∈Ω.

{x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

Then f is Birkhoff integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ weakly (resp. in norm).

Theorem (R., 2008)

Let fn : Ω→ X be a sequence of Pettis integrable functions converging
pointwise in norm to a function f : Ω→ X . TFAE:

(1) {x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

(2) f is Pettis integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ in norm.



Convergence theorems for the Birkhoff integral II

Theorem (R., 2006)

Suppose X is isomorphic to a subspace of `∞.
Let fn : Ω→ X be a sequence of Birkhoff integrable functions and
f : Ω→ X be a function such that:

fn(ω)→ f (ω) weakly (resp. in norm) for every ω ∈Ω.

{x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

Then f is Birkhoff integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ weakly (resp. in norm).

Theorem (R., 2008)

Let fn : Ω→ X be a sequence of Pettis integrable functions converging
pointwise in norm to a function f : Ω→ X . TFAE:

(1) {x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

(2) f is Pettis integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ in norm.



Convergence theorems for the Birkhoff integral II

Theorem (R., 2006)

Suppose X is isomorphic to a subspace of `∞.
Let fn : Ω→ X be a sequence of Birkhoff integrable functions and
f : Ω→ X be a function such that:

fn(ω)→ f (ω) weakly (resp. in norm) for every ω ∈Ω.

{x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

Then f is Birkhoff integrable

and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ weakly (resp. in norm).

Theorem (R., 2008)

Let fn : Ω→ X be a sequence of Pettis integrable functions converging
pointwise in norm to a function f : Ω→ X . TFAE:

(1) {x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

(2) f is Pettis integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ in norm.



Convergence theorems for the Birkhoff integral II

Theorem (R., 2006)

Suppose X is isomorphic to a subspace of `∞.
Let fn : Ω→ X be a sequence of Birkhoff integrable functions and
f : Ω→ X be a function such that:

fn(ω)→ f (ω) weakly (resp. in norm) for every ω ∈Ω.

{x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

Then f is Birkhoff integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ weakly (resp. in norm).

Theorem (R., 2008)

Let fn : Ω→ X be a sequence of Pettis integrable functions converging
pointwise in norm to a function f : Ω→ X . TFAE:

(1) {x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

(2) f is Pettis integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ in norm.



Convergence theorems for the Birkhoff integral II

Theorem (R., 2006)

Suppose X is isomorphic to a subspace of `∞.
Let fn : Ω→ X be a sequence of Birkhoff integrable functions and
f : Ω→ X be a function such that:

fn(ω)→ f (ω) weakly (resp. in norm) for every ω ∈Ω.

{x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

Then f is Birkhoff integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ weakly (resp. in norm).

Theorem (R., 2008)

Let fn : Ω→ X be a sequence of Pettis integrable functions converging
pointwise in norm to a function f : Ω→ X . TFAE:

(1) {x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

(2) f is Pettis integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ in norm.



Convergence theorems for the Birkhoff integral II

Theorem (R., 2006)

Suppose X is isomorphic to a subspace of `∞.
Let fn : Ω→ X be a sequence of Birkhoff integrable functions and
f : Ω→ X be a function such that:

fn(ω)→ f (ω) weakly (resp. in norm) for every ω ∈Ω.

{x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

Then f is Birkhoff integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ weakly (resp. in norm).

Theorem (R., 2008)

Let fn : Ω→ X be a sequence of Pettis integrable functions converging
pointwise in norm to a function f : Ω→ X . TFAE:

(1) {x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

(2) f is Pettis integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ in norm.



Convergence theorems for the Birkhoff integral II

Theorem (R., 2006)

Suppose X is isomorphic to a subspace of `∞.
Let fn : Ω→ X be a sequence of Birkhoff integrable functions and
f : Ω→ X be a function such that:

fn(ω)→ f (ω) weakly (resp. in norm) for every ω ∈Ω.

{x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

Then f is Birkhoff integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ weakly (resp. in norm).

Theorem (R., 2008)

Let fn : Ω→ X be a sequence of Pettis integrable functions converging
pointwise in norm to a function f : Ω→ X . TFAE:

(1) {x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

(2) f is Pettis integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ in norm.



Convergence theorems for the Birkhoff integral II

Theorem (R., 2006)

Suppose X is isomorphic to a subspace of `∞.
Let fn : Ω→ X be a sequence of Birkhoff integrable functions and
f : Ω→ X be a function such that:

fn(ω)→ f (ω) weakly (resp. in norm) for every ω ∈Ω.

{x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

Then f is Birkhoff integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ weakly (resp. in norm).

Theorem (R., 2008)

Let fn : Ω→ X be a sequence of Pettis integrable functions converging
pointwise in norm to a function f : Ω→ X . TFAE:

(1) {x∗fn : n ∈ N, x∗ ∈ BX ∗} is uniformly integrable.

(2) f is Pettis integrable and for each A ∈ Σ we have∫
A fn dµ →

∫
A f dµ in norm.



THE MCSHANE INTEGRAL



Definition

A function f : [0,1]→ R is Kurzweil-Henstock integrable,

with integral α ∈ R,
if for each ε > 0 there is a function δ : [0,1]→ R+ such that∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points ti ∈ [bi−1,bi ] such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].

KH integrable =⇒ measurable

f is Lebesgue integrable ⇐⇒ both f and |f | are KH integrable.

KH integrable ; Lebesgue integrable

g differentiable ⇒ g ′ is KH integrable, with integral g(1)−g(0).
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The McShane integral of vector-valued functions

Definition

A function f : [0,1]→ X is McShane integrable,
with integral x ∈ X ,

if for each ε > 0 there is a function δ : [0,1]→ R+ such that∥∥∥ n

∑
i=1

(bi −bi−1)f (ti )−x
∥∥∥ < ε

for every partition 0 = b0 < b1 < · · ·< bn = 1 and every choice of
points t1, . . . , tn ∈ [0,1] such that [bi−1,bi ]⊂ [ti −δ (ti ), ti +δ (ti )].

For a function f : [0,1]→ X we always have

Birkhoff =⇒ McShane =⇒ Pettis

The reverse implications are not true in general.

[Fremlin, Gordon, Mendoza (90’s), Solodov (2005)]
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Question

Are there non-separable Banach spaces for which

Birkhoff ≡ McShane
or

McShane ≡ Pettis ??

Yes, like `1(Γ), where Γ is any uncountable set

Because any Pettis integrable function f : [0,1]→ `1(Γ) is strongly
measurable !!

Theorem (Fremlin, 1992)

Suppose X is isomorphic to a subspace of `∞.
Then a function f : [0,1]→ X is Birkhoff integrable
if and only if it is McShane integrable.
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McShane vs Pettis I

Theorem (Di Piazza-Preiss, 2003)

Suppose either:

X = c0(Γ) (for some non-empty set Γ), or

X admits a uniformly convex equivalent norm.

Then a function f : [0,1]→ X is McShane integrable
if and only if it is Pettis integrable.

Techniques used by Di Piazza and Preiss . . .

Projectional resolutions of the identity (PRIs).

Reduction to the case of scalarly null functions.

Theorem (Lewis 1970 and Edgar 1977)

Suppose X is WCG. Let f : [0,1]→ X be a scalarly measurable function.
Then there is a strongly measurable function g : [0,1]→ X such that
f −g is scalarly null.
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McShane vs Pettis II

Problem (Di Piazza-Preiss, 2003)

Are the McShane and Pettis integrals equivalent for functions
taking values in arbitrary WCG spaces?

Problem (Musial, 1999)

Scalarly null =⇒ McShane integrable ??

In general, the answer to Musial’s problem is “no”:

Under CH . . .

. . . there exist scalarly null functions f : [0,1]→ `∞([0,1]) which are not
McShane integrable (Di Piazza-Preiss, 2003).

Example (R., 2008)

Under CH, there exist a weakly Lindelöf determined Banach space X and
a scalarly null function f : [0,1]→ X which is not McShane integrable.
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Theorem (R., 2008)
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