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Summary

We study Birkhoff integrability for functions defined on a complete
probability space with values in a Banach space. This notion lies
between Bochner and Pettis integrability and involves infinite
Riemann-type sums.

For real-valued functions Birkhoff and Lebesgue integrability
coincide, [Fr15].

For arbitrary Banach spaces we have

Bochner =⇒ Birkhoff =⇒ Pettis

None of the reverse implications hold in general,[Bir35, Phi40].

For separable Banach spaces: Birkhoff = Pettis, [Pet38].
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Fréchet (1915)

Given f : Ω −→ R, for each partition Γ of Ω into countably many
sets (An) of Σ consider a relative upper and lower integral by the
expressions

J∗(f ,Γ) = ∑
n

sup f (An) µ(An) and J∗(f ,Γ) = ∑
n

inf f (An) µ(An),

(assuming both series are well defined and absolutely convergent).

Then the intersection of the “relative integral ranges”

J∗(f ,Γ)≤ x ≤ J∗(f ,Γ),

for variable Γ is not empty. This intersection is a single point x if,
and only if, f is Lebesgue integrable and x =

∫
Ω f dµ.
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Birkhoff (1935)

Let f : Ω −→ X be a function. If Γ is a partition of Ω into
countably many sets (An) of Σ, the function f is called summable
with respect to Γ if f (An) is bounded whenever µ(An) > 0 and the
set of sums

J(f ,Γ) =
{

∑
n

f (tn)µ(An) : tn ∈ An

}
is made up of unconditionally convergent series.

The function f is said to be Birkhoff integrable if for every ε > 0
there is a countable partition Γ = (An) of Ω in Σ for which f is
summable and ‖ ‖-diam (J(f ,Γ)) < ε. In this case, the Birkhoff
integral of f is the only point in the intersection⋂

{co(J(f ,Γ)) : f is summable with respect to Γ}.
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Definition

We say that a family H ⊂ RΩ has the Birkhoff property if for
every ε > 0 there is a countable partition Γ = (An) of Ω in Σ such
that ∣∣∣ m

∑
k=1

h(tk)µ(Ak)−
m

∑
k=1

h(t ′k)µ(Ak)
∣∣∣ < ε

for all tk , t ′k ∈ Ak , k ∈ N, all m ∈ N and all h ∈H .

Definition ([RS85])

We say that a family H ⊂ RΩ has the Bourgain property if for
every ε > 0 and every A ∈ Σ with µ(A) > 0 there are
A1, . . . ,An ⊂ A, Ai ∈ Σ with µ(Ai ) > 0, such that for every h ∈H

inf
1≤i≤n

| · |-diam (h(Ai )) < ε.
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Lemma

Let H ⊂ RΩ be a family of functions. Then:

(i) if H has the Birkhoff property, then H has the Bourgain
property;

(ii) if H is uniformly bounded and has the Bourgain property,
then H has the Birkhoff property.
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Fréchet and Birkhoff views

Our basic result
Applications
References

Theorem

Let f : Ω → X be a bounded function. The following conditions are
equivalent:

(i) f is Birkhoff integrable;

(ii) the family Zf = {〈x∗, f 〉 : x∗ ∈ X ∗, ‖x∗‖ ≤ 1} has the
Bourgain property.

Corollary

Let f : Ω → X ∗ be a bounded function. The following conditions
are equivalent:

(i) f is Birkhoff integrable;

(ii) the family {〈f ,x〉 : x ∈ X , ‖x‖ ≤ 1} has the Bourgain
property.
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The unbounded case
WRNP and the Birkhoff integral

Lemma

Let f : Ω −→ X be a function. The following conditions are
equivalent:

(i) the family Zf = {〈x∗, f 〉 : x∗ ∈ X ∗, ‖x∗‖ ≤ 1} has the
Bourgain property;

(ii) the family Zf has the Birkhoff property.

In this case, there is a countable partition (An) of Ω in Σ such that
f (An) is bounded whenever µ(An) > 0.
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The unbounded case
WRNP and the Birkhoff integral

Theorem

Let f : Ω −→ X be a function. The following conditions are
equivalent:

(i) f is Birkhoff integrable;

(ii) the family Zf is a uniformly integrable subset of L 1(µ) with
the Bourgain property.

Corollary

Let f : Ω −→ X ∗ be a function. The following conditions are
equivalent:

(i) f is Birkhoff integrable;

(ii) the family {〈f ,x〉 : x ∈ X , ‖x‖ ≤ 1} is a uniformly integrable
subset of L 1(µ) with the Bourgain property.
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The unbounded case
WRNP and the Birkhoff integral

Definition ([Mus79])

A Banach space X has the weak Radon-Nikodým property
(WRNP) if for every complete probability space (Ω,Σ,µ) and
every µ-continuous countably additive vector measure ν : Σ −→ X
of σ -finite variation, there is a Pettis integrable function
f : Ω −→ X such that

ν(E ) =
∫
E

f dµ for all E ∈ Σ.
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The unbounded case
WRNP and the Birkhoff integral

Theorem

Let X be a Banach space. The following conditions are equivalent:

(i) X ∗ has the WRNP;

(ii) X does not contain a copy of `1;

(iii) for every complete probability space (Ω,Σ,µ) and every
µ-continuous countably additive vector measure ν : Σ −→ X ∗

of σ -finite variation, there is a Birkhoff integrable function
f : Ω −→ X ∗ such that

ν(E ) =
∫
E

f dµ for all E ∈ Σ.
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