Uniqueness of measure extensions in Banach spaces

José Rodríguez and Gabriel Vera

Universidad de Murcia

(Studia Math. 175 (2006), no. 2, 139-155)

Banach space theory: classical topics and new directions Cáceres – September 2006

(日) (문) (문) (문) (문)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A basic question in measure theory

Given two σ -algebras

$$\Sigma' \subset \Sigma$$

(日) (문) (문) (문) (문)

on a set Ω and two measures μ and ν on Σ ,

A basic question in measure theory

Given two σ -algebras

$$\Sigma' \subset \Sigma$$

on a set Ω and two measures μ and ν on Σ ,

$$\mu|_{\Sigma'} = \nu|_{\Sigma'} \implies \mu = \nu ??$$

A basic question in measure theory

Given two σ -algebras

$$\Sigma' \subset \Sigma$$

on a set Ω and two measures μ and ν on Σ ,

$$\mu|_{\Sigma'} = \nu|_{\Sigma'} \implies \mu = \nu ??$$

Example

Given a topological space (T, \mathfrak{T}) , we have

Baire(T, \mathfrak{T}) \subset Borel(T, \mathfrak{T}).

A basic question in measure theory

Given two σ -algebras

$$\Sigma' \subset \Sigma$$

on a set Ω and two measures μ and ν on Σ ,

$$\mu|_{\Sigma'} = \nu|_{\Sigma'} \implies \mu = \nu ??$$

Example

Given a topological space (T, \mathfrak{T}) , we have

 $\operatorname{Baire}(T,\mathfrak{T}) \subset \operatorname{Borel}(T,\mathfrak{T}).$

The question above has *affirmative answer* if μ and v are **Radon**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Then

$$\begin{array}{rcl} \text{Baire}(X,w) & \subset & \text{Baire}(X,\text{norm}) \\ & & & \\ &$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Then

$$\begin{array}{rcl} \text{Baire}(X,w) & \subset & \text{Baire}(X,\text{norm}) \\ & & & \\ &$$

and

 $\begin{array}{rcrcrc} \text{Baire}(X^*,w^*) & \subset & \text{Baire}(X^*,w) & \subset & \text{Baire}(X^*,\text{norm}) \\ & \cap & & & \parallel \\ & & & \\ \text{Borel}(X^*,w^*) & \subset & \text{Borel}(X^*,w) & \subset & \text{Borel}(X^*,\text{norm}) \end{array}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Then

$$\begin{array}{rcl} \text{Baire}(X,w) & \subset & \text{Baire}(X,\text{norm}) \\ & & & \\ &$$

and

$$\begin{array}{rcl} \text{Baire}(X^*, w^*) & \subset & \text{Baire}(X^*, w) & \subset & \text{Baire}(X^*, \text{norm}) \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ &$$

Example (Tortrat, 1976)

Let μ and ν be Radon measures on Borel(X, norm).

Then

$$\begin{array}{rcl} \text{Baire}(X,w) & \subset & \text{Baire}(X,\text{norm}) \\ & & & \\ &$$

and

$$\begin{array}{rcl} \text{Baire}(X^*,w^*) & \subset & \text{Baire}(X^*,w) & \subset & \text{Baire}(X^*,\text{norm}) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & &$$

Example (Tortrat, 1976)

Let μ and v be Radon measures on Borel(X, norm). Then

$$\mu|_{\operatorname{Baire}(X,w)} = \nu|_{\operatorname{Baire}(X,w)} \implies \mu = \nu$$

NUR NUR NER NER

 $B \subset B_{X^*} \equiv$ norming set, i.e. $||x|| = \sup\{|x^*(x)| : x^* \in B\} \forall x \in X$.

<□> <□> <□> <=> <=> <=> <=> <=> <=> <<</p>

Theorem (Edgar, 1977)

Baire($X, \sigma(X, B)$) is the σ -algebra on X generated by B.

Theorem (Edgar, 1977)

Baire($X, \sigma(X, B)$) is the σ -algebra on X generated by B.

 $\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

Theorem (Edgar, 1977)

 $Baire(X, \sigma(X, B))$ is the σ -algebra on X generated by B.

 $\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)$

Our aim is to study the following question

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

Theorem (Edgar, 1977)

Baire($X, \sigma(X, B)$) is the σ -algebra on X generated by B.

 $\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)$

Our aim is to study the following question

Given two measures μ and v on Baire(X, w),

Theorem (Edgar, 1977)

 $Baire(X, \sigma(X, B))$ is the σ -algebra on X generated by B.

 $\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)$

Our aim is to study the following question

Given two measures μ and ν on Baire(X, w),

$$\mu|_{\text{Baire}(X,\sigma(X,B))} = \nu|_{\text{Baire}(X,\sigma(X,B))} \implies \mu = \nu ??$$

<□> <□> <□> <=> <=> <=> <=> <=> <=> <</p>

Definition

 $f: \Omega \rightarrow X$ is scalarly bounded if

Definition

- $f: \Omega \rightarrow X$ is scalarly bounded if
 - x^*f is Σ -measurable $\forall x^* \in X^*$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つくぐ

Definition

- $f: \Omega \rightarrow X$ is scalarly bounded if
 - x^*f is Σ -measurable $\forall x^* \in X^*$,
 - there is M > 0 such that $\forall x^* \in B_{X^*}$ we have $|x^*f| \leq M \eta$ -a.e.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

Definition

- $f: \Omega \rightarrow X$ is scalarly bounded if
 - x^*f is Σ -measurable $\forall x^* \in X^*$,
 - there is M>0 such that $\forall x^*\in B_{X^*}$ we have $|x^*f|\leq M$ η -a.e.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

Definition

- $f: \Omega \rightarrow X$ is scalarly bounded if
 - x^*f is Σ -measurable $\forall x^* \in X^*$,
 - there is M>0 such that $\forall x^*\in B_{X^*}$ we have $|x^*f|\leq M$ η -a.e.

Definition

A scalarly bounded function $f: \Omega \rightarrow X$ is **Pettis integrable** if

Definition

 $f: \Omega \rightarrow X$ is scalarly bounded if

- x^*f is Σ -measurable $\forall x^* \in X^*$,
- there is M>0 such that $\forall x^* \in B_{X^*}$ we have $|x^*f| \leq M$ η -a.e.

Definition

A scalarly bounded function $f: \Omega \to X$ is **Pettis integrable** if for each $E \in \Sigma$ there is $x_E \in X$ such that

$$\int_E x^* f \ d\eta = x^*(x_E) \quad \forall x^* \in X^*.$$

Definition

 $f: \Omega \rightarrow X$ is scalarly bounded if

- x^*f is Σ -measurable $\forall x^* \in X^*$,
- there is M>0 such that $\forall x^* \in B_{X^*}$ we have $|x^*f| \leq M$ η -a.e.

Definition

A scalarly bounded function $f: \Omega \to X$ is **Pettis integrable** if for each $E \in \Sigma$ there is $x_E \in X$ such that

$$\int_E x^* f \ d\eta = x^*(x_E) \quad \forall x^* \in X^*.$$

X has the Pettis Integral Property (PIP) if,

Definition

 $f: \Omega \rightarrow X$ is scalarly bounded if

- x^*f is Σ -measurable $\forall x^* \in X^*$,
- there is M>0 such that $\forall x^* \in B_{X^*}$ we have $|x^*f| \leq M$ η -a.e.

Definition

A scalarly bounded function $f: \Omega \to X$ is **Pettis integrable** if for each $E \in \Sigma$ there is $x_E \in X$ such that

$$\int_E x^* f \ d\eta = x^*(x_E) \quad \forall x^* \in X^*.$$

X has the **Pettis Integral Property (PIP)** if, for each measure space (Ω, Σ, η) ,

Definition

 $f: \Omega \rightarrow X$ is scalarly bounded if

- x^*f is Σ -measurable $\forall x^* \in X^*$,
- there is M>0 such that $\forall x^* \in B_{X^*}$ we have $|x^*f| \leq M$ η -a.e.

Definition

A scalarly bounded function $f: \Omega \to X$ is **Pettis integrable** if for each $E \in \Sigma$ there is $x_E \in X$ such that

$$\int_E x^* f \ d\eta = x^*(x_E) \quad \forall x^* \in X^*.$$

X has the **Pettis Integral Property (PIP)** if, for each measure space (Ω, Σ, η) , every scalarly bounded function from Ω to X is Pettis integrable.

A measure v on Baire(X, w) is **convexly** τ -additive if

A measure v on Baire(X, w) is **convexly** τ -additive if $v(C_{\alpha}) \searrow 0$ for every decreasing net $C_{\alpha} \searrow 0$ of convex closed elements of Baire(X, w).

A measure v on Baire(X, w) is **convexly** τ -additive if $v(C_{\alpha}) \searrow 0$ for every decreasing net $C_{\alpha} \searrow 0$ of convex closed elements of Baire(X, w).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

A measure v on Baire(X, w) is **convexly** τ -additive if $v(C_{\alpha}) \searrow 0$ for every decreasing net $C_{\alpha} \searrow 0$ of convex closed elements of Baire(X, w).

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

• f is Σ -Baire(X, w)-measurable,

A measure v on Baire(X, w) is **convexly** τ -additive if $v(C_{\alpha}) \searrow 0$ for every decreasing net $C_{\alpha} \searrow 0$ of convex closed elements of Baire(X, w).

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

- f is Σ -Baire(X, w)-measurable,
- the formula

 $f(\eta)(A) := \eta(f^{-1}(A))$

defines a measure $f(\eta)$ on Baire(X, w),

A measure v on $\operatorname{Baire}(X, w)$ is **convexly** τ -additive if $v(C_{\alpha}) \searrow 0$ for every decreasing net $C_{\alpha} \searrow \emptyset$ of convex closed elements of $\operatorname{Baire}(X, w)$.

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

- f is Σ -Baire(X, w)-measurable,
- the formula

 $f(\eta)(A) := \eta(f^{-1}(A))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

defines a measure $f(\eta)$ on $\operatorname{Baire}(X, w)$,

• f is Pettis integrable $\iff f(\eta)$ is convexly τ -additive (Talagrand, 1984).

A measure v on $\operatorname{Baire}(X, w)$ is **convexly** τ -additive if $v(C_{\alpha}) \searrow 0$ for every decreasing net $C_{\alpha} \searrow \emptyset$ of convex closed elements of $\operatorname{Baire}(X, w)$.

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

- f is Σ -Baire(X, w)-measurable,
- the formula

 $f(\eta)(A) := \eta(f^{-1}(A))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

defines a measure $f(\eta)$ on $\operatorname{Baire}(X, w)$,

• f is Pettis integrable $\iff f(\eta)$ is convexly τ -additive (Talagrand, 1984).
Definition

A measure v on $\operatorname{Baire}(X, w)$ is **convexly** τ -additive if $v(C_{\alpha}) \searrow 0$ for every decreasing net $C_{\alpha} \searrow \emptyset$ of convex closed elements of $\operatorname{Baire}(X, w)$.

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

- f is Σ -Baire(X, w)-measurable,
- the formula

 $f(\eta)(A) := \eta(f^{-1}(A))$

defines a measure $f(\eta)$ on Baire(X, w),

• f is Pettis integrable $\iff f(\eta)$ is convexly τ -additive (Talagrand, 1984).

Corollary (Talagrand, 1984)

X has the PIP if and only if every measure on Baire(X, w) is convexly τ -additive.

Definition

A measure v on $\operatorname{Baire}(X, w)$ is **convexly** τ -additive if $v(C_{\alpha}) \searrow 0$ for every decreasing net $C_{\alpha} \searrow \emptyset$ of convex closed elements of $\operatorname{Baire}(X, w)$.

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

- f is Σ -Baire(X, w)-measurable,
- the formula

 $f(\eta)(A) := \eta(f^{-1}(A))$

defines a measure $f(\eta)$ on Baire(X, w),

• f is Pettis integrable $\iff f(\eta)$ is convexly τ -additive (Talagrand, 1984).

Corollary (Talagrand, 1984)

X has the PIP if and only if every measure on $\mathrm{Baire}(X,w)$ is convexly $\tau\text{-}\mathrm{additive}.$

This is the case if X has the property (C) of Corson.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)$

Main Theorem

Let μ and ν be two convexly τ -additive measures on Baire(X, w).

 $\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)$

Main Theorem

Let μ and ν be two convexly τ -additive measures on $\operatorname{Baire}(X, w)$. Then

$$\mu|_{\operatorname{Baire}(X,\sigma(X,B))} = \nu|_{\operatorname{Baire}(X,\sigma(X,B))} \implies \mu = \nu.$$

 $\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)$

Main Theorem

Let μ and v be two convexly τ -additive measures on Baire(X, w). Then

$$\mu|_{\operatorname{Baire}(X,\sigma(X,B))} = \nu|_{\operatorname{Baire}(X,\sigma(X,B))} \implies \mu = \nu.$$

Corollary

Suppose that X has the PIP.

 $\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)$

Main Theorem

Let μ and v be two convexly τ -additive measures on Baire(X, w). Then

$$\mu|_{\operatorname{Baire}(X,\sigma(X,B))} = \nu|_{\operatorname{Baire}(X,\sigma(X,B))} \implies \mu = \nu.$$

Corollary

Suppose that X has the PIP.

Let μ and ν be two measures on Baire(X, w).

 $\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)$

Main Theorem

Let μ and v be two convexly τ -additive measures on Baire(X, w). Then

$$\mu|_{\operatorname{Baire}(X,\sigma(X,B))} = \nu|_{\operatorname{Baire}(X,\sigma(X,B))} \implies \mu = \nu.$$

Corollary

Suppose that X has the PIP.

Let μ and v be two measures on Baire(X, w). Then

$$\mu|_{\operatorname{Baire}(X,\sigma(X,B))} = \nu|_{\operatorname{Baire}(X,\sigma(X,B))} \implies \mu = \nu.$$

When $X = Y^*$ for some Banach space Y,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

When $X = Y^*$ for some Banach space Y, we can take $B = B_Y$,

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○へ⊙

Definition

We say that $X = Y^*$ has the Uniqueness of Measure Extensions Property (UMEP) if

Definition

We say that $X = Y^*$ has the **Uniqueness of Measure Extensions Property (UMEP)** if

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

for any two measures μ and ν on Baire(X, w),

Definition

We say that $X = Y^*$ has the Uniqueness of Measure Extensions Property (UMEP) if

for any two measures μ and ν on Baire(X, w), we have

$$\mu|_{\operatorname{Baire}(X,w^*)} = \nu|_{\operatorname{Baire}(X,w^*)} \implies \mu = \nu.$$

Definition

We say that $X = Y^*$ has the Uniqueness of Measure Extensions Property (UMEP) if

for any two measures μ and ν on $\operatorname{Baire}(X, w)$, we have

$$\mu|_{\operatorname{Baire}(X,w^*)} = \nu|_{\operatorname{Baire}(X,w^*)} \implies \mu = \nu.$$

In general:

 $PIP \implies UMEP \implies (X, w)$ realcompact.

Definition

We say that $X = Y^*$ has the **Uniqueness of Measure Extensions Property (UMEP)** if

for any two measures μ and ν on $\operatorname{Baire}(X, w)$, we have

$$\mu|_{\operatorname{Baire}(X,w^*)} = \nu|_{\operatorname{Baire}(X,w^*)} \implies \mu = \nu.$$

In general:

$$PIP \implies UMEP \implies (X, w)$$
 realcompact.

Example (Fremlin, based on Fremlin-Talagrand (1979)) $\ell^{\infty}(\mathbb{N})$ fails the UMEP.

Definition

We say that $X = Y^*$ has the **Uniqueness of Measure Extensions Property (UMEP)** if

for any two measures μ and ν on $\operatorname{Baire}(X, w)$, we have

$$\mu|_{\operatorname{Baire}(X,w^*)} = \nu|_{\operatorname{Baire}(X,w^*)} \implies \mu = \nu.$$

In general:

$$PIP \implies UMEP \implies (X, w)$$
 realcompact.

Example (Fremlin, based on Fremlin-Talagrand (1979))

 $\ell^{\infty}(\mathbb{N})$ fails the UMEP.

We don't know whether PIP=UMEP for all dual spaces.

$$\begin{array}{rcl} \text{Baire}(X,w^*) & \subset & \text{Baire}(X,w) \\ & \cap & & \cap \\ \text{Borel}(X,w^*) & \subset & \text{Univ}(X,w^*) \end{array}$$

where the red inclusion is due to Haydon (1976).

$$\begin{array}{rcl} \operatorname{Baire}(X,w^*) & \subset & \operatorname{Baire}(X,w) \\ & & \cap \\ \operatorname{Borel}(X,w^*) & \subset & \operatorname{Univ}(X,w^*) \end{array}$$

where the red inclusion is due to Haydon (1976).

So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on $Borel(X, w^*)$ can be restricted to Baire(X, w).

$$\begin{array}{rcl} \text{Baire}(X,w^*) & \subset & \text{Baire}(X,w) \\ & \cap & & \cap \\ \text{Borel}(X,w^*) & \subset & \text{Univ}(X,w^*) \end{array}$$

where the red inclusion is due to Haydon (1976).

So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on Borel(X, w^*) can be restricted to Baire(X, w). Set $\vartheta^0 = \tilde{\vartheta}|_{\text{Baire}(X, w)}$.

$$\begin{array}{rcl} \text{Baire}(X,w^*) & \subset & \text{Baire}(X,w) \\ & \cap & & \cap \\ \text{Borel}(X,w^*) & \subset & \text{Univ}(X,w^*) \end{array}$$

where the red inclusion is due to Haydon (1976).

So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on Borel(X, w^*) can be restricted to Baire(X, w). Set $\vartheta^0 = \tilde{\vartheta}|_{\text{Baire}(X, w)}$.

$$\begin{array}{rcl} \text{Baire}(X,w^*) & \subset & \text{Baire}(X,w) \\ & \cap & & \cap \\ \text{Borel}(X,w^*) & \subset & \text{Univ}(X,w^*) \end{array}$$

where the red inclusion is due to Haydon (1976).

So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on Borel(X, w^*) can be restricted to Baire(X, w). Set $\vartheta^0 = \tilde{\vartheta}|_{\text{Baire}(X, w)}$.

Theorem

(i) A measure μ on Baire(X, w) is convexly τ -additive if and only if $\mu = \vartheta^0$ for some Radon measure ϑ on Borel(X, w^{*}).

$$\begin{array}{rcl} \operatorname{Baire}(X,w^*) & \subset & \operatorname{Baire}(X,w) \\ & \cap & & \cap \\ \operatorname{Borel}(X,w^*) & \subset & \operatorname{Univ}(X,w^*) \end{array}$$

where the red inclusion is due to Haydon (1976).

So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on Borel(X, w^*) can be restricted to Baire(X, w). Set $\vartheta^0 = \tilde{\vartheta}|_{\text{Baire}(X, w)}$.

- (i) A measure μ on Baire(X, w) is convexly τ -additive if and only if $\mu = \vartheta^0$ for some Radon measure ϑ on Borel(X, w^{*}).
- (ii) Every measure on $\text{Baire}(X, w^*)$ can be extended in a unique way to a convexly τ -additive measure on Baire(X, w).

$$\begin{array}{rcl} \operatorname{Baire}(X,w^*) &\subset & \operatorname{Baire}(X,w) \\ & \cap & & \cap \\ \operatorname{Borel}(X,w^*) &\subset & \operatorname{Univ}(X,w^*) \end{array}$$

where the red inclusion is due to Haydon (1976).

So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on Borel(X, w^*) can be restricted to Baire(X, w). Set $\vartheta^0 = \tilde{\vartheta}|_{\text{Baire}(X, w)}$.

- (i) A measure μ on Baire(X, w) is convexly τ -additive if and only if $\mu = \vartheta^0$ for some Radon measure ϑ on Borel(X, w^{*}).
- (ii) Every measure on $\text{Baire}(X, w^*)$ can be extended in a unique way to a convexly τ -additive measure on Baire(X, w).
- (iii) If X has the PIP, then every measure on $\text{Baire}(X, w^*)$ can be extended in a unique way to a measure on Baire(X, w).

$$\begin{array}{rcl} \operatorname{Baire}(X,w^*) &\subset & \operatorname{Baire}(X,w) \\ & \cap & & \cap \\ \operatorname{Borel}(X,w^*) &\subset & \operatorname{Univ}(X,w^*) \end{array}$$

where the red inclusion is due to Haydon (1976).

So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on Borel(X, w^*) can be restricted to Baire(X, w). Set $\vartheta^0 = \tilde{\vartheta}|_{\text{Baire}(X, w)}$.

- (i) A measure μ on Baire(X, w) is convexly τ -additive if and only if $\mu = \vartheta^0$ for some Radon measure ϑ on Borel(X, w^{*}).
- (ii) Every measure on $\text{Baire}(X, w^*)$ can be extended in a unique way to a convexly τ -additive measure on Baire(X, w).
- (iii) If X has the PIP, then every measure on $\text{Baire}(X, w^*)$ can be extended in a unique way to a measure on Baire(X, w).
- (iv) X has the PIP \iff X has the UMEP.

$$\begin{array}{rcl} \operatorname{Baire}(X,w^*) &\subset & \operatorname{Baire}(X,w) \\ & \cap & & \cap \\ \operatorname{Borel}(X,w^*) &\subset & \operatorname{Univ}(X,w^*) \end{array}$$

where the red inclusion is due to Haydon (1976).

So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on Borel(X, w^*) can be restricted to Baire(X, w). Set $\vartheta^0 = \tilde{\vartheta}|_{\text{Baire}(X, w)}$.

- (i) A measure μ on Baire(X, w) is convexly τ -additive if and only if $\mu = \vartheta^0$ for some Radon measure ϑ on Borel(X, w^{*}).
- (ii) Every measure on $\text{Baire}(X, w^*)$ can be extended in a unique way to a convexly τ -additive measure on Baire(X, w).
- (iii) If X has the PIP, then every measure on $\text{Baire}(X, w^*)$ can be extended in a unique way to a measure on Baire(X, w).
- (iv) X has the PIP \iff X has the UMEP.

If (B_{X^*}, w^*) is angelic (e.g. X is WCG),

If (B_{X^*}, w^*) is angelic (e.g. X is WCG), then

 $\operatorname{Baire}(X, \sigma(X, B)) = \operatorname{Baire}(X, w)$

◆□> ◆□> ◆目> ◆目> ◆日> ● のへの

for any norming set $B \subset B_{X^*}$.

If (B_{X^*}, w^*) is angelic (e.g. X is WCG), then

 $\operatorname{Baire}(X, \sigma(X, B)) = \operatorname{Baire}(X, w)$

for any norming set $B \subset B_{X^*}$.

Proposition

Suppose that $X = Y^*$ for some Banach space Y. TFAE:

If (B_{X^*}, w^*) is angelic (e.g. X is WCG), then

 $\operatorname{Baire}(X, \sigma(X, B)) = \operatorname{Baire}(X, w)$

for any norming set $B \subset B_{X^*}$.

Proposition

Suppose that $X = Y^*$ for some Banach space Y. TFAE:

(i) $\operatorname{Baire}(X, w^*) = \operatorname{Baire}(X, w);$

If (B_{X^*}, w^*) is angelic (e.g. X is WCG), then

 $\operatorname{Baire}(X, \sigma(X, B)) = \operatorname{Baire}(X, w)$

for any norming set $B \subset B_{X^*}$.

Proposition

Suppose that $X = Y^*$ for some Banach space Y. TFAE:

```
(i) Baire(X, w^*) = Baire(X, w);
```

(ii) Y is weak*-sequentially dense in Y^{**} ;

If (B_{X^*}, w^*) is angelic (e.g. X is WCG), then

 $\operatorname{Baire}(X, \sigma(X, B)) = \operatorname{Baire}(X, w)$

for any norming set $B \subset B_{X^*}$.

Proposition

Suppose that $X = Y^*$ for some Banach space Y. TFAE:

(i) Baire(
$$X, w^*$$
) = Baire(X, w);

(ii) Y is weak*-sequentially dense in Y^{**} ;

(iii) $Y \not\supseteq \ell^1(\mathbb{N})$ and for each $y^{**} \in Y^{**}$ there is a countable set $D \subset Y$ such that $y^{**} \in \overline{D}^{\text{weak}^*}$.

If (B_{X^*}, w^*) is angelic (e.g. X is WCG), then

 $\operatorname{Baire}(X, \sigma(X, B)) = \operatorname{Baire}(X, w)$

for any norming set $B \subset B_{X^*}$.

Proposition

Suppose that $X = Y^*$ for some Banach space Y. TFAE:

(i) Baire(
$$X, w^*$$
) = Baire(X, w);

(ii) Y is weak*-sequentially dense in Y^{**} ;

(iii)
$$Y \not\supseteq \ell^1(\mathbb{N})$$
 and for each $y^{**} \in Y^{**}$ there is a countable set $D \subset Y$ such that $y^{**} \in \overline{D}^{\text{weak}^*}$.
Remark

If (B_{X^*}, w^*) is angelic (e.g. X is WCG), then

 $\operatorname{Baire}(X, \sigma(X, B)) = \operatorname{Baire}(X, w)$

for any norming set $B \subset B_{X^*}$.

Proposition

Suppose that $X = Y^*$ for some Banach space Y. TFAE:

- (i) Baire(X, w^*) = Baire(X, w);
- (ii) Y is weak*-sequentially dense in Y^{**} ;
- (iii) $Y \not\supseteq \ell^1(\mathbb{N})$ and for each $y^{**} \in Y^{**}$ there is a countable set $D \subset Y$ such that $y^{**} \in \overline{D}^{\text{weak}^*}$.

This is the case if X has the property (C) of Corson.

◆□> <圖> <≧> <≧> <≧> <</p>

•
$$\ell^1(\omega_1)$$
 has the PIP (Edgar, 1979)

• $\ell^1(\omega_1)$ has the PIP (Edgar, 1979) and

Baire($\ell^1(\omega_1), w^*$) \neq Baire($\ell^1(\omega_1), w$).

• $\ell^1(\omega_1)$ has the PIP (Edgar, 1979) and

Baire($\ell^1(\omega_1), w^*$) \neq Baire($\ell^1(\omega_1), w$).

• C[0,1]* has the PIP (Edgar, 1979) if we assume that the continuum is a measure zero cardinal (e.g. under CH).

• $\ell^1(\omega_1)$ has the PIP (Edgar, 1979) and

Baire($\ell^1(\omega_1), w^*$) \neq Baire($\ell^1(\omega_1), w$).

C[0,1]* has the PIP (Edgar, 1979) if we assume that the continuum is a measure zero cardinal (e.g. under CH).
We always have

Baire($C[0,1]^*, w^*$) \neq Baire($C[0,1]^*, w$).

• $\ell^1(\omega_1)$ has the PIP (Edgar, 1979) and

Baire($\ell^1(\omega_1), w^*$) \neq Baire($\ell^1(\omega_1), w$).

C[0,1]* has the PIP (Edgar, 1979) if we assume that the continuum is a measure zero cardinal (e.g. under CH).
We always have

Baire($C[0,1]^*, w^*$) \neq Baire($C[0,1]^*, w$).

• C(K) where K is the Kunen-Haydon-Talagrand compactum (constructed under CH).

• $\ell^1(\omega_1)$ has the PIP (Edgar, 1979) and

Baire($\ell^1(\omega_1), w^*$) \neq Baire($\ell^1(\omega_1), w$).

C[0,1]* has the PIP (Edgar, 1979) if we assume that the continuum is a measure zero cardinal (e.g. under CH).
We always have

Baire($C[0,1]^*, w^*$) \neq Baire($C[0,1]^*, w$).

• C(K) where K is the Kunen-Haydon-Talagrand compactum (constructed under CH). This space has the PIP

• $\ell^1(\omega_1)$ has the PIP (Edgar, 1979) and

Baire($\ell^1(\omega_1), w^*$) \neq Baire($\ell^1(\omega_1), w$).

C[0,1]* has the PIP (Edgar, 1979) if we assume that the continuum is a measure zero cardinal (e.g. under CH).
We always have

Baire($C[0,1]^*, w^*$) \neq Baire($C[0,1]^*, w$).

• C(K) where K is the Kunen-Haydon-Talagrand compactum (constructed under CH). This space has the PIP and

 $\operatorname{Baire}(C(K), \sigma(C(K), K)) \neq \operatorname{Baire}(C(K), w).$

References

H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15.

- G. A. Edgar, Measurability in a Banach space, Indiana Univ. Math. J. 26 (1977), no. 4, 663-677.
 - , Measurability in a Banach space. II, Indiana Univ. Math. J. 28 (1979), no. 4, 559-579.
- _____, On pointwise-compact sets of measurable functions, Measure theory, Oberwolfach 1981 (Oberwolfach, 1981), Lecture Notes in Math., vol. 945, Springer, Berlin, 1982, pp. 24–28.
- D. H. Fremlin and M. Talagrand, A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Z. **168** (1979), no. 2, 117–142.
- R. Haydon, Some more characterizations of Banach spaces containing l₁, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 2, 269–276.

- A. lonescu Tulcea, *On pointwise convergence, compactness, and equicontinuity. II*, Advances in Math. **12** (1974), 171–177.
- E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing l¹, Israel J. Math. 20 (1975), no. 3-4, 375–384.
- G. Plebanek, On Pettis integrals with separable range, Colloq. Math. 64 (1993), no. 1, 71-78.
- R. Pol, On a question of H. H. Corson and some related problems, Fund. Math. 109 (1980), no. 2, 143-154.
- M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224.