Uniqueness of measure extensions in Banach spaces

José Rodríguez and Gabriel Vera

Universidad de Murcia
(Studia Math. 175 (2006), no. 2, 139-155)

Banach space theory: classical topics and new directions Cáceres - September 2006

Measure on a σ-algebra $\equiv[0, \infty)$-valued and countably additive.

Measure on a σ-algebra $\equiv[0, \infty)$-valued and countably additive.

A basic question in measure theory

Given two σ-algebras

$$
\Sigma^{\prime} \subset \Sigma
$$

on a set Ω

Measure on a σ-algebra $\equiv[0, \infty)$-valued and countably additive.

A basic question in measure theory

Given two σ-algebras

$$
\Sigma^{\prime} \subset \Sigma
$$

on a set Ω and two measures μ and v on Σ,

Measure on a σ-algebra $\equiv[0, \infty)$-valued and countably additive.

A basic question in measure theory

Given two σ-algebras

$$
\Sigma^{\prime} \subset \Sigma
$$

on a set Ω and two measures μ and v on Σ,

$$
\left.\mu\right|_{\Sigma^{\prime}}=\left.v\right|_{\Sigma^{\prime}} \quad \Longrightarrow \quad \mu=v ? ?
$$

Measure on a σ-algebra $\equiv[0, \infty)$-valued and countably additive.

A basic question in measure theory

Given two σ-algebras

$$
\Sigma^{\prime} \subset \Sigma
$$

on a set Ω and two measures μ and v on Σ,

$$
\left.\mu\right|_{\Sigma^{\prime}}=\left.v\right|_{\Sigma^{\prime}} \quad \Longrightarrow \quad \mu=v ? ?
$$

Example

Given a topological space (T, \mathfrak{T}), we have $\operatorname{Baire}(T, \mathfrak{T}) \subset \operatorname{Borel}(T, \mathfrak{T})$.

Measure on a σ-algebra $\equiv[0, \infty)$-valued and countably additive.

A basic question in measure theory

Given two σ-algebras

$$
\Sigma^{\prime} \subset \Sigma
$$

on a set Ω and two measures μ and v on Σ,

$$
\left.\mu\right|_{\Sigma^{\prime}}=\left.v\right|_{\Sigma^{\prime}} \quad \Longrightarrow \quad \mu=v ? ?
$$

Example

Given a topological space (T, \mathfrak{T}), we have

$$
\operatorname{Baire}(T, \mathfrak{T}) \subset \operatorname{Borel}(T, \mathfrak{T})
$$

The question above has affirmative answer if μ and v are Radon.

Let X be a Banach space.

Let X be a Banach space.
Then

Let X be a Banach space.

Then

and

Let X be a Banach space.

Then

and

Example (Tortrat, 1976)

Let μ and v be Radon measures on $\operatorname{Borel}(X$, norm $)$.

Let X be a Banach space.

Then

and

Example (Tortrat, 1976)

Let μ and v be Radon measures on $\operatorname{Borel}(X$, norm $)$. Then

$$
\left.\mu\right|_{\operatorname{Baire}(X, w)}=\left.v\right|_{\operatorname{Baire}(X, w)} \quad \Longrightarrow \mu=v .
$$

$B \subset B_{X^{*}} \equiv$ norming set, i.e. $\|x\|=\sup \left\{\left|x^{*}(x)\right|: x^{*} \in B\right\} \forall x \in X$.
$B \subset B_{X^{*}} \equiv$ norming set, i.e. $\|x\|=\sup \left\{\left|x^{*}(x)\right|: x^{*} \in B\right\} \forall x \in X$. $\sigma(X, B) \equiv$ topology on X of pointwise convergence on B.
$B \subset B_{X^{*}} \equiv$ norming set, i.e. $\|x\|=\sup \left\{\left|x^{*}(x)\right|: x^{*} \in B\right\} \forall x \in X$. $\sigma(X, B) \equiv$ topology on X of pointwise convergence on B.

Theorem (Edgar, 1977)

Baire $(X, \sigma(X, B))$ is the σ-algebra on X generated by B.
$B \subset B_{X^{*}} \equiv$ norming set, i.e. $\|x\|=\sup \left\{\left|x^{*}(x)\right|: x^{*} \in B\right\} \forall x \in X$. $\sigma(X, B) \equiv$ topology on X of pointwise convergence on B.

Theorem (Edgar, 1977)

Baire $(X, \sigma(X, B))$ is the σ-algebra on X generated by B.

$$
\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)
$$

$B \subset B_{X^{*}} \equiv$ norming set, i.e. $\|x\|=\sup \left\{\left|x^{*}(x)\right|: x^{*} \in B\right\} \forall x \in X$. $\sigma(X, B) \equiv$ topology on X of pointwise convergence on B.

Theorem (Edgar, 1977)

Baire $(X, \sigma(X, B))$ is the σ-algebra on X generated by B.
$\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)$

Our aim is to study the following question
$B \subset B_{X^{*}} \equiv$ norming set, i.e. $\|x\|=\sup \left\{\left|x^{*}(x)\right|: x^{*} \in B\right\} \forall x \in X$.
$\sigma(X, B) \equiv$ topology on X of pointwise convergence on B.

Theorem (Edgar, 1977)

Baire $(X, \sigma(X, B))$ is the σ-algebra on X generated by B.
$\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)$

Our aim is to study the following question
Given two measures μ and v on $\operatorname{Baire}(X, w)$,
$B \subset B_{X^{*}} \equiv$ norming set, i.e. $\|x\|=\sup \left\{\left|x^{*}(x)\right|: x^{*} \in B\right\} \forall x \in X$. $\sigma(X, B) \equiv$ topology on X of pointwise convergence on B.

Theorem (Edgar, 1977)

Baire $(X, \sigma(X, B))$ is the σ-algebra on X generated by B.
$\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)$

Our aim is to study the following question
Given two measures μ and v on $\operatorname{Baire}(X, w)$,

$$
\left.\mu\right|_{\operatorname{Baire}(X, \sigma(X, B))}=\left.v\right|_{\operatorname{Baire}(X, \sigma(X, B))} \quad \Longrightarrow \quad \mu=v ? ?
$$

Let (Ω, Σ, η) be a measure space.

Let (Ω, Σ, η) be a measure space.

Definition

$f: \Omega \rightarrow X$ is scalarly bounded if

Let (Ω, Σ, η) be a measure space.

Definition

$f: \Omega \rightarrow X$ is scalarly bounded if

- $x^{*} f$ is Σ-measurable $\forall x^{*} \in X^{*}$,

Let (Ω, Σ, η) be a measure space.

Definition

$f: \Omega \rightarrow X$ is scalarly bounded if

- $x^{*} f$ is Σ-measurable $\forall x^{*} \in X^{*}$,
- there is $M>0$ such that $\forall x^{*} \in B_{X *}$ we have $\left|x^{*} f\right| \leq M \eta$-a.e.

Let (Ω, Σ, η) be a measure space.

Definition

$f: \Omega \rightarrow X$ is scalarly bounded if

- $x^{*} f$ is Σ-measurable $\forall x^{*} \in X^{*}$,
- there is $M>0$ such that $\forall x^{*} \in B_{X *}$ we have $\left|x^{*} f\right| \leq M \eta$-a.e.

Let (Ω, Σ, η) be a measure space.

Definition

$f: \Omega \rightarrow X$ is scalarly bounded if

- $x^{*} f$ is Σ-measurable $\forall x^{*} \in X^{*}$,
- there is $M>0$ such that $\forall x^{*} \in B_{X *}$ we have $\left|x^{*} f\right| \leq M \eta$-a.e.

Definition

A scalarly bounded function $f: \Omega \rightarrow X$ is Pettis integrable if

Let (Ω, Σ, η) be a measure space.

Definition

$f: \Omega \rightarrow X$ is scalarly bounded if

- $x^{*} f$ is Σ-measurable $\forall x^{*} \in X^{*}$,
- there is $M>0$ such that $\forall x^{*} \in B_{X^{*}}$ we have $\left|x^{*} f\right| \leq M \eta$-a.e.

Definition

A scalarly bounded function $f: \Omega \rightarrow X$ is Pettis integrable if for each $E \in \Sigma$ there is $x_{E} \in X$ such that

$$
\int_{E} x^{*} f d \eta=x^{*}\left(x_{E}\right) \quad \forall x^{*} \in X^{*}
$$

Let (Ω, Σ, η) be a measure space.

Definition

$f: \Omega \rightarrow X$ is scalarly bounded if

- $x^{*} f$ is Σ-measurable $\forall x^{*} \in X^{*}$,
- there is $M>0$ such that $\forall x^{*} \in B_{X^{*}}$ we have $\left|x^{*} f\right| \leq M \eta$-a.e.

Definition

A scalarly bounded function $f: \Omega \rightarrow X$ is Pettis integrable if for each $E \in \Sigma$ there is $x_{E} \in X$ such that

$$
\int_{E} x^{*} f d \eta=x^{*}\left(x_{E}\right) \quad \forall x^{*} \in X^{*}
$$

X has the Pettis Integral Property (PIP) if,

Let (Ω, Σ, η) be a measure space.

Definition

$f: \Omega \rightarrow X$ is scalarly bounded if

- $x^{*} f$ is Σ-measurable $\forall x^{*} \in X^{*}$,
- there is $M>0$ such that $\forall x^{*} \in B_{X^{*}}$ we have $\left|x^{*} f\right| \leq M \eta$-a.e.

Definition

A scalarly bounded function $f: \Omega \rightarrow X$ is Pettis integrable if for each $E \in \Sigma$ there is $x_{E} \in X$ such that

$$
\int_{E} x^{*} f d \eta=x^{*}\left(x_{E}\right) \quad \forall x^{*} \in X^{*}
$$

X has the Pettis Integral Property (PIP) if, for each measure space (Ω, Σ, η),

Let (Ω, Σ, η) be a measure space.

Definition

$f: \Omega \rightarrow X$ is scalarly bounded if

- $x^{*} f$ is Σ-measurable $\forall x^{*} \in X^{*}$,
- there is $M>0$ such that $\forall x^{*} \in B_{X^{*}}$ we have $\left|x^{*} f\right| \leq M \eta$-a.e.

Definition

A scalarly bounded function $f: \Omega \rightarrow X$ is Pettis integrable if for each $E \in \Sigma$ there is $x_{E} \in X$ such that

$$
\int_{E} x^{*} f d \eta=x^{*}\left(x_{E}\right) \quad \forall x^{*} \in X^{*}
$$

X has the Pettis Integral Property (PIP) if, for each measure space (Ω, Σ, η), every scalarly bounded function from Ω to X is Pettis integrable.

Definition

A measure v on $\operatorname{Baire}(X, w)$ is convexly τ-additive if

Definition

A measure v on $\operatorname{Baire}(X, w)$ is convexly τ-additive if $v\left(C_{\alpha}\right) \searrow 0$ for every decreasing net $C_{\alpha} \searrow \emptyset$ of convex closed elements of $\operatorname{Baire}(X, w)$.

Definition

A measure v on $\operatorname{Baire}(X, w)$ is convexly τ-additive if $v\left(C_{\alpha}\right) \searrow 0$ for every decreasing net $C_{\alpha} \searrow \emptyset$ of convex closed elements of $\operatorname{Baire}(X, w)$.

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

Definition

A measure v on $\operatorname{Baire}(X, w)$ is convexly τ-additive if $v\left(C_{\alpha}\right) \searrow 0$ for every decreasing net $C_{\alpha} \searrow \emptyset$ of convex closed elements of $\operatorname{Baire}(X, w)$.

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

- f is Σ-Baire (X, w)-measurable,

Definition

A measure v on $\operatorname{Baire}(X, w)$ is convexly τ-additive if $v\left(C_{\alpha}\right) \searrow 0$ for every decreasing net $C_{\alpha} \searrow \emptyset$ of convex closed elements of $\operatorname{Baire}(X, w)$.

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

- f is Σ-Baire (X, w)-measurable,
- the formula

$$
f(\eta)(A):=\eta\left(f^{-1}(A)\right)
$$

defines a measure $f(\eta)$ on $\operatorname{Baire}(X, w)$,

Definition

A measure v on $\operatorname{Baire}(X, w)$ is convexly τ-additive if $v\left(C_{\alpha}\right) \searrow 0$ for every decreasing net $C_{\alpha} \searrow \emptyset$ of convex closed elements of $\operatorname{Baire}(X, w)$.

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

- f is Σ-Baire (X, w)-measurable,
- the formula

$$
f(\eta)(A):=\eta\left(f^{-1}(A)\right)
$$

defines a measure $f(\eta)$ on $\operatorname{Baire}(X, w)$,

- f is Pettis integrable $\Longleftrightarrow f(\eta)$ is convexly τ-additive (Talagrand, 1984).

Definition

A measure v on $\operatorname{Baire}(X, w)$ is convexly τ-additive if $v\left(C_{\alpha}\right) \searrow 0$ for every decreasing net $C_{\alpha} \searrow \emptyset$ of convex closed elements of $\operatorname{Baire}(X, w)$.

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

- f is Σ-Baire (X, w)-measurable,
- the formula

$$
f(\eta)(A):=\eta\left(f^{-1}(A)\right)
$$

defines a measure $f(\eta)$ on $\operatorname{Baire}(X, w)$,

- f is Pettis integrable $\Longleftrightarrow f(\eta)$ is convexly τ-additive (Talagrand, 1984).

Definition

A measure v on $\operatorname{Baire}(X, w)$ is convexly τ-additive if $v\left(C_{\alpha}\right) \searrow 0$ for every decreasing net $C_{\alpha} \searrow \emptyset$ of convex closed elements of $\operatorname{Baire}(X, w)$.

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

- f is Σ-Baire (X, w)-measurable,
- the formula

$$
f(\eta)(A):=\eta\left(f^{-1}(A)\right)
$$

defines a measure $f(\eta)$ on $\operatorname{Baire}(X, w)$,

- f is Pettis integrable $\Longleftrightarrow f(\eta)$ is convexly τ-additive (Talagrand, 1984).

Corollary (Talagrand, 1984)

X has the PIP if and only if every measure on $\operatorname{Baire}(X, w)$ is convexly τ-additive.

Definition

A measure v on $\operatorname{Baire}(X, w)$ is convexly τ-additive if $v\left(C_{\alpha}\right) \searrow 0$ for every decreasing net $C_{\alpha} \searrow \emptyset$ of convex closed elements of $\operatorname{Baire}(X, w)$.

Let $f: \Omega \rightarrow X$ be scalarly bounded. Then:

- f is Σ-Baire (X, w)-measurable,
- the formula

$$
f(\eta)(A):=\eta\left(f^{-1}(A)\right)
$$

defines a measure $f(\eta)$ on $\operatorname{Baire}(X, w)$,

- f is Pettis integrable $\Longleftrightarrow f(\eta)$ is convexly τ-additive (Talagrand, 1984).

Corollary (Talagrand, 1984)

X has the PIP if and only if every measure on $\operatorname{Baire}(X, w)$ is convexly τ-additive.
This is the case if X has the property (C) of Corson.

Let $B \subset B_{X^{*}}$ be a norming set.

Let $B \subset B_{X^{*}}$ be a norming set.

$$
\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)
$$

Let $B \subset B_{X^{*}}$ be a norming set.

$$
\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)
$$

Main Theorem

Let μ and v be two convexly τ-additive measures on Baire (X, w).

Let $B \subset B_{X^{*}}$ be a norming set.

$$
\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)
$$

Main Theorem

Let μ and v be two convexly τ-additive measures on $\operatorname{Baire}(X, w)$. Then

$$
\left.\mu\right|_{\operatorname{Baire}(X, \sigma(X, B))}=\left.v\right|_{\operatorname{Baire}(X, \sigma(X, B))} \quad \Longrightarrow \quad \mu=v .
$$

Let $B \subset B_{X^{*}}$ be a norming set.

$$
\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)
$$

Main Theorem

Let μ and v be two convexly τ-additive measures on $\operatorname{Baire}(X, w)$. Then

$$
\left.\mu\right|_{\operatorname{Baire}(X, \sigma(X, B))}=\left.v\right|_{\operatorname{Baire}(X, \sigma(X, B))} \quad \Longrightarrow \quad \mu=v .
$$

Corollary

Suppose that X has the PIP.

Let $B \subset B_{X^{*}}$ be a norming set.

$$
\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)
$$

Main Theorem

Let μ and v be two convexly τ-additive measures on $\operatorname{Baire}(X, w)$. Then

$$
\left.\mu\right|_{\operatorname{Baire}(X, \sigma(X, B))}=\left.v\right|_{\operatorname{Baire}(X, \sigma(X, B))} \quad \Longrightarrow \quad \mu=v .
$$

Corollary

Suppose that X has the PIP.
Let μ and v be two measures on $\operatorname{Baire}(X, w)$.

Let $B \subset B_{X^{*}}$ be a norming set.

$$
\operatorname{Baire}(X, \sigma(X, B)) \subset \operatorname{Baire}(X, w)
$$

Main Theorem

Let μ and v be two convexly τ-additive measures on $\operatorname{Baire}(X, w)$. Then

$$
\left.\mu\right|_{\operatorname{Baire}(X, \sigma(X, B))}=\left.v\right|_{\operatorname{Baire}(X, \sigma(X, B))} \quad \Longrightarrow \quad \mu=v .
$$

Corollary

Suppose that X has the PIP.
Let μ and v be two measures on $\operatorname{Baire}(X, w)$. Then

$$
\left.\mu\right|_{\operatorname{Baire}(X, \sigma(X, B))}=\left.v\right|_{\operatorname{Baire}(X, \sigma(X, B))} \quad \Longrightarrow \quad \mu=v
$$

When $X=Y^{*}$ for some Banach space Y,

When $X=Y^{*}$ for some Banach space Y, we can take $B=B_{Y}$,

When $X=Y^{*}$ for some Banach space Y,
we can take $B=B_{Y}$, so that $\sigma(X, B)=w^{*}$.

When $X=Y^{*}$ for some Banach space Y, we can take $B=B_{Y}$, so that $\sigma(X, B)=w^{*}$.

Definition

We say that $X=Y^{*}$ has the Uniqueness of Measure Extensions Property (UMEP) if

When $X=Y^{*}$ for some Banach space Y, we can take $B=B_{Y}$, so that $\sigma(X, B)=w^{*}$.

Definition

We say that $X=Y^{*}$ has the Uniqueness of Measure Extensions Property (UMEP) if
for any two measures μ and v on $\operatorname{Baire}(X, w)$,

When $X=Y^{*}$ for some Banach space Y, we can take $B=B_{Y}$, so that $\sigma(X, B)=w^{*}$.

Definition

We say that $X=Y^{*}$ has the Uniqueness of Measure Extensions Property (UMEP) if
for any two measures μ and v on $\operatorname{Baire}(X, w)$, we have

$$
\left.\mu\right|_{\operatorname{Baire}\left(X, w^{*}\right)}=\left.v\right|_{\operatorname{Baire}\left(X, w^{*}\right)} \quad \Longrightarrow \quad \mu=v
$$

When $X=Y^{*}$ for some Banach space Y, we can take $B=B_{Y}$, so that $\sigma(X, B)=w^{*}$.

Definition

We say that $X=Y^{*}$ has the Uniqueness of Measure Extensions Property (UMEP) if
for any two measures μ and v on $\operatorname{Baire}(X, w)$, we have

$$
\left.\mu\right|_{\operatorname{Baire}\left(X, w^{*}\right)}=\left.v\right|_{\operatorname{Baire}\left(X, w^{*}\right)} \quad \Longrightarrow \quad \mu=v
$$

In general:

$$
\mathrm{PIP} \Longrightarrow \text { UMEP } \Longrightarrow(X, w) \text { realcompact. }
$$

When $X=Y^{*}$ for some Banach space Y, we can take $B=B_{Y}$, so that $\sigma(X, B)=w^{*}$.

Definition

We say that $X=Y^{*}$ has the Uniqueness of Measure Extensions Property (UMEP) if
for any two measures μ and v on $\operatorname{Baire}(X, w)$, we have

$$
\left.\mu\right|_{\text {Baire }\left(X, w^{*}\right)}=\left.v\right|_{\operatorname{Baire}\left(X, w^{*}\right)} \quad \Longrightarrow \quad \mu=v .
$$

In general:

$$
\mathrm{PIP} \Longrightarrow \text { UMEP } \Longrightarrow(X, w) \text { realcompact. }
$$

Example (Fremlin, based on Fremlin-Talagrand (1979))

 $\ell^{\infty}(\mathbb{N})$ fails the UMEP.When $X=Y^{*}$ for some Banach space Y, we can take $B=B_{Y}$, so that $\sigma(X, B)=w^{*}$.

Definition

We say that $X=Y^{*}$ has the Uniqueness of Measure Extensions Property (UMEP) if
for any two measures μ and v on $\operatorname{Baire}(X, w)$, we have

$$
\left.\mu\right|_{\operatorname{Baire}\left(X, w^{*}\right)}=\left.v\right|_{\operatorname{Baire}\left(X, w^{*}\right)} \quad \Longrightarrow \quad \mu=v .
$$

In general:

$$
\mathrm{PIP} \Longrightarrow \mathrm{UMEP} \Longrightarrow(X, w) \text { realcompact. }
$$

Example (Fremlin, based on Fremlin-Talagrand (1979))

 $\ell^{\infty}(\mathbb{N})$ fails the UMEP.We don't know whether PIP=UMEP for all dual spaces.

Suppose that $X=Y^{*}$ for some Banach space $Y \not \supset \ell^{1}(\mathbb{N})$.

Suppose that $X=Y^{*}$ for some Banach space $Y \not \supset \ell^{1}(\mathbb{N})$. Then

$$
\begin{array}{ccc}
\operatorname{Baire}\left(X, w^{*}\right) & \subset & \operatorname{Baire}(X, w) \\
\cap & & \cap \\
\operatorname{Borel}\left(X, w^{*}\right) & \subset & \operatorname{Univ}\left(X, w^{*}\right)
\end{array}
$$

where the red inclusion is due to Haydon (1976).

Suppose that $X=Y^{*}$ for some Banach space $Y \not \supset \ell^{1}(\mathbb{N})$.
Then

$$
\begin{array}{ccc}
\operatorname{Baire}\left(X, w^{*}\right) & \subset & \operatorname{Baire}(X, w) \\
\cap & & \cap \\
\operatorname{Borel}\left(X, w^{*}\right) & \subset & \operatorname{Univ}\left(X, w^{*}\right)
\end{array}
$$

where the red inclusion is due to Haydon (1976).
So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on $\operatorname{Borel}\left(X, w^{*}\right)$ can be restricted to $\operatorname{Baire}(X, w)$.

Suppose that $X=Y^{*}$ for some Banach space $Y \not \supset \ell^{1}(\mathbb{N})$. Then

$$
\begin{array}{ccc}
\operatorname{Baire}\left(X, w^{*}\right) & \subset & \operatorname{Baire}(X, w) \\
\cap & & \cap \\
\operatorname{Borel}\left(X, w^{*}\right) & \subset & \operatorname{Univ}\left(X, w^{*}\right)
\end{array}
$$

where the red inclusion is due to Haydon (1976).
So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on $\operatorname{Borel}\left(X, w^{*}\right)$ can be restricted to Baire (X, w). Set $\vartheta^{0}=\left.\tilde{\vartheta}\right|_{\text {Baire }(X, w)}$.

Suppose that $X=Y^{*}$ for some Banach space $Y \not \supset \ell^{1}(\mathbb{N})$. Then

where the red inclusion is due to Haydon (1976).
So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on $\operatorname{Borel}\left(X, w^{*}\right)$ can be restricted to Baire (X, w). Set $\vartheta^{0}=\left.\tilde{\vartheta}\right|_{\text {Baire }(X, w)}$.

Theorem

Suppose that $X=Y^{*}$ for some Banach space $Y \not \supset \ell^{1}(\mathbb{N})$. Then

where the red inclusion is due to Haydon (1976).
So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on $\operatorname{Borel}\left(X, w^{*}\right)$ can be restricted to Baire (X, w). Set $\vartheta^{0}=\left.\tilde{\vartheta}\right|_{\text {Baire }(X, w)}$.

Theorem

(i) A measure μ on $\operatorname{Baire}(X, w)$ is convexly τ-additive if and only if $\mu=\vartheta^{0}$ for some Radon measure ϑ on $\operatorname{Borel}\left(X, w^{*}\right)$.

Suppose that $X=Y^{*}$ for some Banach space $Y \not \supset \ell^{1}(\mathbb{N})$. Then

$$
\operatorname{Borel}\left(X, w^{*}\right) \subset \operatorname{Univ}\left(X, w^{*}\right)
$$

where the red inclusion is due to Haydon (1976).
So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on $\operatorname{Borel}\left(X, w^{*}\right)$ can be restricted to Baire (X, w). Set $\vartheta^{0}=\left.\tilde{\vartheta}\right|_{\text {Baire }(X, w)}$.

Theorem

(i) A measure μ on $\operatorname{Baire}(X, w)$ is convexly τ-additive if and only if $\mu=\vartheta^{0}$ for some Radon measure ϑ on $\operatorname{Borel}\left(X, w^{*}\right)$.
(ii) Every measure on Baire $\left(X, w^{*}\right)$ can be extended in a unique way to a convexly τ-additive measure on $\operatorname{Baire}(X, w)$.

Suppose that $X=Y^{*}$ for some Banach space $Y \not \supset \ell^{1}(\mathbb{N})$.
Then

$\operatorname{Baire}\left(X, w^{*}\right)$	\subset	$\operatorname{Baire}(X, w)$
\cap		\cap

$\operatorname{Borel}\left(X, w^{*}\right) \subset \operatorname{Univ}\left(X, w^{*}\right)$
where the red inclusion is due to Haydon (1976).
So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on $\operatorname{Borel}\left(X, w^{*}\right)$ can be restricted to Baire (X, w). Set $\vartheta^{0}=\left.\tilde{\vartheta}\right|_{\text {Baire }(X, w)}$.

Theorem

(i) A measure μ on $\operatorname{Baire}(X, w)$ is convexly τ-additive if and only if $\mu=\vartheta^{0}$ for some Radon measure ϑ on $\operatorname{Borel}\left(X, w^{*}\right)$.
(ii) Every measure on Baire $\left(X, w^{*}\right)$ can be extended in a unique way to a convexly τ-additive measure on $\operatorname{Baire}(X, w)$.
(iii) If X has the PIP, then every measure on $\operatorname{Baire}\left(X, w^{*}\right)$ can be extended in a unique way to a measure on $\operatorname{Baire}(X, w)$.

Suppose that $X=Y^{*}$ for some Banach space $Y \not \supset \ell^{1}(\mathbb{N})$.
Then

$\operatorname{Baire}\left(X, w^{*}\right)$	\subset	$\operatorname{Baire}(X, w)$
\cap		\cap

$\operatorname{Borel}\left(X, w^{*}\right) \subset \operatorname{Univ}\left(X, w^{*}\right)$
where the red inclusion is due to Haydon (1976).
So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on $\operatorname{Borel}\left(X, w^{*}\right)$ can be restricted to Baire (X, w). Set $\vartheta^{0}=\left.\tilde{\vartheta}\right|_{\text {Baire }(X, w)}$.

Theorem

(i) A measure μ on $\operatorname{Baire}(X, w)$ is convexly τ-additive if and only if $\mu=\vartheta^{0}$ for some Radon measure ϑ on $\operatorname{Borel}\left(X, w^{*}\right)$.
(ii) Every measure on Baire $\left(X, w^{*}\right)$ can be extended in a unique way to a convexly τ-additive measure on $\operatorname{Baire}(X, w)$.
(iii) If X has the PIP, then every measure on $\operatorname{Baire}\left(X, w^{*}\right)$ can be extended in a unique way to a measure on $\operatorname{Baire}(X, w)$.
(iv) X has the PIP $\Longleftrightarrow X$ has the UMEP.

Suppose that $X=Y^{*}$ for some Banach space $Y \not \supset \ell^{1}(\mathbb{N})$.
Then

$\operatorname{Baire}\left(X, w^{*}\right)$	\subset	$\operatorname{Baire}(X, w)$
\cap		\cap

$\operatorname{Borel}\left(X, w^{*}\right) \subset \operatorname{Univ}\left(X, w^{*}\right)$
where the red inclusion is due to Haydon (1976).
So the completion $\tilde{\vartheta}$ of each Radon measure ϑ on $\operatorname{Borel}\left(X, w^{*}\right)$ can be restricted to Baire (X, w). Set $\vartheta^{0}=\left.\tilde{\vartheta}\right|_{\text {Baire }(X, w)}$.

Theorem

(i) A measure μ on $\operatorname{Baire}(X, w)$ is convexly τ-additive if and only if $\mu=\vartheta^{0}$ for some Radon measure ϑ on $\operatorname{Borel}\left(X, w^{*}\right)$.
(ii) Every measure on Baire $\left(X, w^{*}\right)$ can be extended in a unique way to a convexly τ-additive measure on $\operatorname{Baire}(X, w)$.
(iii) If X has the PIP, then every measure on $\operatorname{Baire}\left(X, w^{*}\right)$ can be extended in a unique way to a measure on $\operatorname{Baire}(X, w)$.
(iv) X has the PIP $\Longleftrightarrow X$ has the UMEP.

Remark

Remark

If $\left(B_{X^{*}}, w^{*}\right)$ is angelic (e.g. X is WCG),

Remark

If $\left(B_{X^{*}}, w^{*}\right)$ is angelic (e.g. X is WCG), then

$$
\operatorname{Baire}(X, \sigma(X, B))=\operatorname{Baire}(X, w)
$$

for any norming set $B \subset B_{X^{*}}$.

Remark

If $\left(B_{X^{*}}, w^{*}\right)$ is angelic (e.g. X is WCG), then

$$
\operatorname{Baire}(X, \sigma(X, B))=\operatorname{Baire}(X, w)
$$

for any norming set $B \subset B_{X^{*}}$.

Proposition

Suppose that $X=Y^{*}$ for some Banach space Y. TFAE:

Remark

If $\left(B_{X^{*}}, w^{*}\right)$ is angelic (e.g. X is WCG), then

$$
\operatorname{Baire}(X, \sigma(X, B))=\operatorname{Baire}(X, w)
$$

for any norming set $B \subset B_{X^{*}}$.

Proposition

Suppose that $X=Y^{*}$ for some Banach space Y. TFAE:
(i) $\operatorname{Baire}\left(X, w^{*}\right)=\operatorname{Baire}(X, w)$;

Remark

If $\left(B_{X^{*}}, w^{*}\right)$ is angelic (e.g. X is WCG), then

$$
\operatorname{Baire}(X, \sigma(X, B))=\operatorname{Baire}(X, w)
$$

for any norming set $B \subset B_{X^{*}}$.

Proposition

Suppose that $X=Y^{*}$ for some Banach space Y. TFAE:
(i) $\operatorname{Baire}\left(X, w^{*}\right)=\operatorname{Baire}(X, w)$;
(ii) Y is weak*-sequentially dense in $Y^{* *}$;

Remark

If $\left(B_{X^{*}}, w^{*}\right)$ is angelic (e.g. X is WCG), then

$$
\operatorname{Baire}(X, \sigma(X, B))=\operatorname{Baire}(X, w)
$$

for any norming set $B \subset B_{X^{*}}$.

Proposition

Suppose that $X=Y^{*}$ for some Banach space Y. TFAE:
(i) $\operatorname{Baire}\left(X, w^{*}\right)=\operatorname{Baire}(X, w)$;
(ii) Y is weak*-sequentially dense in $Y^{* *}$;
(iii) $Y \not \supset \ell^{1}(\mathbb{N})$ and for each $y^{* *} \in Y^{* *}$ there is a countable set $D \subset Y$ such that $y^{* *} \in \bar{D}^{\text {weak }^{*}}$.

Remark

If $\left(B_{X^{*}}, w^{*}\right)$ is angelic (e.g. X is WCG), then

$$
\operatorname{Baire}(X, \sigma(X, B))=\operatorname{Baire}(X, w)
$$

for any norming set $B \subset B_{X^{*}}$.

Proposition

Suppose that $X=Y^{*}$ for some Banach space Y. TFAE:
(i) $\operatorname{Baire}\left(X, w^{*}\right)=\operatorname{Baire}(X, w)$;
(ii) Y is weak*-sequentially dense in $Y^{* *}$;
(iii) $Y \not \supset \ell^{1}(\mathbb{N})$ and for each $y^{* *} \in Y^{* *}$ there is a countable set $D \subset Y$ such that $y^{* *} \in \bar{D}^{\text {weak }}$.

Remark

If $\left(B_{X^{*}}, w^{*}\right)$ is angelic (e.g. X is WCG), then

$$
\operatorname{Baire}(X, \sigma(X, B))=\operatorname{Baire}(X, w)
$$

for any norming set $B \subset B_{X^{*}}$.

Proposition

Suppose that $X=Y^{*}$ for some Banach space Y. TFAE:
(i) $\operatorname{Baire}\left(X, w^{*}\right)=\operatorname{Baire}(X, w)$;
(ii) Y is weak*-sequentially dense in $Y^{* *}$;
(iii) $Y \not \supset \ell^{1}(\mathbb{N})$ and for each $y^{* *} \in Y^{* *}$ there is a countable set $D \subset Y$ such that $y^{* *} \in \bar{D}^{\text {weak }}$.
This is the case if X has the property (C) of Corson.

Some examples

Some examples

- $\ell^{1}\left(\omega_{1}\right)$ has the PIP (Edgar, 1979)

Some examples

- $\ell^{1}\left(\omega_{1}\right)$ has the PIP (Edgar, 1979) and
$\operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right), w^{*}\right) \neq \operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right), w\right)$.

Some examples

- $\ell^{1}\left(\omega_{1}\right)$ has the PIP (Edgar, 1979) and

$$
\operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right), w^{*}\right) \neq \operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right), w\right)
$$

- $C[0,1]^{*}$ has the PIP (Edgar, 1979) if we assume that the continuum is a measure zero cardinal (e.g. under CH).

Some examples

- $\ell^{1}\left(\omega_{1}\right)$ has the PIP (Edgar, 1979) and

$$
\operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right), w^{*}\right) \neq \operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right), w\right)
$$

- $C[0,1]^{*}$ has the PIP (Edgar, 1979) if we assume that the continuum is a measure zero cardinal (e.g. under CH). We always have

$$
\text { Baire }\left(C[0,1]^{*}, w^{*}\right) \neq \operatorname{Baire}\left(C[0,1]^{*}, w\right)
$$

Some examples

- $\ell^{1}\left(\omega_{1}\right)$ has the PIP (Edgar, 1979) and

$$
\operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right), w^{*}\right) \neq \operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right), w\right)
$$

- $C[0,1]^{*}$ has the PIP (Edgar, 1979) if we assume that the continuum is a measure zero cardinal (e.g. under CH). We always have

$$
\text { Baire }\left(C[0,1]^{*}, w^{*}\right) \neq \operatorname{Baire}\left(C[0,1]^{*}, w\right)
$$

- $C(K)$ where K is the Kunen-Haydon-Talagrand compactum (constructed under CH).

Some examples

- $\ell^{1}\left(\omega_{1}\right)$ has the PIP (Edgar, 1979) and

$$
\operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right), w^{*}\right) \neq \operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right), w\right)
$$

- $C[0,1]^{*}$ has the PIP (Edgar, 1979) if we assume that the continuum is a measure zero cardinal (e.g. under CH). We always have

$$
\text { Baire }\left(C[0,1]^{*}, w^{*}\right) \neq \operatorname{Baire}\left(C[0,1]^{*}, w\right)
$$

- $\mathrm{C}(\mathrm{K})$ where K is the Kunen-Haydon-Talagrand compactum (constructed under CH). This space has the PIP

Some examples

- $\ell^{1}\left(\omega_{1}\right)$ has the PIP (Edgar, 1979) and

$$
\operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right), w^{*}\right) \neq \operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right), w\right)
$$

- $C[0,1]^{*}$ has the PIP (Edgar, 1979) if we assume that the continuum is a measure zero cardinal (e.g. under CH). We always have

$$
\text { Baire }\left(C[0,1]^{*}, w^{*}\right) \neq \operatorname{Baire}\left(C[0,1]^{*}, w\right)
$$

- $C(K)$ where K is the Kunen-Haydon-Talagrand compactum (constructed under CH). This space has the PIP and

$$
\text { Baire }(C(K), \sigma(C(K), K)) \neq \operatorname{Baire}(C(K), w)
$$

H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15.
G. A. Edgar, Measurability in a Banach space, Indiana Univ. Math. J. 26 (1977), no. 4, 663-677.
\qquad , Measurability in a Banach space. II, Indiana Univ. Math. J. 28 (1979), no. 4, 559-579.
___ On pointwise-compact sets of measurable functions, Measure theory, Oberwolfach 1981 (Oberwolfach, 1981), Lecture Notes in Math., vol. 945, Springer, Berlin, 1982, pp. 24-28.
D. H. Fremlin and M. Talagrand, A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Z. 168 (1979), no. 2, 117-142.
R. Haydon, Some more characterizations of Banach spaces containing 1_{1}, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 2, 269-276.
A. Ionescu Tulcea, On pointwise convergence, compactness, and equicontinuity. II, Advances in Math. 12 (1974), 171-177.
E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing ${ }^{1}$, Israel J. Math. 20 (1975), no. 3-4, 375-384.
G. Plebanek, On Pettis integrals with separable range, Colloq. Math. 64 (1993), no. 1, 71-78.
R. Pol, On a question of H. H. Corson and some related problems, Fund. Math. 109 (1980), no. 2, 143-154.
M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224.

