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The question above has affirmative answer if 4 and v are Radon. )
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Example (Tortrat, 1976)

Let u and v be Radon measures on Borel(X,norm). Then

Wlpairex,w) = Vlgairax,w) = M =V.
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Theorem (Edgar, 1977)

Baire(X,0(X,B)) is the o-algebra on X generated by B.

Baire(X,o(X,B)) C Baireg( X, w)

Our aim is to study the following question

Given two measures i and v on Baire(X,w),
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Let (Q,Z,7n) be a measure space.

Definition

f:Q — X is scalarly bounded if
@ x*f is Z-measurable Vx* € X*,
@ there is M > 0 such that Vx* € Bx- we have [x*f| <M n-ae.

Definition
A scalarly bounded function f : Q — X is Pettis integrable if
for each E € X there is xg € X such that

/x*f dn =x"(xg) Vx"e X"
JE

A

X has the Pettis Integral Property (PIP) if,
for each measure space (Q,%,7),
every scalarly bounded function from Q to X is Pettis integrable.
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Baire(X,o(X,B)) C Baireg( X, w)

Main Theorem

Let u and v be two convexly t-additive measures on Baire(X,w).
Then

.ulBaire(X,G(X,B)) = v|Baire(X,(y(X7B)) — U=Vv.

.
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Suppose that X has the PIP.
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In general:

PIP = UMEP = (X,w) realcompact.

Example (Fremlin, based on Fremlin-Talagrand (1979))
¢*(N) fails the UMEP.

We don’t know whether PIP=UMEP for all dual spaces.
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Baire(/! (o), w*) # Baire(¢* (w;), w).

o CJ[0,1]" has the PIP (Edgar, 1979) if we assume that the
continuum is a measure zero cardinal (e.g. under CH).
We always have

Baire( C[0,1]*, w*) # Baire(C[0,1]", w).

o C(K) where K is the Kunen-Haydon-Talagrand compactum
(constructed under CH). This space has the PIP and

Baire(C(K), o(C(K), K)) # Baire{ C(K), w).
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