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Measure on a σ -algebra ≡ [0,∞)-valued and countably additive.

A basic question in measure theory

Given two σ -algebras
Σ′ ⊂ Σ

on a set Ω and two measures µ and ν on Σ,

µ|Σ′ = ν |Σ′ =⇒ µ = ν ??

Example

Given a topological space (T ,T), we have

Baire(T ,T)⊂ Borel(T ,T).

The question above has affirmative answer if µ and ν are Radon.
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Let X be a Banach space.

Then

Baire(X ,w) ⊂ Baire(X ,norm)
∩ ‖

Borel(X ,w) ⊂ Borel(X ,norm)

and

Baire(X ∗,w∗) ⊂ Baire(X ∗,w) ⊂ Baire(X ∗,norm)
∩ ∩ ‖

Borel(X ∗,w∗) ⊂ Borel(X ∗,w) ⊂ Borel(X ∗,norm)

Example (Tortrat, 1976)

Let µ and ν be Radon measures on Borel(X ,norm). Then

µ|Baire(X ,w) = ν |Baire(X ,w) =⇒ µ = ν .
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B ⊂ BX ∗ ≡ norming set, i.e. ‖x‖= sup{|x∗(x)| : x∗ ∈ B} ∀x ∈ X .

σ(X ,B) ≡ topology on X of pointwise convergence on B.

Theorem (Edgar, 1977)

Baire(X ,σ(X ,B)) is the σ -algebra on X generated by B.

Baire(X ,σ(X ,B))⊂ Baire(X ,w)

Our aim is to study the following question

Given two measures µ and ν on Baire(X ,w),

µ|Baire(X ,σ(X ,B)) = ν |Baire(X ,σ(X ,B)) =⇒ µ = ν ??
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Let (Ω,Σ,η) be a measure space.

Definition

f : Ω→ X is scalarly bounded if

x∗f is Σ-measurable ∀x∗ ∈ X ∗,

there is M > 0 such that ∀x∗ ∈ BX ∗ we have |x∗f | ≤M η-a.e.

Definition

A scalarly bounded function f : Ω→ X is Pettis integrable if
for each E ∈ Σ there is xE ∈ X such that∫

E
x∗f dη = x∗(xE ) ∀x∗ ∈ X ∗.

X has the Pettis Integral Property (PIP) if,
for each measure space (Ω,Σ,η),
every scalarly bounded function from Ω to X is Pettis integrable.
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Definition

A measure ν on Baire(X ,w) is convexly τ-additive if

ν(Cα)↘ 0 for every decreasing net Cα ↘ /0 of convex closed
elements of Baire(X ,w).

Let f : Ω→ X be scalarly bounded. Then:

f is Σ-Baire(X ,w)-measurable,

the formula
f (η)(A) := η(f −1(A))

defines a measure f (η) on Baire(X ,w),
f is Pettis integrable ⇐⇒ f (η) is convexly τ-additive
(Talagrand, 1984).

Corollary (Talagrand, 1984)

X has the PIP if and only if every measure on Baire(X ,w) is
convexly τ-additive.
This is the case if X has the property (C) of Corson.



Definition

A measure ν on Baire(X ,w) is convexly τ-additive if
ν(Cα)↘ 0 for every decreasing net Cα ↘ /0 of convex closed
elements of Baire(X ,w).

Let f : Ω→ X be scalarly bounded. Then:

f is Σ-Baire(X ,w)-measurable,

the formula
f (η)(A) := η(f −1(A))

defines a measure f (η) on Baire(X ,w),
f is Pettis integrable ⇐⇒ f (η) is convexly τ-additive
(Talagrand, 1984).

Corollary (Talagrand, 1984)

X has the PIP if and only if every measure on Baire(X ,w) is
convexly τ-additive.
This is the case if X has the property (C) of Corson.



Definition

A measure ν on Baire(X ,w) is convexly τ-additive if
ν(Cα)↘ 0 for every decreasing net Cα ↘ /0 of convex closed
elements of Baire(X ,w).

Let f : Ω→ X be scalarly bounded. Then:

f is Σ-Baire(X ,w)-measurable,

the formula
f (η)(A) := η(f −1(A))

defines a measure f (η) on Baire(X ,w),
f is Pettis integrable ⇐⇒ f (η) is convexly τ-additive
(Talagrand, 1984).

Corollary (Talagrand, 1984)

X has the PIP if and only if every measure on Baire(X ,w) is
convexly τ-additive.
This is the case if X has the property (C) of Corson.



Definition

A measure ν on Baire(X ,w) is convexly τ-additive if
ν(Cα)↘ 0 for every decreasing net Cα ↘ /0 of convex closed
elements of Baire(X ,w).

Let f : Ω→ X be scalarly bounded. Then:

f is Σ-Baire(X ,w)-measurable,

the formula
f (η)(A) := η(f −1(A))

defines a measure f (η) on Baire(X ,w),
f is Pettis integrable ⇐⇒ f (η) is convexly τ-additive
(Talagrand, 1984).

Corollary (Talagrand, 1984)

X has the PIP if and only if every measure on Baire(X ,w) is
convexly τ-additive.
This is the case if X has the property (C) of Corson.



Definition

A measure ν on Baire(X ,w) is convexly τ-additive if
ν(Cα)↘ 0 for every decreasing net Cα ↘ /0 of convex closed
elements of Baire(X ,w).

Let f : Ω→ X be scalarly bounded. Then:

f is Σ-Baire(X ,w)-measurable,

the formula
f (η)(A) := η(f −1(A))

defines a measure f (η) on Baire(X ,w),

f is Pettis integrable ⇐⇒ f (η) is convexly τ-additive
(Talagrand, 1984).

Corollary (Talagrand, 1984)

X has the PIP if and only if every measure on Baire(X ,w) is
convexly τ-additive.
This is the case if X has the property (C) of Corson.



Definition

A measure ν on Baire(X ,w) is convexly τ-additive if
ν(Cα)↘ 0 for every decreasing net Cα ↘ /0 of convex closed
elements of Baire(X ,w).

Let f : Ω→ X be scalarly bounded. Then:

f is Σ-Baire(X ,w)-measurable,

the formula
f (η)(A) := η(f −1(A))

defines a measure f (η) on Baire(X ,w),
f is Pettis integrable ⇐⇒ f (η) is convexly τ-additive
(Talagrand, 1984).

Corollary (Talagrand, 1984)

X has the PIP if and only if every measure on Baire(X ,w) is
convexly τ-additive.
This is the case if X has the property (C) of Corson.



Definition

A measure ν on Baire(X ,w) is convexly τ-additive if
ν(Cα)↘ 0 for every decreasing net Cα ↘ /0 of convex closed
elements of Baire(X ,w).

Let f : Ω→ X be scalarly bounded. Then:

f is Σ-Baire(X ,w)-measurable,

the formula
f (η)(A) := η(f −1(A))

defines a measure f (η) on Baire(X ,w),
f is Pettis integrable ⇐⇒ f (η) is convexly τ-additive
(Talagrand, 1984).

Corollary (Talagrand, 1984)

X has the PIP if and only if every measure on Baire(X ,w) is
convexly τ-additive.
This is the case if X has the property (C) of Corson.



Definition

A measure ν on Baire(X ,w) is convexly τ-additive if
ν(Cα)↘ 0 for every decreasing net Cα ↘ /0 of convex closed
elements of Baire(X ,w).

Let f : Ω→ X be scalarly bounded. Then:

f is Σ-Baire(X ,w)-measurable,

the formula
f (η)(A) := η(f −1(A))

defines a measure f (η) on Baire(X ,w),
f is Pettis integrable ⇐⇒ f (η) is convexly τ-additive
(Talagrand, 1984).

Corollary (Talagrand, 1984)

X has the PIP if and only if every measure on Baire(X ,w) is
convexly τ-additive.

This is the case if X has the property (C) of Corson.



Definition

A measure ν on Baire(X ,w) is convexly τ-additive if
ν(Cα)↘ 0 for every decreasing net Cα ↘ /0 of convex closed
elements of Baire(X ,w).

Let f : Ω→ X be scalarly bounded. Then:

f is Σ-Baire(X ,w)-measurable,

the formula
f (η)(A) := η(f −1(A))

defines a measure f (η) on Baire(X ,w),
f is Pettis integrable ⇐⇒ f (η) is convexly τ-additive
(Talagrand, 1984).

Corollary (Talagrand, 1984)

X has the PIP if and only if every measure on Baire(X ,w) is
convexly τ-additive.
This is the case if X has the property (C) of Corson.



Let B ⊂ BX ∗ be a norming set.

Baire(X ,σ(X ,B))⊂ Baire(X ,w)

Main Theorem

Let µ and ν be two convexly τ-additive measures on Baire(X ,w).
Then

µ|Baire(X ,σ(X ,B)) = ν |Baire(X ,σ(X ,B)) =⇒ µ = ν .

Corollary

Suppose that X has the PIP.
Let µ and ν be two measures on Baire(X ,w). Then

µ|Baire(X ,σ(X ,B)) = ν |Baire(X ,σ(X ,B)) =⇒ µ = ν .
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Suppose that X = Y ∗ for some Banach space Y 6⊃ `1(N).

Then
Baire(X ,w∗) ⊂ Baire(X ,w)

∩ ∩
Borel(X ,w∗) ⊂ Univ(X ,w∗)

where the red inclusion is due to Haydon (1976).

So the completion ϑ̃ of each Radon measure ϑ on Borel(X ,w∗)
can be restricted to Baire(X ,w). Set ϑ0 = ϑ̃ |Baire(X ,w).

Theorem

(i) A measure µ on Baire(X ,w) is convexly τ-additive if and only
if µ = ϑ0 for some Radon measure ϑ on Borel(X ,w∗).

(ii) Every measure on Baire(X ,w∗) can be extended in a unique
way to a convexly τ-additive measure on Baire(X ,w).

(iii) If X has the PIP, then every measure on Baire(X ,w∗) can be
extended in a unique way to a measure on Baire(X ,w).

(iv) X has the PIP ⇐⇒ X has the UMEP.
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Remark

If (BX ∗ ,w∗) is angelic (e.g. X is WCG), then

Baire(X ,σ(X ,B)) = Baire(X ,w)

for any norming set B ⊂ BX ∗ .

Proposition

Suppose that X = Y ∗ for some Banach space Y . TFAE:

(i) Baire(X ,w∗) = Baire(X ,w);
(ii) Y is weak∗-sequentially dense in Y ∗∗;

(iii) Y 6⊃ `1(N) and for each y∗∗ ∈ Y ∗∗ there is a countable set

D ⊂ Y such that y∗∗ ∈ D
weak∗

.

This is the case if X has the property (C) of Corson.
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Some examples

`1(ω1) has the PIP (Edgar, 1979)

and

Baire(`1(ω1),w∗) 6= Baire(`1(ω1),w).

C [0,1]∗ has the PIP (Edgar, 1979) if we assume that the
continuum is a measure zero cardinal (e.g. under CH).
We always have

Baire(C [0,1]∗,w∗) 6= Baire(C [0,1]∗,w).

C(K) where K is the Kunen-Haydon-Talagrand compactum
(constructed under CH). This space has the PIP and

Baire(C (K ),σ(C (K ),K )) 6= Baire(C (K ),w).
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