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A typical link between Topology and Measure Theory . . .

Riesz representation theorem

Let K be a compact space. Every ϕ ∈ C (K )∗ can be written as

ϕ(f ) =
∫
K

f dµ

for some regular Borel measure µ on K .

What about operators C (K )→ X where X is a Banach space ?

Theorem (Bartle-Dunford-Schwartz 1955)

Every weakly compact operator T : C (K )→ X can be written as

T (f ) =
∫
K

f dν

for some regular Borel X -valued measure ν on K .
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(Ω,Σ) ≡ measurable space

X ≡ Banach space

ν : Σ → X ≡ countably additive measure

Definition

A measurable function f : Ω → R is ν-integrable if:

f is 〈x∗,ν〉-integrable ∀x∗ ∈ X ∗,

For each A ∈ Σ there is
∫
A f dν ∈ X such that

〈x∗,
∫
A

f dν〉=
∫
A

f d〈x∗,ν〉 ∀x∗ ∈ X ∗.

The space L1(ν) of all ν-integrable functions is a Banach lattice
with the ‖ν‖-a.e. order and the norm

‖f ‖L1(ν) = sup
x∗∈BX∗

∫
Ω
|f | d |〈x∗,ν〉|.
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Theorem (Curbera 1992)

Every order continuous Banach lattice with weak unit is order
isometric to the L1 space of some vector measure.



No “good” representation of L1(ν)∗ is known !

Given h ∈ L∞(ν) and x∗ ∈ X ∗, define

γh,x∗ ∈ L1(ν)∗, γh,x∗(f ) =
∫

Ω
f ·h d〈x∗,ν〉.

The set Γ = {γh,x∗ | h ∈ BL∞(ν), x∗ ∈ BX ∗} ⊂ BL1(ν)∗ is norming.

A bounded net (fα) in L1(ν) is σ(L1(ν),Γ)-convergent to f ∈ L1(ν) iff∫
A
fα dν →

∫
A
f dν weakly in X ∀A ∈ Σ.

Known facts (Curbera 1994-1995, Manjabacas 1998, Okada 1993)

σ(L1(ν),Γ) = weak topology on bounded sets if L1(ν) 6⊃ `1(N).

Bounded σ(L1(ν),Γ)-convergent sequences are weakly convergent
if ν has relatively norm compact range.

In general, bounded σ(L1(ν),Γ)-convergent sequences are not
weakly convergent.
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Fix 1 < p < ∞.

Definition

A measurable function f : Ω → R is p-th power ν-integrable if
|f |p is ν-integrable.

The space Lp(ν) of all p-th power ν-integrable functions is a
Banach lattice with the ‖ν‖-a.e. order and the norm

‖f ‖Lp(ν) = sup
x∗∈BX∗

(∫
Ω
|f |p d |〈x∗,ν〉|

) 1
p
.

Theorem (Fernández et al. 2006)

Every p-convex order continuous Banach lattice with weak unit is
order isomorphic to the Lp space of some vector measure.

Lp(ν) is not reflexive in general.

No “good” representation of Lp(ν)∗ is known.
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‖f ‖Lp(ν) = sup
x∗∈BX∗

(∫
Ω
|f |p d |〈x∗,ν〉|

) 1
p
.
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Let 1 < q < ∞ such that 1/p +1/q = 1.

Given g ∈ Lq(ν) and x∗ ∈ X ∗, define
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A bounded net (fα) in Lp(ν) is σ(Lp(ν),Γ)-convergent to f ∈ Lp(ν) iff∫
A
fα dν →

∫
A
f dν weakly in X ∀A ∈ Σ.

Theorem (Ferrando-R. 2007)

The weak topology and σ(Lp(ν),Γ) coincide on any bounded
subset of Lp(ν).
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Some ideas used in the proof

Lp(ν) is p-convex.
⇓

Lp(ν) contains no sublattice order isomorphic to `1(N).
m

Lp(ν)∗ is order continuous.
⇓

The ideal generated by Γ is norm dense in Lp(ν)∗.

Corollary (Ferrando-R. 2007)

Lp(ν)∗ is WCG (weakly compactly generated).

Every closed subspace of Lp(ν) is WCG.
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Definition

Let Y be a Banach space. A set B ⊂ BY ∗ is a James boundary
for BY ∗

if for each y ∈ Y there is y∗ ∈ B such that ‖y‖= 〈y∗,y〉.

Example: the set Ext(BY ∗) of extreme points of BY ∗ .

Theorem (Godefroy 1987)

If Y ∗ is WCG and B ⊂ BY ∗ is a James boundary for BY ∗ , then

BY ∗ = co(B)
norm

In particular, the weak topology and σ(Y ,B) coincide on any
bounded subset of Y .
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Question

Is Γ a James boundary for BLp(ν)∗ ?

Theorem (Ferrando-R. 2007)

The answer is “yes” in each of the following cases:

ν has relatively norm compact range and Lp(ν) is reflexive.

X is a Banach lattice and ν is positive.
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