The weak topology on L^p of a vector measure

Irene Ferrando – José Rodríguez

Universidad Politécnica de Valencia - Universidad de Valencia

22nd. Summer Conference on Topology and its Applications Castellón – July 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

<□> <□> <□> <=> <=> <=> <=> <=> <=> <=> <=> <</p>

Riesz representation theorem

Let K be a compact space. Every $\varphi \in C(K)^*$ can be written as

$$\varphi(f) = \int_{\mathcal{K}} f \, d\mu$$

for some **regular Borel measure** μ on K.

Riesz representation theorem

Let K be a compact space. Every $\varphi \in C(K)^*$ can be written as

$$\varphi(f) = \int_{\mathcal{K}} f \, d\mu$$

for some regular Borel measure μ on K.

What about operators $C(K) \rightarrow X$ where X is a **Banach space** ?

◆□> <圖> <≧> <≧> <≧> <</p>

Riesz representation theorem

Let K be a compact space. Every $\varphi \in C(K)^*$ can be written as

$$\varphi(f) = \int_{K} f \, d\mu$$

for some **regular Borel measure** μ on K.

What about operators $C(K) \rightarrow X$ where X is a **Banach space** ?

Theorem (Bartle-Dunford-Schwartz 1955)

Riesz representation theorem

Let K be a compact space. Every $\varphi \in C(K)^*$ can be written as

$$\varphi(f) = \int_{\mathcal{K}} f \, d\mu$$

for some regular Borel measure μ on K.

What about operators $C(K) \rightarrow X$ where X is a **Banach space** ?

Theorem (Bartle-Dunford-Schwartz 1955)

Every weakly compact operator $T : C(K) \rightarrow X$ can be written as

$$T(f) = \int_{\mathcal{K}} f \, dv$$

Riesz representation theorem

Let K be a compact space. Every $\varphi \in C(K)^*$ can be written as

$$\varphi(f) = \int_{\mathcal{K}} f \, d\mu$$

for some regular Borel measure μ on K.

What about operators $C(K) \rightarrow X$ where X is a **Banach space** ?

Theorem (Bartle-Dunford-Schwartz 1955)

Every weakly compact operator $T : C(K) \rightarrow X$ can be written as

$$T(f) = \int_{\mathcal{K}} f \, dv$$

for some regular Borel <u>X-valued</u> measure v on K.

 $X \equiv$ Banach space

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○へ⊙

 $X \equiv$ Banach space

 $v: \Sigma \rightarrow X \equiv$ countably additive measure

 $X \equiv$ Banach space

 $v: \Sigma \rightarrow X \equiv$ countably additive measure

Definition

A measurable function $f: \Omega \to \mathbb{R}$ is *v*-integrable if:

 $X \equiv$ Banach space

 $v: \Sigma \rightarrow X \equiv$ countably additive measure

Definition

A measurable function $f: \Omega \to \mathbb{R}$ is *v*-integrable if:

• f is $\langle x^*, v \rangle$ -integrable $\forall x^* \in X^*$,

 $X \equiv$ Banach space

 $v: \Sigma \rightarrow X \equiv$ countably additive measure

Definition

A measurable function $f: \Omega \to \mathbb{R}$ is *v*-integrable if:

- f is $\langle x^*, v \rangle$ -integrable $\forall x^* \in X^*$,
- For each $A \in \Sigma$ there is $\int_A f \, dv \in X$ such that

 $X \equiv$ Banach space

 $v: \Sigma \rightarrow X \equiv$ countably additive measure

Definition

A measurable function $f: \Omega \to \mathbb{R}$ is *v*-integrable if:

- f is $\langle x^*, v \rangle$ -integrable $\forall x^* \in X^*$,
- For each $A \in \Sigma$ there is $\int_A f \, dv \in X$ such that

$$\langle x^*, \int_A f \, dv \rangle = \int_A f \, d\langle x^*, v \rangle \quad \forall x^* \in X^*.$$

 $X \equiv$ Banach space

 $v: \Sigma \rightarrow X \equiv$ countably additive measure

Definition

A measurable function $f: \Omega \to \mathbb{R}$ is *v*-integrable if:

- f is $\langle x^*, v \rangle$ -integrable $\forall x^* \in X^*$,
- For each $A \in \Sigma$ there is $\int_A f \, dv \in X$ such that

$$\langle x^*, \int_A f \, dv \rangle = \int_A f \, d\langle x^*, v \rangle \quad \forall x^* \in X^*.$$

The space $L^{1}(v)$ of all v-integrable functions

 $X \equiv$ Banach space

 $v: \Sigma \rightarrow X \equiv$ countably additive measure

Definition

A measurable function $f: \Omega \to \mathbb{R}$ is *v*-integrable if:

- f is $\langle x^*, v \rangle$ -integrable $\forall x^* \in X^*$,
- For each $A \in \Sigma$ there is $\int_A f \, dv \in X$ such that

$$\langle x^*, \int_A f \, dv \rangle = \int_A f \, d\langle x^*, v \rangle \quad \forall x^* \in X^*.$$

The space $L^1(v)$ of all *v*-integrable functions is a **Banach lattice** with the ||v||-a.e. order and the norm

$$\|f\|_{L^{1}(v)} = \sup_{x^{*} \in B_{X^{*}}} \int_{\Omega} |f| \ d|\langle x^{*}, v \rangle|.$$

A measurable function $f: \Omega \to \mathbb{R}$ is *v*-integrable if:

- f is $\langle x^*,v
 angle$ -integrable $orall x^*\in X^*$,
- For each $A \in \Sigma$ there is $\int_A f \ dv \in X$ such that

$$\langle x^*, \int_A f \, dv \rangle = \int_A f \, d\langle x^*, v \rangle \quad \forall x^* \in X^*.$$

The space $L^1(v)$ of all *v*-integrable functions is a **Banach lattice** with the ||v||-a.e. order and the norm

$$\|f\|_{L^1(v)} = \sup_{x^* \in B_{X^*}} \int_{\Omega} |f| \ d|\langle x^*, v \rangle|.$$

Theorem (Curbera 1992)

Every order continuous Banach lattice with weak unit is order isometric to the L^1 space of some vector measure.

Given $h \in L^{\infty}(v)$ and $x^* \in X^*$,

◆□> <個> <=> <=> <=> <=> <</p>

Given $h \in L^{\infty}(v)$ and $x^* \in X^*$, define

$$\gamma_{h,x^*} \in L^1(v)^*, \quad \gamma_{h,x^*}(f) = \int_{\Omega} f \cdot h \ d\langle x^*, v \rangle.$$

Given $h \in L^{\infty}(v)$ and $x^* \in X^*$, define

$$\gamma_{h,x^*} \in L^1(v)^*, \quad \gamma_{h,x^*}(f) = \int_{\Omega} f \cdot h \ d\langle x^*, v \rangle.$$

The set $\Gamma = \{\gamma_{h,x^*} \mid h \in B_{L^{\infty}(v)}, x^* \in B_{X^*}\} \subset B_{L^1(v)^*}$ is norming.

Given $h \in L^{\infty}(v)$ and $x^* \in X^*$, define

$$\gamma_{h,x^*} \in L^1(v)^*, \quad \gamma_{h,x^*}(f) = \int_{\Omega} f \cdot h \ d\langle x^*, v \rangle.$$

The set $\Gamma = \{\gamma_{h,x^*} \mid h \in B_{L^{\infty}(v)}, x^* \in B_{X^*}\} \subset B_{L^1(v)^*}$ is norming.

A bounded net (f_{α}) in $L^{1}(v)$ is $\sigma(L^{1}(v), \Gamma)$ -convergent to $f \in L^{1}(v)$

Given $h \in L^{\infty}(v)$ and $x^* \in X^*$, define

$$\gamma_{h,x^*} \in L^1(v)^*, \quad \gamma_{h,x^*}(f) = \int_{\Omega} f \cdot h \ d\langle x^*, v \rangle.$$

The set $\Gamma = \{\gamma_{h,x^*} \mid h \in B_{L^{\infty}(v)}, x^* \in B_{X^*}\} \subset B_{L^1(v)^*}$ is norming.

A bounded net (f_{α}) in $L^1(\nu)$ is $\sigma(L^1(\nu), \Gamma)$ -convergent to $f \in L^1(\nu)$ iff

$$\int_{A} f_{\alpha} \, d\nu \to \int_{A} f \, d\nu \quad \text{weakly in } X \quad \forall A \in \Sigma.$$

Given $h \in L^{\infty}(v)$ and $x^* \in X^*$, define

$$\gamma_{h,x^*} \in L^1(v)^*, \quad \gamma_{h,x^*}(f) = \int_{\Omega} f \cdot h \ d\langle x^*, v \rangle.$$

The set $\Gamma = \{\gamma_{h,x^*} \mid h \in B_{L^{\infty}(v)}, x^* \in B_{X^*}\} \subset B_{L^1(v)^*}$ is norming.

A bounded net (f_{α}) in $L^1(v)$ is $\sigma(L^1(v), \Gamma)$ -convergent to $f \in L^1(v)$ iff

$$\int_{A} f_{\alpha} \, d\nu \to \int_{A} f \, d\nu \quad \text{weakly in } X \quad \forall A \in \Sigma.$$

Given $h \in L^{\infty}(v)$ and $x^* \in X^*$, define

$$\gamma_{h,x^*} \in L^1(v)^*, \quad \gamma_{h,x^*}(f) = \int_{\Omega} f \cdot h \ d\langle x^*, v \rangle.$$

The set $\Gamma = \{\gamma_{h,x^*} \mid h \in B_{L^{\infty}(v)}, x^* \in B_{X^*}\} \subset B_{L^1(v)^*}$ is norming.

A bounded net (f_{α}) in $L^{1}(v)$ is $\sigma(L^{1}(v),\Gamma)$ -convergent to $f \in L^{1}(v)$ iff

$$\int_A f_\alpha \,\, d\nu \to \int_A f \,\, d\nu \quad \text{weakly in } X \quad \forall A \in \Sigma.$$

Known facts (Curbera 1994-1995, Manjabacas 1998, Okada 1993)

• $\sigma(L^1(v), \Gamma) =$ weak topology on bounded sets if $L^1(v) \not\supseteq \ell^1(\mathbb{N})$.

Given $h \in L^{\infty}(v)$ and $x^* \in X^*$, define

$$\gamma_{h,x^*} \in L^1(v)^*, \quad \gamma_{h,x^*}(f) = \int_{\Omega} f \cdot h \ d\langle x^*, v \rangle.$$

The set $\Gamma = \{\gamma_{h,x^*} \mid h \in B_{L^{\infty}(v)}, x^* \in B_{X^*}\} \subset B_{L^1(v)^*}$ is norming.

A bounded net (f_{α}) in $L^{1}(v)$ is $\sigma(L^{1}(v),\Gamma)$ -convergent to $f \in L^{1}(v)$ iff

$$\int_A f_\alpha \,\, d\nu \to \int_A f \,\, d\nu \quad \text{weakly in } X \quad \forall A \in \Sigma.$$

- $\sigma(L^1(v), \Gamma) =$ weak topology on bounded sets if $L^1(v) \not\supseteq \ell^1(\mathbb{N})$.
- Bounded σ(L¹(ν), Γ)-convergent sequences are weakly convergent if ν has relatively norm compact range.

Given $h \in L^{\infty}(v)$ and $x^* \in X^*$, define

$$\gamma_{h,x^*} \in L^1(v)^*, \quad \gamma_{h,x^*}(f) = \int_{\Omega} f \cdot h \ d\langle x^*, v \rangle.$$

The set $\Gamma = \{\gamma_{h,x^*} \mid h \in B_{L^{\infty}(v)}, x^* \in B_{X^*}\} \subset B_{L^1(v)^*}$ is norming.

A bounded net (f_{α}) in $L^1(v)$ is $\sigma(L^1(v), \Gamma)$ -convergent to $f \in L^1(v)$ iff

$$\int_A f_lpha \,\, d
u o \int_A f \,\, d
u \quad {
m weakly in} \,\, X \quad orall A \in \Sigma.$$

- $\sigma(L^1(v), \Gamma) =$ weak topology on bounded sets if $L^1(v) \not\supseteq \ell^1(\mathbb{N})$.
- Bounded $\sigma(L^1(v), \Gamma)$ -convergent sequences are weakly convergent if v has relatively norm compact range.
- In general, bounded σ(L¹(ν), Γ)-convergent sequences are not weakly convergent.

Given $h \in L^{\infty}(v)$ and $x^* \in X^*$, define

$$\gamma_{h,x^*} \in L^1(v)^*, \quad \gamma_{h,x^*}(f) = \int_{\Omega} f \cdot h \ d\langle x^*, v \rangle.$$

The set $\Gamma = \{\gamma_{h,x^*} \mid h \in B_{L^{\infty}(v)}, x^* \in B_{X^*}\} \subset B_{L^1(v)^*}$ is norming.

A bounded net (f_{α}) in $L^1(v)$ is $\sigma(L^1(v), \Gamma)$ -convergent to $f \in L^1(v)$ iff

$$\int_A f_lpha \,\, d
u o \int_A f \,\, d
u \quad {
m weakly in} \,\, X \quad orall A \in \Sigma.$$

- $\sigma(L^1(v), \Gamma) =$ weak topology on bounded sets if $L^1(v) \not\supseteq \ell^1(\mathbb{N})$.
- Bounded $\sigma(L^1(v), \Gamma)$ -convergent sequences are weakly convergent if v has relatively norm compact range.
- In general, bounded σ(L¹(ν), Γ)-convergent sequences are not weakly convergent.

◆□ → <舂 → < 差 → < 差 → < 差 → < </p>

Definition

A measurable function $f : \Omega \to \mathbb{R}$ is *p*-th power *v*-integrable if $|f|^p$ is *v*-integrable.

Definition

A measurable function $f : \Omega \to \mathbb{R}$ is *p*-th power *v*-integrable if $|f|^p$ is *v*-integrable.

The space $L^{p}(v)$ of all *p*-th power *v*-integrable functions

Definition

A measurable function $f : \Omega \to \mathbb{R}$ is *p*-th power *v*-integrable if $|f|^p$ is *v*-integrable.

The space $L^{p}(v)$ of all *p*-th power *v*-integrable functions is a **Banach lattice** with the ||v||-a.e. order and the norm

$$\|f\|_{L^p(\mathbf{v})} = \sup_{x^* \in B_{X^*}} \left(\int_{\Omega} |f|^p \ d|\langle x^*, \mathbf{v} \rangle| \right)^{\frac{1}{p}}.$$

Definition

A measurable function $f : \Omega \to \mathbb{R}$ is *p*-th power *v*-integrable if $|f|^p$ is *v*-integrable.

The space $L^{p}(v)$ of all *p*-th power *v*-integrable functions is a **Banach lattice** with the ||v||-a.e. order and the norm

$$\|f\|_{L^p(\mathbf{v})} = \sup_{\mathbf{x}^* \in B_{\mathbf{x}^*}} \left(\int_{\Omega} |f|^p \ d|\langle \mathbf{x}^*, \mathbf{v} \rangle| \right)^{\frac{1}{p}}.$$

Theorem (Fernández et al. 2006)

Every *p*-convex order continuous Banach lattice with weak unit is order isomorphic to the L^p space of some vector measure.

Definition

A measurable function $f : \Omega \to \mathbb{R}$ is *p*-th power *v*-integrable if $|f|^p$ is *v*-integrable.

The space $L^{p}(v)$ of all *p*-th power *v*-integrable functions is a **Banach lattice** with the ||v||-a.e. order and the norm

$$\|f\|_{L^p(\mathbf{v})} = \sup_{\mathbf{x}^* \in B_{\mathbf{x}^*}} \left(\int_{\Omega} |f|^p \ d|\langle \mathbf{x}^*, \mathbf{v} \rangle| \right)^{\frac{1}{p}}.$$

Theorem (Fernández et al. 2006)

Every *p*-convex order continuous Banach lattice with weak unit is order isomorphic to the L^p space of some vector measure.

• $L^{p}(v)$ is **not** reflexive in general.

Definition

A measurable function $f : \Omega \to \mathbb{R}$ is *p*-th power *v*-integrable if $|f|^p$ is *v*-integrable.

The space $L^{p}(v)$ of all *p*-th power *v*-integrable functions is a **Banach lattice** with the ||v||-a.e. order and the norm

$$\|f\|_{L^p(\mathbf{v})} = \sup_{x^* \in B_{X^*}} \left(\int_{\Omega} |f|^p \ d|\langle x^*, \mathbf{v} \rangle| \right)^{\frac{1}{p}}.$$

Theorem (Fernández et al. 2006)

Every *p*-convex order continuous Banach lattice with weak unit is order isomorphic to the L^p space of some vector measure.

- $L^{p}(v)$ is **not** reflexive in general.
- No "good" representation of $L^p(v)^*$ is known.

Definition

A measurable function $f : \Omega \to \mathbb{R}$ is *p*-th power *v*-integrable if $|f|^p$ is *v*-integrable.

The space $L^{p}(v)$ of all *p*-th power *v*-integrable functions is a **Banach lattice** with the ||v||-a.e. order and the norm

$$\|f\|_{L^p(\mathbf{v})} = \sup_{x^* \in B_{X^*}} \left(\int_{\Omega} |f|^p \ d|\langle x^*, \mathbf{v} \rangle| \right)^{\frac{1}{p}}.$$

Theorem (Fernández et al. 2006)

Every p-convex order continuous Banach lattice with weak unit is order isomorphic to the L^p space of some vector measure.

- $L^{p}(v)$ is **not** reflexive in general.
- No "good" representation of $L^{p}(v)^{*}$ is known.

Let $1 < q < \infty$ such that 1/p + 1/q = 1.

<□> <□> <□> <=> <=> <=> <=> <=> <=> <<</p>

<□> <□> <□> <=> <=> <=> <=> <=> <=> <=> <=> <</p>

$$\gamma_{g,x^*} \in L^p(\mathbf{v})^*, \quad \gamma_{g,x^*}(f) = \int_{\Omega} f \cdot g \ d\langle x^*, \mathbf{v} \rangle.$$

$$\gamma_{g,x^*} \in L^p(\mathbf{v})^*, \quad \gamma_{g,x^*}(f) = \int_{\Omega} f \cdot g \, d\langle x^*, \mathbf{v} \rangle.$$

The set $\Gamma = \{\gamma_{g,x^*} \mid g \in B_{L^q(v)}, x^* \in B_{X^*}\} \subset B_{L^p(v)^*}$ is norming.

$$\gamma_{g,x^*} \in L^p(v)^*, \quad \gamma_{g,x^*}(f) = \int_{\Omega} f \cdot g \, d\langle x^*, v \rangle.$$

The set $\Gamma = \{\gamma_{g,x^*} \mid g \in B_{L^q(v)}, x^* \in B_{X^*}\} \subset B_{L^p(v)^*}$ is norming.

A bounded net (f_{α}) in $L^{p}(v)$ is $\sigma(L^{p}(v), \Gamma)$ -convergent to $f \in L^{p}(v)$

$$\gamma_{g,x^*} \in L^p(v)^*, \quad \gamma_{g,x^*}(f) = \int_{\Omega} f \cdot g \, d\langle x^*, v \rangle.$$

The set $\Gamma = \{\gamma_{g,x^*} \mid g \in B_{L^q(v)}, x^* \in B_{X^*}\} \subset B_{L^p(v)^*}$ is norming.

A bounded net (f_{α}) in $L^{p}(v)$ is $\sigma(L^{p}(v), \Gamma)$ -convergent to $f \in L^{p}(v)$ iff

$$\int_{A} f_{\alpha} \, d\nu \to \int_{A} f \, d\nu \quad \text{weakly in } X \quad \forall A \in \Sigma.$$

$$\gamma_{g,x^*} \in L^p(\mathbf{v})^*, \quad \gamma_{g,x^*}(f) = \int_{\Omega} f \cdot g \, d\langle x^*, \mathbf{v} \rangle.$$

The set $\Gamma = \{\gamma_{g,x^*} \mid g \in B_{L^q(v)}, x^* \in B_{X^*}\} \subset B_{L^p(v)^*}$ is norming.

A bounded net (f_{α}) in $L^{p}(v)$ is $\sigma(L^{p}(v),\Gamma)$ -convergent to $f \in L^{p}(v)$ iff

$$\int_{A} f_{\alpha} \, d\nu \to \int_{A} f \, d\nu \quad \text{weakly in } X \quad \forall A \in \Sigma.$$

Theorem (Ferrando-R. 2007)

The weak topology and $\sigma(L^p(v), \Gamma)$ coincide on any bounded subset of $L^p(v)$.

Some ideas used in the proof

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶

Some ideas used in the proof

 $L^{p}(v)$ is *p*-convex.

$\begin{array}{c} L^p(v) \text{ is } p\text{-convex}.\\ \Downarrow\\ L^p(v) \text{ contains no sublattice order isomorphic to } \ell^1(\mathbb{N}). \end{array}$

Some ideas used in the proof

Some ideas used in the proof

Some ideas used in the proof

Corollary (Ferrando-R. 2007)

• $L^{p}(v)^{*}$ is **WCG** (weakly compactly generated).

Corollary (Ferrando-R. 2007)

- $L^{p}(v)^{*}$ is **WCG** (weakly compactly generated).
- Every closed subspace of $L^{p}(v)$ is WCG.

Corollary (Ferrando-R. 2007)

- $L^{p}(v)^{*}$ is **WCG** (weakly compactly generated).
- Every closed subspace of $L^{p}(v)$ is WCG.

Let Y be a Banach space. A set $B \subset B_{Y^*}$ is a **James boundary** for B_{Y^*}

Let Y be a Banach space. A set $B \subset B_{Y^*}$ is a **James boundary** for B_{Y^*} if for each $y \in Y$ there is $y^* \in B$ such that $||y|| = \langle y^*, y \rangle$.

◆□> ◆□> ◆目> ◆目> ◆日> ● のへの

Let Y be a Banach space. A set $B \subset B_{Y^*}$ is a **James boundary** for B_{Y^*} if for each $y \in Y$ there is $y^* \in B$ such that $||y|| = \langle y^*, y \rangle$.

Example: the set $Ext(B_{Y^*})$ of extreme points of B_{Y^*} .

Let Y be a Banach space. A set $B \subset B_{Y^*}$ is a **James boundary** for B_{Y^*} if for each $y \in Y$ there is $y^* \in B$ such that $||y|| = \langle y^*, y \rangle$.

Example: the set $Ext(B_{Y^*})$ of extreme points of B_{Y^*} .

Theorem (Godefroy 1987)

If Y^* is **WCG** and $B \subset B_{Y^*}$ is a James boundary for B_{Y^*} ,

Let Y be a Banach space. A set $B \subset B_{Y^*}$ is a **James boundary** for B_{Y^*} if for each $y \in Y$ there is $y^* \in B$ such that $||y|| = \langle y^*, y \rangle$.

Example: the set $Ext(B_{Y^*})$ of extreme points of B_{Y^*} .

Theorem (Godefroy 1987)

If Y^* is **WCG** and $B \subset B_{Y^*}$ is a James boundary for B_{Y^*} , then

$$B_{\mathbf{Y}^*} = \overline{\operatorname{co}(B)}^{\operatorname{norm}}$$

Let Y be a Banach space. A set $B \subset B_{Y^*}$ is a **James boundary** for B_{Y^*} if for each $y \in Y$ there is $y^* \in B$ such that $||y|| = \langle y^*, y \rangle$.

Example: the set $Ext(B_{Y^*})$ of extreme points of B_{Y^*} .

Theorem (Godefroy 1987)

If Y^* is **WCG** and $B \subset B_{Y^*}$ is a James boundary for B_{Y^*} , then

$$B_{\mathbf{Y}^*} = \overline{\operatorname{co}(B)}^{\operatorname{norm}}$$

In particular, the weak topology and $\sigma(Y,B)$ coincide on any bounded subset of Y.

Is Γ a James boundary for $B_{L^p(\nu)^*}$?

Is Γ a James boundary for $B_{L^p(v)^*}$?

Theorem (Ferrando-R. 2007)

The answer is "yes" in each of the following cases:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Is Γ a James boundary for $B_{L^p(v)^*}$?

Theorem (Ferrando-R. 2007)

The answer is "yes" in each of the following cases:

• v has relatively **norm** compact range and $L^{p}(v)$ is **reflexive**.

Is Γ a James boundary for $B_{L^p(\boldsymbol{\nu})^*}$?

Theorem (Ferrando-R. 2007)

The answer is "yes" in each of the following cases:

• v has relatively **norm** compact range and $L^{p}(v)$ is **reflexive**.

• X is a Banach lattice and v is **positive**.

Is Γ a James boundary for $B_{L^p(v)^*}$?

Theorem (Ferrando-R. 2007)

The answer is "yes" in each of the following cases:

• v has relatively **norm** compact range and $L^{p}(v)$ is **reflexive**.

• X is a Banach lattice and v is **positive**.

- R. G. Bartle, N. Dunford, and J. Schwartz, Canad. J. Math. 7 (1955).
- G. P. Curbera, *Math. Ann.* **293** (1992).
- G. P. Curbera, *Pacific J. Math.* 162 (1994).
- G. P. Curbera, Proc. Amer. Math. Soc. 123 (1995).
- A. Fernández, F. Mayoral, F. Naranjo, C. Sáez, and E. A. Sánchez-Pérez, *Positivity* 10 (2006).
- G. Godefroy, *Math. Ann.* **277** (1987).
- G. Manjabacas, *Ph.D. Thesis*, Universidad de Murcia, 1998.
- S. Okada, J. Math. Anal. Appl. 177 (1993).