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I. Series



Series of real numbers

Let (xn) be a sequence in R. The series ∑∞
n=1 xn is:

Absolutely convergent ⇔ ∑∞
n=1 |xn|< ∞.

Unconditionally convergent ⇔ ∑∞
n=1 x

σ(n) converges
∀ permutation σ : N→ N.

In this case, the corresponding sums coincide.

Well known fact

Both notions of convergence are equivalent.

Riemann’s rearrangement theorem

If ∑∞
n=1 xn converges but is not unconditionally convergent, then

∀x ∈ R there is a permutation σ : N→ N such that ∑∞
n=1 x

σ(n)
converges with sum x .
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Series of vectors in Rk

Consider Rk equipped with the euclidean norm ‖ · ‖2, i.e.

‖(x(1), . . . ,x(k))‖2 =
√

x(1)2 + · · ·+x(k)2,

for all x = (x(1),x(2), . . . ,x(k)) ∈ Rk .

Let (xn) be a sequence in Rk . The series ∑∞
n=1 xn is:

Absolutely convergent ⇔ ∑∞
n=1 ‖xn‖2 < ∞.

Unconditionally convergent ⇔ ∑∞
n=1 x

σ(n) converges
∀ permutation σ : N→ N.
In this case, the corresponding sums coincide.

Again . . .

Both notions of convergence are equivalent.

We can work coordinate by coordinate!
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Banach spaces

Banach space ≡ vector space X (over R) equipped with a
norm ‖ · ‖ such that X is complete as a metric space.

Example

C [0,1] = {f : [0,1]→R continuous},

equipped with the supremum
norm ‖f ‖∞ = sup{|f (t)| : t ∈ [0,1]}.

Example

Any Hilbert space, for instance

`2(N) =
{

x = (x(i))∞
i=1 ∈ RN : ‖x‖2 =

( ∞

∑
i=1

|x(i)|2
) 1

2
< ∞

}
,

equipped with the norm ‖ · ‖2.
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Series in Banach spaces: the Dvoretzki-Rogers theorem

Let (xn) be a sequence in a Banach space (X ,‖ · ‖).

The series ∑∞
n=1 xn is:

Absolutely convergent ⇔ ∑∞
n=1 ‖xn‖< ∞.

Unconditionally convergent ⇔ ∑∞
n=1 x

σ(n) converges
∀ permutation σ : N→ N.
In this case, the corresponding sums coincide.

As in the finite-dimensional case . . .

Absolutely convergent ⇒ Unconditionally convergent

Theorem (Dvoretzki-Rogers, 1950)

If X is infinite-dimensional, then there is a sequence (xn) in X such
that ∑∞

n=1 xn is unconditionally convergent but not absolutely
convergent.
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Series in Hilbert spaces

By the Bessaga-Pelczynski theorem (1958), we have

Theorem

A series ∑∞
n=1 xn in `2(N) is unconditionally convergent iff

∞

∑
n=1

|〈x ,xn〉|< ∞ ∀x ∈ `2(N).

Example

∀n ∈ N, let xn ∈ `2(N) be defined by xn(i) = δn,i/n. Then ∑∞
n=1 xn

is unconditionally convergent but not absolutely convergent.
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Series in Hilbert spaces

Theorem (Orlicz, 1930)

Let ∑∞
n=1 xn be an unconditionally convergent series in `2(N). Then

∞

∑
n=1

‖xn‖2
2 < ∞.



II. Integrals



Fremlin-Mendoza (1994)

The ordinary functional analyst is naturally impatient with the
multiplicity of definitions of ‘integral’ which have been proposed
for vector-valued functions, and would prefer to have a single
canonical one for general use.



The Riemann integral of real-valued functions

f : [0,1]→ R is Riemann integrable, with integral α ∈ R,

iff for
each ε > 0 there is a partition 0 = b0 ≤ b1 ≤ ·· · ≤ bn = 1 such that∣∣∣ n

∑
i=1

(bi −bi−1)f (ti )−α

∣∣∣≤ ε

for every choice of points bi−1 ≤ ti ≤ bi .

Theorem (Lebesgue)
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But Lebesgue’s criterion fails for the most of the
infinite-dimensional Banach spaces!



The Riemann integral of Banach space-valued functions

Let (X ,‖ · ‖) be a Banach space.

f : [0,1]→ X is Riemann integrable, with integral x ∈ X ,

iff for
each ε > 0 there is a partition 0 = b0 ≤ b1 ≤ ·· · ≤ bn = 1 such that∥∥∥ n

∑
i=1

(bi −bi−1)f (ti )−x
∥∥∥≤ ε

for every choice of points bi−1 ≤ ti ≤ bi . (Graves, 1927)

For a bounded function f : [0,1]→ X . . .

If the set of points of discontinuity of f has measure 0, then f
is Riemann integrable.

The converse holds when X is finite-dimensional.

But Lebesgue’s criterion fails for the most of the
infinite-dimensional Banach spaces!



The Riemann integral of Banach space-valued functions

Let (X ,‖ · ‖) be a Banach space.

f : [0,1]→ X is Riemann integrable, with integral x ∈ X , iff for
each ε > 0 there is a partition 0 = b0 ≤ b1 ≤ ·· · ≤ bn = 1 such that

∥∥∥ n

∑
i=1

(bi −bi−1)f (ti )−x
∥∥∥≤ ε

for every choice of points bi−1 ≤ ti ≤ bi . (Graves, 1927)

For a bounded function f : [0,1]→ X . . .

If the set of points of discontinuity of f has measure 0, then f
is Riemann integrable.

The converse holds when X is finite-dimensional.

But Lebesgue’s criterion fails for the most of the
infinite-dimensional Banach spaces!



The Riemann integral of Banach space-valued functions

Let (X ,‖ · ‖) be a Banach space.

f : [0,1]→ X is Riemann integrable, with integral x ∈ X , iff for
each ε > 0 there is a partition 0 = b0 ≤ b1 ≤ ·· · ≤ bn = 1 such that∥∥∥ n

∑
i=1

(bi −bi−1)f (ti )−x
∥∥∥≤ ε

for every choice of points bi−1 ≤ ti ≤ bi . (Graves, 1927)

For a bounded function f : [0,1]→ X . . .

If the set of points of discontinuity of f has measure 0, then f
is Riemann integrable.

The converse holds when X is finite-dimensional.

But Lebesgue’s criterion fails for the most of the
infinite-dimensional Banach spaces!



The Riemann integral of Banach space-valued functions

Let (X ,‖ · ‖) be a Banach space.

f : [0,1]→ X is Riemann integrable, with integral x ∈ X , iff for
each ε > 0 there is a partition 0 = b0 ≤ b1 ≤ ·· · ≤ bn = 1 such that∥∥∥ n

∑
i=1

(bi −bi−1)f (ti )−x
∥∥∥≤ ε

for every choice of points bi−1 ≤ ti ≤ bi . (Graves, 1927)

For a bounded function f : [0,1]→ X . . .

If the set of points of discontinuity of f has measure 0, then f
is Riemann integrable.

The converse holds when X is finite-dimensional.

But Lebesgue’s criterion fails for the most of the
infinite-dimensional Banach spaces!



The Riemann integral of Banach space-valued functions

Let (X ,‖ · ‖) be a Banach space.

f : [0,1]→ X is Riemann integrable, with integral x ∈ X , iff for
each ε > 0 there is a partition 0 = b0 ≤ b1 ≤ ·· · ≤ bn = 1 such that∥∥∥ n

∑
i=1

(bi −bi−1)f (ti )−x
∥∥∥≤ ε

for every choice of points bi−1 ≤ ti ≤ bi . (Graves, 1927)

For a bounded function f : [0,1]→ X . . .

If the set of points of discontinuity of f has measure 0, then f
is Riemann integrable.

The converse holds when X is finite-dimensional.

But Lebesgue’s criterion fails for the most of the
infinite-dimensional Banach spaces!



The Riemann integral of Banach space-valued functions

Let (X ,‖ · ‖) be a Banach space.

f : [0,1]→ X is Riemann integrable, with integral x ∈ X , iff for
each ε > 0 there is a partition 0 = b0 ≤ b1 ≤ ·· · ≤ bn = 1 such that∥∥∥ n

∑
i=1

(bi −bi−1)f (ti )−x
∥∥∥≤ ε

for every choice of points bi−1 ≤ ti ≤ bi . (Graves, 1927)

For a bounded function f : [0,1]→ X . . .

If the set of points of discontinuity of f has measure 0, then f
is Riemann integrable.

The converse holds when X is finite-dimensional.

But Lebesgue’s criterion fails for the most of the
infinite-dimensional Banach spaces!



The Riemann integral of Banach space-valued functions

Let (X ,‖ · ‖) be a Banach space.

f : [0,1]→ X is Riemann integrable, with integral x ∈ X , iff for
each ε > 0 there is a partition 0 = b0 ≤ b1 ≤ ·· · ≤ bn = 1 such that∥∥∥ n

∑
i=1

(bi −bi−1)f (ti )−x
∥∥∥≤ ε

for every choice of points bi−1 ≤ ti ≤ bi . (Graves, 1927)

For a bounded function f : [0,1]→ X . . .

If the set of points of discontinuity of f has measure 0, then f
is Riemann integrable.

The converse holds when X is finite-dimensional.

But Lebesgue’s criterion fails for the most of the
infinite-dimensional Banach spaces!



The Riemann integral of Banach space-valued functions

Let (X ,‖ · ‖) be a Banach space.

f : [0,1]→ X is Riemann integrable, with integral x ∈ X , iff for
each ε > 0 there is a partition 0 = b0 ≤ b1 ≤ ·· · ≤ bn = 1 such that∥∥∥ n

∑
i=1

(bi −bi−1)f (ti )−x
∥∥∥≤ ε

for every choice of points bi−1 ≤ ti ≤ bi . (Graves, 1927)

For a bounded function f : [0,1]→ X . . .

If the set of points of discontinuity of f has measure 0, then f
is Riemann integrable.

The converse holds when X is finite-dimensional.

But Lebesgue’s criterion fails for the most of the
infinite-dimensional Banach spaces!



The Riemann integral of Banach space-valued functions

Let (X ,‖ · ‖) be a Banach space.

f : [0,1]→ X is Riemann integrable, with integral x ∈ X , iff for
each ε > 0 there is a partition 0 = b0 ≤ b1 ≤ ·· · ≤ bn = 1 such that∥∥∥ n

∑
i=1

(bi −bi−1)f (ti )−x
∥∥∥≤ ε

for every choice of points bi−1 ≤ ti ≤ bi . (Graves, 1927)

For a bounded function f : [0,1]→ X . . .

If the set of points of discontinuity of f has measure 0, then f
is Riemann integrable.

The converse holds when X is finite-dimensional.

But Lebesgue’s criterion fails for the most of the
infinite-dimensional Banach spaces!



The Riemann integral of Banach space-valued functions

Example of a function f : [0,1]→ `2(N)

Let {q1,q2, . . .} be an enumeration of [0,1]∩Q.

∀n ∈ N, let en ∈ `2(N) be defined by en(i) = δn,i .

Define f : [0,1]→ `2(N) as follows:

f (t) =

{
en if t = qn,

0 otherwise.

Then f is Riemann integrable, with integral (0,0, . . .) ∈ `2(N).
But f is discontinuous at every point!
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Frechet’s approach to the Lebesgue integral

Theorem (Frechet, 1915)

A bounded function f : [0,1]→ R is Lebesgue integrable, with
integral α ∈ R,

if and only if for each ε > 0 there is a partition
of [0,1] into finitely many measurable subsets A1, . . . ,An such that∣∣∣ n

∑
i=1

meas(Ai )f (ti )−α

∣∣∣≤ ε

for every choice of points ti ∈ Ai .

For a non necessarily bounded function. . . we need to consider
countable partitions, requiring that the series

∑
i

meas(Ai )f (ti )

are unconditionally convergent.
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Frechet’s approach to the Lebesgue integral

Frechet (1915)

This way of presenting the theory of integration due to Mr.
Lebesgue has the advantage, over the way Mr. Lebesgue presented
his theory himself, that is very much close to the views of
Riemann-Darboux to which many students are familiar with.



The Birkhoff integral of Banach space-valued functions

Let (X ,‖ · ‖) be a Banach space.

Definition (Birkhoff, 1935)

A bounded function f : [0,1]→ X is Birkhoff integrable, with
integral x ∈ X ,

if and only if for each ε > 0 there is a partition
of [0,1] into finitely many measurable subsets A1, . . . ,An such that∥∥∥ n

∑
i=1

meas(Ai )f (ti )−x
∥∥∥≤ ε

for every choice of points ti ∈ Ai .

Again, for a non necessarily bounded function. . . we need to
consider countable partitions, requiring that the series
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Weak integrals of Banach space-valued functions

Let f : [0,1]→ Rk with “coordinates” f1, . . . , fk : [0,1]→ R.

f is integrable if and only if each fi is integrable, and in this case∫ 1

0
f (t) dt =

(∫ 1

0
f1(t) dt, . . . ,

∫ 1

0
fk(t) dt

)
∈ Rk .

Dunford and Pettis (1930’s) generalized this idea to
infinite-dimensional Banach spaces.

Theorem (Dunford-Pettis)

Let f : [0,1]→ `2(N) be a bounded function with “coordinates”
fi : [0,1]→ R. The following are equivalent:

(i) f is Birkhoff integrable.

(ii) fi is Lebesgue integrable ∀i ∈ N.

In this case, the Birkhoff integral of f is(∫ 1

0
fi (t) dt

)∞

i=1
∈ `2(N).
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