Norming sets and integration with respect to

vector measures

J. Rodriguez (Murcia)
Joint work with A. Ferndndez, F. Mayoral and F. Naranjo (Sevilla)

Positivity VI
El Escorial — July 20th, 2009



Our General Problem

(©2,X) measurable space, X Banach space with dual X*,
v: ¥ — X countably additive (c.a.) vector measure



Our General Problem

(©2,X) measurable space, X Banach space with dual X*,
v: ¥ — X countably additive (c.a.) vector measure

A measurable function f: Q2 — R is:




Our General Problem

(©2,X) measurable space, X Banach space with dual X*,
v: ¥ — X countably additive (c.a.) vector measure

A measurable function f: Q2 — R is:
@ weakly v-integrable if f € Z*(x*V) for all x* € X*;




Our General Problem

(©2,X) measurable space, X Banach space with dual X*,
v: ¥ — X countably additive (c.a.) vector measure

A measurable function f: Q2 — R is:

@ weakly v-integrable if f € Z*(x*V) for all x* € X*;

@ strongly v-integrable if it is weakly v-integrable and
for each A € X there is a vector [, f dv € X such that

X*(/de) :/fd(x*v) for all x* € X*.
A A

Here x*v : £ — R denotes the composition of v and x*.




Our General Problem

(©2,X) measurable space, X Banach space with dual X*,
v: ¥ — X countably additive (c.a.) vector measure

Definition

A measurable function f: Q2 — R is:
@ weakly v-integrable if f € Z*(x*V) for all x* € X*;

@ strongly v-integrable if it is weakly v-integrable and
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Here x*v : £ — R denotes the composition of v and x*.
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What happens if we replace X* by a smaller set of functionals in
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Let B C By. be a James boundary. An application to vector measures

Let (x,) be a bounded sequence Let B C Bx- be a James boundary.
in X and x € X. A set function u : ¥ — X is c.a. iff
If x*(xn) — x*(x) for all x* € B, x*1 is c.a. for all x* € B.

then x, — x weakly.

Pfitzner (2008)

Let B C Bx+ be a James boundary. Let H C X be a bounded set.
If His o(X,B)-compact, then H is weakly compact.




Boundedness Tests



Boundedness Tests

Uniform Boundedness Theorem
A set H C X is bounded iff x*(H) is bounded for all x* € X*.




Boundedness Tests

Uniform Boundedness Theorem
A set H C X is bounded iff x*(H) is bounded for all x* € X*.

» T C X* is w*-thick (Fonf, 1989) if, whenever we write T ={J T,, with
Ty C Thy1, there is m such that inf s, sup,ieT, [x*(x)] > 0.



Boundedness Tests

Uniform Boundedness Theorem
A set H C X is bounded iff x*(H) is bounded for all x* € X*.

» T C X* is w*-thick (Fonf, 1989) if, whenever we write T ={J T,, with
Ty C Thy1, there is m such that inf s, sup,ieT, [x*(x)] > 0.

Nygaard et al. (2002-2006)
Let T C X* be w*-thick. Then:
© A set HC X is bounded iff x*(H) is bounded for all x* € T.




Boundedness Tests

Uniform Boundedness Theorem
A set H C X is bounded iff x*(H) is bounded for all x* € X*.

» T C X* is w*-thick (Fonf, 1989) if, whenever we write T ={J T,, with
Ty C Thy1, there is m such that inf s, sup,ieT, [x*(x)] > 0.

Nygaard et al. (2002-2006)

Let T C X* be w*-thick. Then:
@ A set HC X is bounded iff x*(H) is bounded for all x* € T.
@ A series ¥ xp in X is weakly unconditionally Cauchy iff

Y Ix*(xa)| <eo forall x € T.




Boundedness Tests

Uniform Boundedness Theorem
A set H C X is bounded iff x*(H) is bounded for all x* € X*.

» T C X* is w*-thick (Fonf, 1989) if, whenever we write T ={J T,, with
Ty C Thy1, there is m such that inf s, sup,ieT, [x*(x)] > 0.

Nygaard et al. (2002-2006)

Let T C X* be w*-thick. Then:
@ A set HC X is bounded iff x*(H) is bounded for all x* € T.
@ A series ¥ xp in X is weakly unconditionally Cauchy iff

Y Ix*(xa)| <eo forall x € T.

© An X-valued set function pu defined on an algebra is bounded and finitely
additive iff x*u is bounded and finitely additive for all x* € T.




Boundedness Tests

Uniform Boundedness Theorem
A set H C X is bounded iff x*(H) is bounded for all x* € X*.

» T C X* is w*-thick (Fonf, 1989) if, whenever we write T ={J T,, with
Ty C Thy1, there is m such that inf s, sup,ieT, [x*(x)] > 0.

Nygaard et al. (2002-2006)

Let T C X* be w*-thick. Then:
@ A set HC X is bounded iff x*(H) is bounded for all x* € T.
@ A series ¥ xp in X is weakly unconditionally Cauchy iff

Y Ix*(xa)| <eo forall x € T.

© An X-valued set function pu defined on an algebra is bounded and finitely
additive iff x*u is bounded and finitely additive for all x* € T.

» Each of these properties characterizes w*-thickness.
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(©2,X) measurable space, v: ¥ — X c.a. vector measure

N C X*

Zr(v) :={f :Q— R measurable: f € Z(x*v) for all x* € N}

> ZL.(v) = ZLL(v) = the set of all weakly v-integrable functions

Q If N is w-thick, then | ZL(v) = .ZL(v)|

Q If LL(u)=Li(u) for every c.a. X-valued measure u,
then N is w*-thick.
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> Z1(v) = the set of all strongly v-integrable functions

Fonf (1989)

If X 2 cp, then

If X 2 co, then every James
boundary B C Bx- is w*-thick.

L(v)= L)

Suppose X 5 cg and let B C Bx+ be a James boundary. Then

L) =23(v)|
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» N has the Orlicz property (Thomas, 1970) if for every
X-valued set function u defined on a c-algebra we have:

x*1L countably additive for all x* € N = u countably additive.

If N has the Orlicz property,
then

LHv)=Lys(v) |

Examples of sets having the

Orlicz property

@ Any norming set
when X 2 /..

@ James boundaries.
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Final Remarks

Suppose X = Y* for a Banach space Y. Then

Ly s(v) =2, (v) = Z5(v).

Summarizing

For any norming set N C X* we have:

L v) C L (V) C La(v) C Ly(v)|.

» There are examples making clear that in the previous chain all
combinations of “C" and “=" are possible.
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