Norming sets and integration with respect to vector measures

J. Rodríguez (Murcia)

Joint work with A. Fernández, F. Mayoral and F. Naranjo (Sevilla)

Positivity VI El Escorial – July 20th, 2009

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

 (Ω, Σ) measurable space, X Banach space with dual X^{*}, $v : \Sigma \to X$ countably additive (c.a.) vector measure

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

 (Ω, Σ) measurable space, X Banach space with dual X^{*}, $v : \Sigma \to X$ countably additive (c.a.) vector measure

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Definition

A measurable function $f: \Omega \to \mathbb{R}$ is:

 (Ω, Σ) measurable space, X Banach space with dual X^{*}, $v : \Sigma \to X$ countably additive (c.a.) vector measure

Definition

- A measurable function $f: \Omega \to \mathbb{R}$ is:
 - weakly *v*-integrable if $f \in \mathscr{L}^1(x^*v)$ for all $x^* \in X^*$;

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

 (Ω, Σ) measurable space, X Banach space with dual X^{*}, $v : \Sigma \to X$ countably additive (c.a.) vector measure

Definition

A measurable function $f: \Omega \to \mathbb{R}$ is:

- weakly *v*-integrable if $f \in \mathscr{L}^1(x^*v)$ for all $x^* \in X^*$;
- Strongly *v*-integrable if it is weakly *v*-integrable and for each A ∈ Σ there is a vector ∫_A f dv ∈ X such that

$$x^*\left(\int_A f \, dv\right) = \int_A f \, d(x^*v)$$
 for all $x^* \in X^*$.

Here $x^*v : \Sigma \to \mathbb{R}$ denotes the composition of v and x^* .

 (Ω, Σ) measurable space, X Banach space with dual X^{*}, $v : \Sigma \to X$ countably additive (c.a.) vector measure

Definition

A measurable function $f: \Omega \to \mathbb{R}$ is:

- weakly *v*-integrable if $f \in \mathscr{L}^1(x^*v)$ for all $x^* \in X^*$;
- Strongly *v*-integrable if it is weakly *v*-integrable and for each A ∈ Σ there is a vector ∫_A f dv ∈ X such that

$$x^*\left(\int_A f \, dv\right) = \int_A f \, d(x^*v)$$
 for all $x^* \in X^*$.

Here $x^*v: \Sigma \to \mathbb{R}$ denotes the composition of v and x^* .

Question

What happens if we replace X^* by a smaller set of functionals in the previous definition ?????

Grothendieck (1952)

Let (f_n) be a bounded sequence in C(K) and $f \in C(K)$. If $f_n(t) \rightarrow f(t)$ for all $t \in K$, then $f_n \rightarrow f$ weakly.

Grothendieck (1952)

Let (f_n) be a bounded sequence in C(K) and $f \in C(K)$. If $f_n(t) \rightarrow f(t)$ for all $t \in K$, then $f_n \rightarrow f$ weakly.

Rainwater (1963)

Let (x_n) be a bounded sequence in X and $x \in X$. If $x^*(x_n) \to x^*(x)$ for all $x^* \in ext(B_{X^*})$, then $x_n \to x$ weakly.

(ロ) (四) (三) (三) (三) (三) (○) (○)

Grothendieck (1952)

Let (f_n) be a bounded sequence in C(K) and $f \in C(K)$. If $f_n(t) \rightarrow f(t)$ for all $t \in K$, then $f_n \rightarrow f$ weakly.

Rainwater (1963)

Let (x_n) be a bounded sequence in X and $x \in X$. If $x^*(x_n) \to x^*(x)$ for all $x^* \in ext(B_{X^*})$, then $x_n \to x$ weakly.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

▶ $B \subset B_{X^*}$ is a James boundary if $\forall x \in X \exists x^* \in B$ such that $||x|| = x^*(x)$.

Grothendieck (1952)

Let (f_n) be a bounded sequence in C(K) and $f \in C(K)$. If $f_n(t) \rightarrow f(t)$ for all $t \in K$, then $f_n \rightarrow f$ weakly.

Rainwater (1963)

Let (x_n) be a bounded sequence in X and $x \in X$. If $x^*(x_n) \to x^*(x)$ for all $x^* \in ext(B_{X^*})$, then $x_n \to x$ weakly.

▶ $B \subset B_{X^*}$ is a James boundary if $\forall x \in X \exists x^* \in B$ such that $||x|| = x^*(x)$.

Simons (1972)

Let $B \subset B_{X^*}$ be a James boundary. Let (x_n) be a bounded sequence in X and $x \in X$. If $x^*(x_n) \to x^*(x)$ for all $x^* \in B$, then $x_n \to x$ weakly.

Grothendieck (1952)

Let (f_n) be a bounded sequence in C(K) and $f \in C(K)$. If $f_n(t) \rightarrow f(t)$ for all $t \in K$, then $f_n \rightarrow f$ weakly.

Rainwater (1963)

Let (x_n) be a bounded sequence in X and $x \in X$. If $x^*(x_n) \to x^*(x)$ for all $x^* \in ext(B_{X^*})$, then $x_n \to x$ weakly.

▶ $B \subset B_{X^*}$ is a James boundary if $\forall x \in X \exists x^* \in B$ such that $||x|| = x^*(x)$.

Simons (1972)

Let $B \subset B_{X^*}$ be a James boundary. Let (x_n) be a bounded sequence in X and $x \in X$. If $x^*(x_n) \to x^*(x)$ for all $x^* \in B$, then $x_n \to x$ weakly. An application to vector measures

Let $B \subset B_{X^*}$ be a James boundary. A set function $\mu : \Sigma \to X$ is c.a. iff $x^*\mu$ is c.a. for all $x^* \in B$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Grothendieck (1952)

Let (f_n) be a bounded sequence in C(K) and $f \in C(K)$. If $f_n(t) \rightarrow f(t)$ for all $t \in K$, then $f_n \rightarrow f$ weakly.

Rainwater (1963)

Let (x_n) be a bounded sequence in X and $x \in X$. If $x^*(x_n) \to x^*(x)$ for all $x^* \in ext(B_{X^*})$, then $x_n \to x$ weakly.

▶ $B \subset B_{X^*}$ is a James boundary if $\forall x \in X \exists x^* \in B$ such that $||x|| = x^*(x)$.

Simons (1972)

Let $B \subset B_{X^*}$ be a James boundary. Let (x_n) be a bounded sequence in X and $x \in X$. If $x^*(x_n) \to x^*(x)$ for all $x^* \in B$, then $x_n \to x$ weakly. An application to vector measures

Let $B \subset B_{X^*}$ be a James boundary. A set function $\mu : \Sigma \to X$ is c.a. iff $x^*\mu$ is c.a. for all $x^* \in B$.

Pfitzner (2008)

Let $B \subset B_{X^*}$ be a James boundary. Let $H \subset X$ be a bounded set. If H is $\sigma(X, B)$ -compact, then H is weakly compact.

Uniform Boundedness Theorem

A set $H \subset X$ is bounded iff $x^*(H)$ is bounded for all $x^* \in X^*$.

Uniform Boundedness Theorem

A set $H \subset X$ is bounded iff $x^*(H)$ is bounded for all $x^* \in X^*$.

► $T \subset X^*$ is w^* -thick (Fonf, 1989) if, whenever we write $T = \bigcup T_n$ with $T_n \subset T_{n+1}$, there is *m* such that $\inf_{x \in S_X} \sup_{x^* \in T_m} |x^*(x)| > 0$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Uniform Boundedness Theorem

A set $H \subset X$ is bounded iff $x^*(H)$ is bounded for all $x^* \in X^*$.

▶ $T \subset X^*$ is w^* -thick (Fonf, 1989) if, whenever we write $T = \bigcup T_n$ with $T_n \subset T_{n+1}$, there is *m* such that $\inf_{x \in S_X} \sup_{x^* \in T_m} |x^*(x)| > 0$.

Nygaard et al. (2002-2006)

Let $T \subset X^*$ be w^* -thick. Then:

• A set $H \subset X$ is bounded iff $x^*(H)$ is bounded for all $x^* \in T$.

Uniform Boundedness Theorem

A set $H \subset X$ is bounded iff $x^*(H)$ is bounded for all $x^* \in X^*$.

▶ $T \subset X^*$ is w^* -thick (Fonf, 1989) if, whenever we write $T = \bigcup T_n$ with $T_n \subset T_{n+1}$, there is *m* such that $\inf_{x \in S_X} \sup_{x^* \in T_m} |x^*(x)| > 0$.

Nygaard et al. (2002-2006)

Let $T \subset X^*$ be w^* -thick. Then:

- A set $H \subset X$ is bounded iff $x^*(H)$ is bounded for all $x^* \in T$.
- 2 A series $\sum x_n$ in X is weakly unconditionally Cauchy iff

$$\sum |x^*(x_n)| < \infty \quad \text{for all } x^* \in \mathbf{T}.$$

Uniform Boundedness Theorem

A set $H \subset X$ is bounded iff $x^*(H)$ is bounded for all $x^* \in X^*$.

▶ $T \subset X^*$ is w^* -thick (Fonf, 1989) if, whenever we write $T = \bigcup T_n$ with $T_n \subset T_{n+1}$, there is *m* such that $\inf_{x \in S_X} \sup_{x^* \in T_m} |x^*(x)| > 0$.

Nygaard et al. (2002-2006)

Let $T \subset X^*$ be w^* -thick. Then:

- A set $H \subset X$ is bounded iff $x^*(H)$ is bounded for all $x^* \in T$.
- 2 A series $\sum x_n$ in X is weakly unconditionally Cauchy iff

$$\sum |x^*(x_n)| < \infty \quad \text{for all } x^* \in \mathbf{T}.$$

③ An X-valued set function μ defined on an algebra is bounded and finitely additive iff $x^*\mu$ is bounded and finitely additive for all $x^* \in T$.

Uniform Boundedness Theorem

A set $H \subset X$ is bounded iff $x^*(H)$ is bounded for all $x^* \in X^*$.

▶ $T \subset X^*$ is w^* -thick (Fonf, 1989) if, whenever we write $T = \bigcup T_n$ with $T_n \subset T_{n+1}$, there is *m* such that $\inf_{x \in S_X} \sup_{x^* \in T_m} |x^*(x)| > 0$.

Nygaard et al. (2002-2006)

Let $T \subset X^*$ be w^* -thick. Then:

- A set $H \subset X$ is bounded iff $x^*(H)$ is bounded for all $x^* \in T$.
- 2 A series $\sum x_n$ in X is weakly unconditionally Cauchy iff

$$\sum |x^*(x_n)| < \infty \quad \text{for all } x^* \in \mathbf{T}.$$

③ An X-valued set function μ defined on an algebra is bounded and finitely additive iff $x^*\mu$ is bounded and finitely additive for all $x^* \in T$.

▶ Each of these properties characterizes *w*^{*}-thickness.

(Ω,Σ) measurable space, $v:\Sigma ightarrow X$ c.a. vector measure

 (Ω, Σ) measurable space, $v: \Sigma \rightarrow X$ c.a. vector measure

 $N \subset X^*$

 $\mathscr{L}^1_{N}(v) := \{ f : \Omega \to \mathbb{R} \text{ measurable} : f \in \mathscr{L}^1(x^*v) \text{ for all } x^* \in N \}$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

 (Ω, Σ) measurable space, $v: \Sigma \to X$ c.a. vector measure

 $N \subset X^*$

 $\mathscr{L}^1_N(v) := \{f: \Omega o \mathbb{R} \text{ measurable}: f \in \mathscr{L}^1(x^*v) \text{ for all } x^* \in N\}$

▶ $\mathscr{L}^1_{X^*}(v) = \mathscr{L}^1_w(v)$ = the set of all weakly *v*-integrable functions

 (Ω, Σ) measurable space, $v: \Sigma \to X$ c.a. vector measure

 $N \subset X^*$

 $\mathscr{L}^1_{N}(v) := \{ f : \Omega \to \mathbb{R} \text{ measurable} : f \in \mathscr{L}^1(x^*v) \text{ for all } x^* \in N \}$

▶ $\mathscr{L}^1_{X^*}(v) = \mathscr{L}^1_w(v)$ = the set of all weakly *v*-integrable functions

Question

When does the equality $\mathscr{L}^1_w(v) = \mathscr{L}^1_N(v)$ hold ?????

 (Ω, Σ) measurable space, $v: \Sigma \to X$ c.a. vector measure

 $N \subset X^*$

 $\mathscr{L}^1_{N}(v) := \{ f : \Omega \to \mathbb{R} \text{ measurable} : f \in \mathscr{L}^1(x^*v) \text{ for all } x^* \in N \}$

• $\mathscr{L}^{1}_{X^{*}}(v) = \mathscr{L}^{1}_{w}(v)$ = the set of all weakly *v*-integrable functions

Question

When does the equality
$$\mathscr{L}^1_w(v) = \mathscr{L}^1_N(v)$$
 hold ?????

Theorem

1 If *N* is
$$w^*$$
-thick, then $\left| \mathscr{L}^1_w(v) = \mathscr{L}^1_N(v) \right|$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへで

 (Ω, Σ) measurable space, $v: \Sigma \to X$ c.a. vector measure

 $N \subset X^*$

 $\mathscr{L}^1_{N}(v) := \{ f : \Omega \to \mathbb{R} \text{ measurable} : f \in \mathscr{L}^1(x^*v) \text{ for all } x^* \in N \}$

• $\mathscr{L}^{1}_{X^{*}}(v) = \mathscr{L}^{1}_{w}(v)$ = the set of all weakly *v*-integrable functions

Question

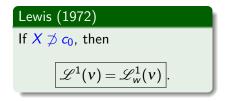
When does the equality
$$\mathscr{L}^{1}_{w}(v) = \mathscr{L}^{1}_{N}(v)$$
 hold ?????

Theorem

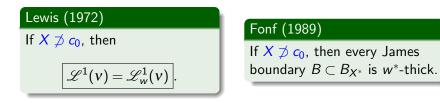
If N is
$$w^*$$
-thick, then $\left| \mathscr{L}^1_w(v) = \mathscr{L}^1_N(v) \right|$.

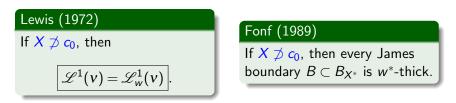
When $X \not\supseteq c_0$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ◆ ●



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの





Corollary

Suppose $X \not\supseteq c_0$ and let $B \subset B_{X^*}$ be a James boundary. Then

$$\mathscr{L}^1(\mathbf{v}) = \mathscr{L}^1_B(\mathbf{v})$$
.

・ロ・・日・・日・・日・ うらう

$N \subset X^*$ norming

That is, there is $\lambda \geq 1$ such that

 $\|x\| \leq \lambda \sup\{x^*(x) : x^* \in \operatorname{span}(N) \cap B_{X^*}\}$ for all $x \in X$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

$N \subset X^*$ norming

That is, there is $\lambda \geq 1$ such that

 $\|x\| \leq \lambda \sup\{x^*(x) : x^* \in \operatorname{span}(N) \cap B_{X^*}\}$ for all $x \in X$.

Definition

Let $f \in \mathscr{L}^1_N(v)$. We say that $f \in \mathscr{L}^1_{N,s}(v)$ if for each $A \in \Sigma$ there is a vector $\int_A^N f \, dv \in X$ such that

$$x^*\left(\int_A^N f\,dv\right) = \int_A f\,d(x^*v) \quad \text{for all } x^* \in N.$$

$N \subset X^*$ norming

That is, there is $\lambda \geq 1$ such that

 $\|x\| \leq \lambda \sup\{x^*(x) : x^* \in \operatorname{span}(N) \cap B_{X^*}\}$ for all $x \in X$.

Definition

Let $f \in \mathscr{L}^1_N(v)$. We say that $f \in \mathscr{L}^1_{N,s}(v)$ if for each $A \in \Sigma$ there is a vector $\int_A^N f \, dv \in X$ such that

$$x^*\left(\int_A^N f\,dv\right) = \int_A f\,d(x^*v) \quad \text{for all } x^* \in \mathbb{N}.$$

Theorem

Let $f \in \mathscr{L}^1_{N,s}(v)$. Then:

() The set function $\int_{(\cdot)}^{N} f \, dv$ is bounded and finitely additive.

$N \subset X^*$ norming

That is, there is $\lambda \geq 1$ such that

 $\|x\| \leq \lambda \sup\{x^*(x) : x^* \in \operatorname{span}(N) \cap B_{X^*}\}$ for all $x \in X$.

Definition

Let $f \in \mathscr{L}^1_N(v)$. We say that $f \in \mathscr{L}^1_{N,s}(v)$ if for each $A \in \Sigma$ there is a vector $\int_A^N f \, dv \in X$ such that

$$x^*\left(\int_A^N f\,dv\right) = \int_A f\,d(x^*v) \quad \text{for all } x^* \in \mathbb{N}.$$

Theorem

Let $f \in \mathscr{L}^{1}_{N,s}(v)$. Then: **1** The set function $\int_{(\cdot)}^{N} f \, dv$ is bounded and finitely additive. **2** $f \in \mathscr{L}^{1}_{w}(v)$.

$N \subset X^*$ norming

That is, there is $\lambda \geq 1$ such that

 $\|x\| \leq \lambda \sup\{x^*(x) : x^* \in \operatorname{span}(N) \cap B_{X^*}\}$ for all $x \in X$.

Definition

Let $f \in \mathscr{L}^1_N(v)$. We say that $f \in \mathscr{L}^1_{N,s}(v)$ if for each $A \in \Sigma$ there is a vector $\int_A^N f \, dv \in X$ such that

$$x^*\left(\int_A^N f\,dv\right) = \int_A f\,d(x^*v) \quad \text{for all } x^* \in \mathbb{N}.$$

Theorem

Let f ∈ L¹_{N,s}(v). Then:
The set function ∫^N_(·) f dv is bounded and finitely additive.
f ∈ L¹_w(v).
f ∈ L¹(v) ⇔ ∫^N_(·) f dv is countably additive.

Question

When does the equality
$$\mathscr{L}^1(v) = \mathscr{L}^1_{N,s}(v)$$
 hold ?????

(ロ) (四) (E) (E) (E)

When does the equality $\mathscr{L}^1(v) = \mathscr{L}^1_{N,s}(v)$ hold ?????

► *N* has the **Orlicz property** (Thomas, 1970) if for every *X*-valued set function μ defined on a σ -algebra we have:

 $x^*\mu$ countably additive for all $x^* \in N \implies \mu$ countably additive.

When does the equality $\mathscr{L}^1(v) = \mathscr{L}^1_{N,s}(v)$ hold ?????

► *N* has the **Orlicz property** (Thomas, 1970) if for every *X*-valued set function μ defined on a σ -algebra we have:

 $x^*\mu$ countably additive for all $x^* \in N \implies \mu$ countably additive.

Corollary

If N has the Orlicz property, then

$$\mathscr{L}^1(v) = \mathscr{L}^1_{N,s}(v)$$
.

When does the equality $\mathscr{L}^1(v) = \mathscr{L}^1_{N,s}(v)$ hold ?????

► *N* has the **Orlicz property** (Thomas, 1970) if for every *X*-valued set function μ defined on a σ -algebra we have:

 $x^*\mu$ countably additive for all $x^* \in N \implies \mu$ countably additive.

Corollary

If *N* has the Orlicz property, then

$$\mathscr{L}^1(v) = \mathscr{L}^1_{N,s}(v) \, .$$

Examples of sets having the Orlicz property	
• Any norming set when $X \not\supseteq \ell_{\infty}$.	

When does the equality $\mathscr{L}^1(v) = \mathscr{L}^1_{N,s}(v)$ hold ?????

► *N* has the **Orlicz property** (Thomas, 1970) if for every *X*-valued set function μ defined on a σ -algebra we have:

 $x^*\mu$ countably additive for all $x^* \in N \implies \mu$ countably additive.

Corollary

If *N* has the Orlicz property, then

$$\mathscr{L}^1(v) = \mathscr{L}^1_{N,s}(v) \, \Big| \, .$$

Examples of sets having the Orlicz property

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- Any norming set when $X \not\supseteq \ell_{\infty}$.
- James boundaries.

Final Remarks

▲□→ ▲圖→ ▲目→ ▲目→ 目 めんの

Theorem

Suppose $X = Y^*$ for a Banach space Y. Then

$$\mathscr{L}^{1}_{Y,s}(v) = \mathscr{L}^{1}_{w}(v) = \mathscr{L}^{1}_{Y}(v).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem

Suppose $X = Y^*$ for a Banach space Y. Then

$$\mathscr{L}^{1}_{Y,s}(v) = \mathscr{L}^{1}_{w}(v) = \mathscr{L}^{1}_{Y}(v).$$

Summarizing

For any norming set $N \subset X^*$ we have:

$$\mathscr{L}^1(v) \subset \mathscr{L}^1_{N,s}(v) \subset \mathscr{L}^1_w(v) \subset \mathscr{L}^1_N(v)$$

◆□> ◆□> ◆目> ◆目> ◆目> ● ●

Theorem

Suppose $X = Y^*$ for a Banach space Y. Then

$$\mathscr{L}^{1}_{Y,s}(v) = \mathscr{L}^{1}_{w}(v) = \mathscr{L}^{1}_{Y}(v).$$

Summarizing

For any norming set $N \subset X^*$ we have:

$$\mathscr{L}^1(v) \subset \mathscr{L}^1_{N,s}(v) \subset \mathscr{L}^1_w(v) \subset \mathscr{L}^1_N(v)$$

▶ There are examples making clear that in the previous chain all combinations of " \subseteq " and "=" are possible.

Some References

A. Fernández, F. Mayoral, F. Naranjo, and J. Rodríguez, Norming sets and integration with respect to vector measures, Indag. Math. 19 (2008), no. 2, 203–215.

V. P. Fonf, *Weakly extremal properties of Banach spaces*, Math. Notes **45** (1989), no. 5-6, 488–494.

- O. Nygaard, Thick sets in Banach spaces and their properties, Quaest. Math. 29 (2006), no. 1, 59–72.
- S. Simons, *A convergence theorem with boundary*, Pacific J. Math. **40** (1972), 703–708.
- G. E. F. Thomas, *L'intégration par rapport à une mesure de Radon vectorielle*, Ann. Inst. Fourier (Grenoble) **20** (1970), no. 2, 55–191.

http://webs.um.es/joserr