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Our General Problem

(Ω,Σ) measurable space, X Banach space with dual X ∗,
ν : Σ→ X countably additive (c.a.) vector measure

Definition

A measurable function f : Ω→ R is:

1 weakly ν-integrable if f ∈L 1(x∗ν) for all x∗ ∈ X ∗;

2 strongly ν-integrable if it is weakly ν-integrable and
for each A ∈ Σ there is a vector

∫
A f dν ∈ X such that

x∗
(∫

A
f dν

)
=
∫
A

f d(x∗ν) for all x∗ ∈ X ∗.

Here x∗ν : Σ→ R denotes the composition of ν and x∗.

Question

What happens if we replace X ∗ by a smaller set of functionals in
the previous definition ?????
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Weak Convergence Tests

Grothendieck (1952)

Let (fn) be a bounded sequence
in C(K) and f ∈ C(K).
If fn(t)→ f (t) for all t ∈ K ,
then fn→ f weakly.

Rainwater (1963)

Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all
x∗ ∈ ext(BX ∗), then xn→ x weakly.

I B ⊂ BX ∗ is a James boundary if ∀x ∈ X ∃x∗ ∈ B such that ‖x‖= x∗(x).

Simons (1972)

Let B ⊂ BX ∗ be a James boundary.
Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all x∗ ∈ B,
then xn→ x weakly.

An application to vector measures

Let B ⊂ BX ∗ be a James boundary.
A set function µ : Σ→ X is c.a. iff
x∗µ is c.a. for all x∗ ∈ B.

Pfitzner (2008)

Let B ⊂ BX ∗ be a James boundary. Let H ⊂ X be a bounded set.
If H is σ(X ,B)-compact, then H is weakly compact.



Weak Convergence Tests

Grothendieck (1952)

Let (fn) be a bounded sequence
in C(K) and f ∈ C(K).
If fn(t)→ f (t) for all t ∈ K ,
then fn→ f weakly.

Rainwater (1963)

Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all
x∗ ∈ ext(BX ∗), then xn→ x weakly.

I B ⊂ BX ∗ is a James boundary if ∀x ∈ X ∃x∗ ∈ B such that ‖x‖= x∗(x).

Simons (1972)

Let B ⊂ BX ∗ be a James boundary.
Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all x∗ ∈ B,
then xn→ x weakly.

An application to vector measures

Let B ⊂ BX ∗ be a James boundary.
A set function µ : Σ→ X is c.a. iff
x∗µ is c.a. for all x∗ ∈ B.

Pfitzner (2008)

Let B ⊂ BX ∗ be a James boundary. Let H ⊂ X be a bounded set.
If H is σ(X ,B)-compact, then H is weakly compact.



Weak Convergence Tests

Grothendieck (1952)

Let (fn) be a bounded sequence
in C(K) and f ∈ C(K).
If fn(t)→ f (t) for all t ∈ K ,
then fn→ f weakly.

Rainwater (1963)

Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all
x∗ ∈ ext(BX ∗), then xn→ x weakly.

I B ⊂ BX ∗ is a James boundary if ∀x ∈ X ∃x∗ ∈ B such that ‖x‖= x∗(x).

Simons (1972)

Let B ⊂ BX ∗ be a James boundary.
Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all x∗ ∈ B,
then xn→ x weakly.

An application to vector measures

Let B ⊂ BX ∗ be a James boundary.
A set function µ : Σ→ X is c.a. iff
x∗µ is c.a. for all x∗ ∈ B.

Pfitzner (2008)

Let B ⊂ BX ∗ be a James boundary. Let H ⊂ X be a bounded set.
If H is σ(X ,B)-compact, then H is weakly compact.



Weak Convergence Tests

Grothendieck (1952)

Let (fn) be a bounded sequence
in C(K) and f ∈ C(K).
If fn(t)→ f (t) for all t ∈ K ,
then fn→ f weakly.

Rainwater (1963)

Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all
x∗ ∈ ext(BX ∗), then xn→ x weakly.

I B ⊂ BX ∗ is a James boundary if ∀x ∈ X ∃x∗ ∈ B such that ‖x‖= x∗(x).

Simons (1972)

Let B ⊂ BX ∗ be a James boundary.
Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all x∗ ∈ B,
then xn→ x weakly.

An application to vector measures

Let B ⊂ BX ∗ be a James boundary.
A set function µ : Σ→ X is c.a. iff
x∗µ is c.a. for all x∗ ∈ B.

Pfitzner (2008)

Let B ⊂ BX ∗ be a James boundary. Let H ⊂ X be a bounded set.
If H is σ(X ,B)-compact, then H is weakly compact.



Weak Convergence Tests

Grothendieck (1952)

Let (fn) be a bounded sequence
in C(K) and f ∈ C(K).
If fn(t)→ f (t) for all t ∈ K ,
then fn→ f weakly.

Rainwater (1963)

Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all
x∗ ∈ ext(BX ∗), then xn→ x weakly.

I B ⊂ BX ∗ is a James boundary if ∀x ∈ X ∃x∗ ∈ B such that ‖x‖= x∗(x).

Simons (1972)

Let B ⊂ BX ∗ be a James boundary.
Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all x∗ ∈ B,
then xn→ x weakly.

An application to vector measures

Let B ⊂ BX ∗ be a James boundary.
A set function µ : Σ→ X is c.a. iff
x∗µ is c.a. for all x∗ ∈ B.

Pfitzner (2008)

Let B ⊂ BX ∗ be a James boundary. Let H ⊂ X be a bounded set.
If H is σ(X ,B)-compact, then H is weakly compact.



Weak Convergence Tests

Grothendieck (1952)

Let (fn) be a bounded sequence
in C(K) and f ∈ C(K).
If fn(t)→ f (t) for all t ∈ K ,
then fn→ f weakly.

Rainwater (1963)

Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all
x∗ ∈ ext(BX ∗), then xn→ x weakly.

I B ⊂ BX ∗ is a James boundary if ∀x ∈ X ∃x∗ ∈ B such that ‖x‖= x∗(x).

Simons (1972)

Let B ⊂ BX ∗ be a James boundary.
Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all x∗ ∈ B,
then xn→ x weakly.

An application to vector measures

Let B ⊂ BX ∗ be a James boundary.
A set function µ : Σ→ X is c.a. iff
x∗µ is c.a. for all x∗ ∈ B.

Pfitzner (2008)

Let B ⊂ BX ∗ be a James boundary. Let H ⊂ X be a bounded set.
If H is σ(X ,B)-compact, then H is weakly compact.



Weak Convergence Tests

Grothendieck (1952)

Let (fn) be a bounded sequence
in C(K) and f ∈ C(K).
If fn(t)→ f (t) for all t ∈ K ,
then fn→ f weakly.

Rainwater (1963)

Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all
x∗ ∈ ext(BX ∗), then xn→ x weakly.

I B ⊂ BX ∗ is a James boundary if ∀x ∈ X ∃x∗ ∈ B such that ‖x‖= x∗(x).

Simons (1972)

Let B ⊂ BX ∗ be a James boundary.
Let (xn) be a bounded sequence
in X and x ∈ X .
If x∗(xn)→ x∗(x) for all x∗ ∈ B,
then xn→ x weakly.

An application to vector measures

Let B ⊂ BX ∗ be a James boundary.
A set function µ : Σ→ X is c.a. iff
x∗µ is c.a. for all x∗ ∈ B.

Pfitzner (2008)

Let B ⊂ BX ∗ be a James boundary. Let H ⊂ X be a bounded set.
If H is σ(X ,B)-compact, then H is weakly compact.



Boundedness Tests

Uniform Boundedness Theorem

A set H ⊂ X is bounded iff x∗(H) is bounded for all x∗ ∈ X ∗.

I T ⊂ X ∗ is w∗-thick (Fonf, 1989) if, whenever we write T =
⋃

Tn with
Tn ⊂ Tn+1, there is m such that ı́nfx∈SX

supx∗∈Tm
|x∗(x)|> 0.

Nygaard et al. (2002-2006)

Let T ⊂ X ∗ be w∗-thick. Then:

1 A set H ⊂ X is bounded iff x∗(H) is bounded for all x∗ ∈ T .

2 A series ∑xn in X is weakly unconditionally Cauchy iff

∑ |x∗(xn)|< ∞ for all x∗ ∈ T .

3 An X -valued set function µ defined on an algebra is bounded and finitely
additive iff x∗µ is bounded and finitely additive for all x∗ ∈ T .

I Each of these properties characterizes w∗-thickness.
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Weak Integrability

(Ω,Σ) measurable space, ν : Σ→ X c.a. vector measure

N ⊂ X ∗

L 1
N(ν) := {f : Ω→ R measurable : f ∈L 1(x∗ν) for all x∗ ∈ N}

I L 1
X ∗(ν) = L 1

w (ν) = the set of all weakly ν-integrable functions

Question

When does the equality L 1
w (ν) = L 1

N(ν) hold ?????

Theorem

1 If N is w∗-thick, then L 1
w (ν) = L 1

N(ν) .

2 If L 1
w (µ) = L 1

N(µ) for every c.a. X -valued measure µ,

then N is w∗-thick.
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When X 6⊃ c0

I L 1(ν) = the set of all strongly ν-integrable functions

Lewis (1972)

If X 6⊃ c0, then

L 1(ν) = L 1
w (ν) .

Fonf (1989)

If X 6⊃ c0, then every James
boundary B ⊂ BX ∗ is w∗-thick.

Corollary

Suppose X 6⊃ c0 and let B ⊂ BX ∗ be a James boundary. Then

L 1(ν) = L 1
B(ν) .
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Strong Integrability I

N ⊂ X ∗ norming

That is, there is λ ≥ 1 such that

‖x‖ ≤ λ sup{x∗(x) : x∗ ∈ span(N)∩BX ∗} for all x ∈ X .

Definition

Let f ∈L 1
N(ν). We say that f ∈L 1

N,s(ν) if for each A ∈Σ there is a vector∫N
A f dν ∈ X such that

x∗
(∫ N

A
f dν

)
=
∫
A

f d(x∗ν) for all x∗ ∈ N.

Theorem

Let f ∈L 1
N,s(ν). Then:

1 The set function
∫N
(·) f dν is bounded and finitely additive.

2 f ∈L 1
w (ν).

3 f ∈L 1(ν) ⇐⇒
∫N
(·) f dν is countably additive.
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Strong Integrability II

Question

When does the equality L 1(ν) = L 1
N,s(ν) hold ?????

I N has the Orlicz property (Thomas, 1970) if for every
X -valued set function µ defined on a σ -algebra we have:

x∗µ countably additive for all x∗ ∈ N =⇒ µ countably additive.

Corollary

If N has the Orlicz property,
then

L 1(ν) = L 1
N,s(ν) .

Examples of sets having the
Orlicz property

Any norming set
when X 6⊃ `∞.

James boundaries.
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Final Remarks

Theorem

Suppose X = Y ∗ for a Banach space Y . Then

L 1
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w (ν) = L 1
Y (ν).

Summarizing

For any norming set N ⊂ X ∗ we have:
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N,s(ν)⊂L 1

w (ν)⊂L 1
N(ν) .

I There are examples making clear that in the previous chain all
combinations of “(” and “=” are possible.
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