Abstract

Let X be a Banach space, $B \subset B_{X^*}$ a norming set and $\sigma(X, B)$ the topology on X of pointwise convergence on B. We study the following question:

Given two (non negative, countably additive and finite) measures μ_1 and μ_2 on Baire(X, w),

 $\mu_1|_{\text{Baire}(X,\sigma(X,B))} = \mu_2|_{\text{Baire}(X,\sigma(X,B))} \implies \mu_1 = \mu_2$?

While this is not true in general, the answer is affirmative provided that both μ_1 and μ_2 are convexly τ -additive (and this condition holds automatically whenever X has the Pettis Integral Property). For a Banach space Y not containing isomorphic copies of ℓ^1 , we show that Y^* has the Pettis Integral. Property if and only if every measure on $Baire(Y^*, w^*)$ admits a unique extension to $Baire(Y^*, w)$. We also discuss the coincidence of the two σ -algebras involved in such results.

Introduction

All the measures considered in this poster are non negative, countably additive and finite.

From now on X is a real Banach space with topological dual X^* . We write w (resp. w^*) to denote the weak topology on X (resp. the weak* topology on X^*). As usual, we denote by B_X the closed unit ball of X. According to a result of G. A. Edgar [3], the Baire σ -algebra of a locally convex space endowed with its weak topology is exactly the σ -algebra generated by the elements of the topological dual. Thus a function $f: \Omega \to X$, defined on a probability space $(\Omega, \Sigma, \lambda)$, is scalarly measurable if and only if it is Σ -Baire(X, w)-measurable. Assume further that f is scalarly bounded, i.e. the family of compositions $\{x^* \circ f : x^* \in B_{X^*}\}$ is a bounded subset of $\mathcal{L}^{\infty}(\lambda)$. It was shown by M. Talagrand [14] that f is Pettis integrable if and only if the image measure λf^{-1} on Baire(X, w) is convexly τ -additive, in the following sense.

Definition 1 A measure μ on Baire(X, w) is convexly τ -additive if for each decreasing net (C_{α}) of convex closed elements of Baire(X, w) with $\bigcap_{\alpha} C_{\alpha} = \emptyset$, we have $\lim_{\alpha} \mu(C_{\alpha}) = 0$.

Recall that X has the Pettis Integral Property (PIP) if every scalarly bounded X-valued function is Pettis integrable; see for instance [9] and the references therein. As a consequence of Talagrand's result, one can deduce that

X has the PIP \iff every measure on Baire(X, w) is convexly τ -smooth.

In view of the characterization above, it is clear that every Banach space with the so-called property (C) of Corson [1] (e.g. a weakly compactly generated space or, more generally, a weakly Lindelöf one) has the PIP. Now let $B \subset B_{X^*}$ be a norming set, i.e. $||x|| = \sup\{|x^*(x)| : x^* \in B\}$ for every $x \in X$. The topology $\sigma(X, B)$ on X is the coarsest one for which each element of B is continuous. In view of the aforementioned theorem of G. A. Edgar, Baire(X, $\sigma(X, B)$) is just the σ -algebra on X generated by B. Clearly, we have Baire(X, $\sigma(X, B)$) \subset Baire(X, w). The purpose of this work is to discuss the following general question, which turns out to be closely related to the Pettis integral theory:

Given two measures μ_1 and μ_2 on Baire(X, w) which coincide on $Baire(X, \sigma(X, B))$, does it follow that $\mu_1 = \mu_2$?

2 Uniqueness of convexly τ -additive extensions

It is convenient to introduce a definition

Definition 2 Let $\Sigma' \subset \Sigma$ be two σ -algebras on a set Ω and let \mathcal{M} be a family of measures on Σ . We say that Σ' has the uniqueness property with respect to \mathcal{M} if for every pair $\mu_1, \mu_2 \in \mathcal{M}$ we have

 $\mu_1|_{\Sigma'} = \mu_2|_{\Sigma'} \implies \mu_1 = \mu_2.$

As a consequence of the results of R. G. Douglas [2] we can characterize the uniqueness property as follows.

Proposition 1 Let $\Sigma' \subset \Sigma$ be two σ -algebras on a set Ω and let \mathcal{M} be a family of measures on Σ such that:

• $\mu_1 + \mu_2 \in \mathcal{M}$ for every $\mu_1, \mu_2 \in \mathcal{M}$.

• If $\nu \in \mathcal{M}$ and μ is a measure on Σ such that $\mu \leq \nu$, then $\mu \in \mathcal{M}$.

Then the following statements are equivalent:

(i) Σ' has the uniqueness property with respect to \mathcal{M} .

(ii) For every $\mu \in \mathcal{M}$ and every $E \in \Sigma$ there exists $E' \in \Sigma'$ such that $\mu(E \triangle E') = 0$.

Uniqueness of measure extensions in Banach spaces

José Rodríguez (joserr@um.es), Gabriel Vera (gvb@um.es)

Departamento de Matemáticas, Universidad de Murcia, 30100 Espinardo (Murcia), Spain

Our approach to the uniqueness problem relies on G. A. Edgar's work [5] (going back to A. Ionescu-Tulcea [8]) about the continuity of the mapping

$$I: \mathcal{F} \to \mathbb{R}, \quad I(f) = \int_{\Omega} f$$

where $(\Omega, \Sigma, \lambda)$ is a probability space and $\mathcal{F} \subset \mathcal{L}^1(\lambda) \subset \mathbb{R}^\Omega$ is endowed with the pointwise convergence topology. For a thorough study on this subject we refer the reader to [15]. We can now state a general result on the uniqueness of convexly τ -additive extensions.

Theorem 2 Let $B \subset B_{X^*}$ be a norming set. Then $Baire(X, \sigma(X, B))$ has the uniqueness property with respect to the family of all convexly τ -additive measures on Baire(X, w).

Corollary 3 Suppose that X has the PIP and let $B \subset B_{X^*}$ be a norming set. Then $Baire(X, \sigma(X, B))$ has the uniqueness property with respect to the family of all measures on Baire(X, w).

Uniqueness in dual Banach spaces

In this section we deal with a particular case of the situation considered above: we assume that $X = Y^*$ for some Banach space Y and we take $B = B_Y$, so that $\sigma(X, B)$ is just the weak* topology.

Definition 3 We say that Y^* has property (U) if $Baire(Y^*, w^*)$ has the uniqueness property with respect to the family of all measures on $Baire(Y^*, w)$.

From Corollary 3 it follows that

 Y^* has the PIP \implies Y^* has property (U).

We do not know whether the reverse implication holds in general, but this is always the case provided that Y contains no subspace isomorphic to ℓ^1 (we write $Y \not\supset \ell^1$ for short), as we point out below. When $Y \not\supseteq \ell^1$, a result of R. Haydon [7] ensures that the identity mapping $I : B_{Y^*} \to Y^*$ is Pettis integrable with respect to the completion of each Radon measure on $Borel(B_{Y^*}, w^*)$. This fact is a basic tool to prove the following

Theorem 4 Suppose that $Y \not\supseteq \ell^1$. Then every measure on $\text{Baire}(Y^*, w^*)$ can be extended in a unique way to a convexly τ -additive measure on Baire (Y^*, w) .

Corollary 5 Suppose that $Y \not\supseteq \ell^1$. The following statements are equivalent: (i) Y^* has the PIP.

(ii) Every measure on $Baire(Y^*, w^*)$ can be extended in a unique way to a measure on $Baire(Y^*, w)$. (iii) Y^* has property (U).

Recall that a topological space is realcompact if it is homeomorphic to a closed subset of \mathbb{R}^{I} for some set I. G. A. Edgar [4] showed that every Banach space with the PIP is realcompact for its weak topology. We can now obtain the same conclusion for any dual Banach space with property (U).

Proposition 6 If Y^* has property (U), then (Y^*, w) is realcompact.

The converse of Proposition 6 does not hold in general. Indeed, the space ℓ_{∞} is weakly realcompact [1], whereas it fails property (U), as D. H. Fremlin pointed out to us. His example involves the so-called Talagrand's measure [13] already used in [6] when proving that ℓ_{∞} does not enjoy the PIP.

Coincidence of Baire $(X, \sigma(X, B))$ and Baire(X, w)

Of course, our results on the uniqueness of measure extensions are not of interest when the norming set $B \subset B_{X^*}$ satisfies

 $\operatorname{Baire}(X, \sigma(X, B)) = \operatorname{Baire}(X, w).$

For instance, this equality holds true whenever (B_{X^*}, w^*) is angelic (e.g. for a weakly compactly generated X). In this section we discuss the coincidence of both σ -algebras in two particular cases: (i) Dual Banach spaces and the weak* topology. (ii) Banach spaces of real-valued continuous functions on a compact Hausdorff topological

space and the pointwise convergence topology.

The Odell-Rosenthal theorem [11] states that a separable Banach space Y is w^* -sequentially dense in Y^{**} if and only if $Y \not\supset \ell^1$. For non necessarily separable spaces we have the following characterization due to M. Raja.

Proposition 7 For a Banach space *Y* the following statements are equivalent: (i) Y is weak*-sequentially dense in Y^{**} . (*ii*) $Baire(Y^*, w^*) = Baire(Y^*, w)$.

For instance, $\ell^1(\omega_1)$ is an example of dual Banach space with the PIP for which $\text{Baire}(\ell^1(\omega_1), w^*) \neq \text{Baire}(\ell^1(\omega_1), w)$. On the other hand, R. Pol's [12] dual characterization of property (C) allows us to deduce the following

Corollary 8 Let Y be a Banach space such that Y^* has property (C). Then $Baire(Y^*, w^*) = Baire(Y^*, w)$.

Given a compact Hausdorff topological space K, we write C(K) to denote the Banach space of all real-valued continuous functions on K endowed with the supremum norm. Notice that the set $B = \{\delta_t : t \in K\} \subset B_{C(K)^*}$ of "point" masses" is norming and that $\sigma(C(K), B)$ is just the pointwise convergence topology $\mathfrak{T}_p(K)$.

Proposition 9 Let K be a compact Hausdorff topological space and ν a Radon measure on K. If the functional

is $\operatorname{Baire}(C(K), \mathfrak{T}_p(K))$ -measurable, then there exists a closed separable set $F \subset K$ such that $\nu(K \setminus F) = 0$.

Corollary 10 Let K be a compact Hausdorff topological space such that $\operatorname{Baire}(C(K), \mathfrak{T}_p(K)) = \operatorname{Baire}(C(K), w)$. Then for each Radon measure ν on K there exists a closed separable set $F \subset K$ such that $\nu(K \setminus F) = 0$.

Under the continuum hypothesis, there exists a compact Hausdorff topological space K (the Kunen-Haydon-Talagrand space, cf. [10]) such that C(K) has the PIP and $\text{Baire}(C(K), \mathfrak{T}_p(K)) \neq \text{Baire}(C(K), w)$.

Acknowledgements

The authors are grateful to D. H. Fremlin and M. Raja for valuable discussions on the subject of this poster.

References

[1] H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1–15.

- wolfach, 1981), Lecture Notes in Math., vol. 945, Springer, Berlin, 1982, pp. 24–28.
- integrals and ergodic means, Math. Z. 168 (1979), no. 2, 117–142.
- 80 (1976), no. 2, 269–276.
- (1974), 171–177.
- 1984, pp. 1045–1142.
- J. Math. **20** (1975), no. 3-4, 375–384.
- 13–43.

[14] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307. [15] G. Vera, *Pointwise compactness and continuity of the integral*, Rev. Mat. Univ. Complut. Madrid **9** (1996), 221–

245, Special Issue, suppl.

This research was partially supported by MCyT (project BFM2002-01719) and Fundación Séneca (project 00690/PI/04). The first named author was partially supported by a FPU grant of MEC (reference AP2002-3767).

(iii) $Y \not\supset \ell^1$ and for every $y^{**} \in Y^{**}$ there exists a countable set $D \subset Y$ such that $y^{**} \in \overline{D}^{w^*}$.

 $\iota(\nu): C(K) \to \mathbb{R}, \quad h \mapsto \int_{K} h \, d\nu,$

[2] R. G. Douglas, On extremal measures and subspace density, Michigan Math. J. 11 (1964), 243–246.

[3] G. A. Edgar, *Measurability in a Banach space*, Indiana Univ. Math. J. 26 (1977), no. 4, 663–677.

[4] G. A. Edgar, Measurability in a Banach space. II, Indiana Univ. Math. J. 28 (1979), no. 4, 559–579.

[5] G. A. Edgar, On pointwise-compact sets of measurable functions, Measure theory, Oberwolfach 1981 (Ober-

[6] D. H. Fremlin and M. Talagrand, A decomposition theorem for additive set-functions, with applications to Pettis

[7] R. Haydon, Some more characterizations of Banach spaces containing ℓ^1 , Math. Proc. Cambridge Philos. Soc.

[8] A. Ionescu Tulcea, On pointwise convergence, compactness, and equicontinuity. II, Advances in Math. 12

[9] K. Musial, Pettis integral, Handbook of measure theory, Vol. I, II, North-Holland, Amsterdam, 2002, pp. 531–586. [10] S. Negrepontis, Banach spaces and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam,

[11] E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing l^1 , Israel

[12] R. Pol, On a question of H. H. Corson and some related problems, Fund. Math. 109 (1980), no. 2, 143–154. [13] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), no. 1,