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Lp spaces of vector measures
Ranges of Pettis integrals

McShane vs Pettis integrals
σ-algebras on Banach spaces

(Ω,Σ) measurable space, X Banach space and ν : Σ→ X c.a. measure

Definition

A measurable function f : Ω→ R is ν-integrable if:

f is x∗ν-integrable ∀x∗ ∈ X ∗;

for each A ∈Σ there is
∫

A
f dν ∈ X such that

x∗
(∫

A
f dν

)
=
∫

A
f d(x∗ν) ∀x∗ ∈ X ∗.

Fix 1≤ p < ∞. The space Lp(ν) of all functions f : Ω→ R for which |f |p is

ν-integrable is a Banach lattice with the ‖ν‖-a.e. order and the norm

‖f ‖Lp(ν) = sup
x∗∈BX∗

(∫
Ω
|f |p d |x∗ν |

) 1
p

.
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Let 1 < q ≤ ∞ such that 1/p + 1/q = 1.

For g ∈ Lq(ν) and x∗ ∈ X ∗, define γg ,x∗ ∈ Lp(ν)∗ by γg ,x∗(f ) =
∫

Ω
fg d(x∗ν) .

Γ = {γg ,x∗ |g ∈ BLq(ν), x∗ ∈ BX ∗} ⊂ BLp(ν)∗ is norming.

(fα ) bounded net in Lp(ν) 3 f . Then fα → f in the σ(Lp(ν),Γ)-topology iff∫
A

fα dν →
∫

A
f dν weakly in X ∀A ∈Σ.

Known facts on σ(Lp(ν),Γ)

1 σ(L1(ν),Γ) = weak topology on bdd sets if L1(ν) 6⊃ `1. [Curbera, Okada]

2 If ν(Σ) is norm relatively compact, then bdd σ(L1(ν),Γ)-convergent
sequences are weakly convergent. [Okada]

3 There exist bdd σ(L1(ν),Γ)-convergent sequences which are not weakly
convergent. [Curbera]

4 σ(Lp(ν),Γ) = weak topology on bdd sets if p > 1. [Ferrando-R., Galaz]
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McShane vs Pettis integrals
σ-algebras on Banach spaces

Definition

Let Y be a Banach space. A set B ⊂ BY ∗ is a James boundary of Y if for
each y ∈ Y there is y∗ ∈ B such that ‖y‖= y∗(y).

James boundaries are useful to study the weak topology. . .

1 Bdd σ(Y ,B)-convergent sequences are weakly convergent. [Simons]

2 Bdd σ(Y ,B)-compact sets are weakly compact. [Pfitzner]

3 If Y ∗ is WCG, then BY ∗ = co(B)
norm

and so σ(Y ,B) = weak topology
on bdd sets. [Godefroy]

Question: is Γ a James boundary of Lp(ν) ??

Known answers. . .

1 NO in general for p = 1.

2 YES if ν(Σ) is norm relatively compact and

either p = 1

or p > 1 and Lp(ν) is reflexive. [Manjabacas, Ferrando-R.]

3 YES if X is a Banach lattice and ν is positive. [Ferrando-R.]
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Problem 1

Is Γ a James boundary of Lp(ν) if p > 1 ??

To characterize when Γ a James boundary of Lp(ν), for 1≤ p < ∞.
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Let (Ω,Σ,µ) be a (complete) probability space and X a Banach space.

Definition

A function f : Ω→ X is Pettis integrable if:

x∗f is integrable ∀x∗ ∈ X ∗;

for each A ∈Σ there is
∫

A
f dµ ∈ X such that

x∗
(∫

A
f dµ

)
=
∫

A
x∗f dµ ∀x∗ ∈ X ∗.

Then the map νf : Σ→ X , νf (A) =
∫

A
f dµ , is a countably additive measure.

For a Pettis integrable function f : Ω→ X , TFAE:

1 νf (Σ) is norm relatively compact.

2 There is a sequence of simple functions fn : Ω→ X such that

lim
n→∞

sup
x∗∈BX∗

∫
Ω
|x∗fn−x∗f |dµ = 0.
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Let f : Ω→ X be Pettis integrable.

Known facts

1 In general, νf (Σ) is not norm relatively compact. [Fremlin-Talagrand]

2 νf (Σ) is norm relatively compact if

either µ is perfect (e.g. a Radon probability) [Stegall]

or X 6⊃ `1(ω1). [Talagrand]

Problem 2 (Fremlin, 1995)

Is νf (Σ) norm relatively compact if µ is a quasi-Radon probability ??

Being quasi-Radon means that there is a topology T⊂Σ on Ω such that:

µ is outer regular with respect to T;

µ(
⋃

G ) = sup
G∈G

µ(G) for every upwards directed family G ⊂ T.
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McShane vs Pettis integrals
σ-algebras on Banach spaces

Let f : Ω→ X be Pettis integrable.

Problem 3 (Talagrand, 1984)

Is νf (Σ) norm relatively compact if X 6⊃ c0 ??

Definition

A bounded set C ⊂ X is limited if

lim
n→∞

sup
x∈C
|x∗n(x)|= 0 for every w∗-null sequence (x∗n) in X ∗.

norm relatively compact =⇒ limited νf (Σ) is limited

Definition

A Banach space has the Gelfand-Phillips property if every limited subset is
norm relatively compact.

Question: X 6⊃ c0 =⇒ X has the Gelfand-Phillips property ??
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σ-algebras on Banach spaces

Let X be a Banach space.

Definition

A function f : [0,1]→ X is McShane integrable if there is x ∈ X such that:

for each ε > 0 there is a function δ : [0,1]→ R+ such that∥∥∥∥∥ n

∑
i=1

λ (Ai )f (ti )−x

∥∥∥∥∥< ε

for every finite partition A1, . . . ,An of [0,1] into intervals and every choice of
points t1, . . . ,tn ∈ [0,1] satisfying Ai ⊂

(
ti −δ (ti ),ti + δ (ti )

)
.
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McShane vs Pettis integrals
σ-algebras on Banach spaces

Fremlin and Mendoza (1994) showed that. . .

McShane integrable =⇒ Pettis integrable.

There exist Pettis integrable functions that are not McShane integrable.

Every Pettis integrable function f : [0,1]→ X is McShane integrable if X is. . .

separable [Gordon]

superreflexive (e.g. Hilbert) [Di Piazza-Preiss]

c0(Γ) (Γ any set) [Di Piazza-Preiss]

L1(µ) (µ any probability) [R.]

And more generally. . .

subspace of a Hilbert generated space [Deville-R.]

Recall: a Banach space Y is Hilbert generated if there is a linear continuous
map T : `2(Γ)→ Y having dense range.
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McShane vs Pettis integrals
σ-algebras on Banach spaces

Theorem [Avilés-Plebanek-R. 2010]

There exists a reflexive Banach space X and a Pettis integrable function
f : [0,1]→ X that is not McShane integrable.

Definition

A compact space K is said to be Eberlein (resp. uniform Eberlein) if it is
homeomorphic to a weakly compact set of a Banach (resp. Hilbert) space.

K Eberlein
m

C(K) WCG

K uniform Eberlein
m

C(K) Hilbert generated

Problem 4

To characterize the class K of those Eberlein compacta K such that:

Every Pettis integrable function f : [0,1]→ C(K) is McShane integrable.

Is K = {uniform Eberlein compacta} ??
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homeomorphic to a weakly compact set of a Banach (resp. Hilbert) space.

K Eberlein
m

C(K) WCG

K uniform Eberlein
m

C(K) Hilbert generated

Problem 4

To characterize the class K of those Eberlein compacta K such that:

Every Pettis integrable function f : [0,1]→ C(K) is McShane integrable.

Is K = {uniform Eberlein compacta} ??
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McShane vs Pettis integrals
σ-algebras on Banach spaces

There are several σ-algebras on a Banach space X :

Ba(X ,weak) ⊂ Bo(X ,weak) ⊂ Bo(X )

1 Ba(X ,weak) is the σ -algebra generated by X ∗. [Edgar]

2 Ba(X ,weak) = Bo(X ) if X is separable.

3 Ba(X ,weak) 6= Bo(X ,weak) if X ∗ is not w∗-separable.

4 Ba(`∞,weak) 6= Bo(`∞,weak) 6= Bo(`∞). [Talagrand]

5 Bo(X ,w) = Bo(X ) if X admits a Kadec equivalent norm. [Edgar]

Consistently, the converse fails. [Marciszewski-Pol]

6 Ba(`1(ω1),weak) = Bo(`1(ω1)). [Fremlin]

For more info, please attend Grzegorz Plebanek’s lecture at 12:00.
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McShane vs Pettis integrals
σ-algebras on Banach spaces

For a compact space K we have:

Bo(C(K),pointwise) ⊂ Bo(C(K),weak) ⊂ Bo(C(K))

Problem 5 (Marciszewski-Pol, 2010)

Bo(C(K),weak) = Bo(C(K)) =⇒ Bo(C(K),pointwise) = Bo(C(K)) ??

Problem 6 (Marciszewski-Pol, 2010)

Is Bo(C(βN),pointwise) = Bo(C(βN),weak) ??

THANKS FOR YOUR ATTENTION !!
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