The Bourgain property and convex hulls

José Rodríguez

Universidad de Murcia

Function Theory on Infinite Dimensional Spaces IX Madrid, December 2005

イロト イポト イヨト イヨト

Definition (Birkhoff, 1935)

 $f: \Omega \longrightarrow X$ is **Birkhoff integrable**, with integral $x \in X$, if for each $\varepsilon > 0$ there is a partition of Ω into countably many measurable sets A_1, A_2, \ldots such that

$$\left\|\sum_{n}\mu(A_{n})f(t_{n})-x\right\|\leq\varepsilon$$

for every choice $t_n \in A_n$, $n \in \mathbb{N}$, the series involved being *unconditionally* convergent.

Given $f: \Omega \longrightarrow X$ and $B \subset B_{X^*}$ norming, we define

$$Z_{f,B} = \{x^* \circ f : x^* \in B\} \subset \mathbb{R}^{\Omega}.$$

Definition (Bourgain, ~ 1980)

 $\mathscr{H} \subset \mathbb{R}^{\Omega}$ has the **Bourgain property** if, for each $\varepsilon > 0$ and each measurable set $A \subset \Omega$ of positive measure, there are finitely many measurable sets $A_1, \ldots, A_n \subset A$ of positive measure such that

$$\sup_{h\in\mathscr{H}} \min_{1\leq i\leq n} \sup_{t,s\in A_i} |h(t)-h(s)| \leq \varepsilon.$$

イロト イポト イヨト イヨト

Theorem (Cascales & R., 2005)

 $f: \Omega \longrightarrow X$ is Birkhoff integrable if and only if $Z_{f,B_{X^*}}$ is uniformly integrable and has the Bourgain property.

We can **replace** $Z_{f,B_{v*}}$ with $Z_{f,B}$ in some cases:

• f is bounded and $B \subset B_{X^*}$ is any norming set.

•
$$X = Y^*$$
 and $B = B_Y$.

(Cascales & R., 2005)

(日) (部) (注) (注)

Counterexamples Positive results

Question 1

Let $f: \Omega \longrightarrow X$ and $B \subset B_{X^*}$ norming.

 $Z_{f,B}$ is uniformly integrable and has the Bourgain property. \downarrow ??? f is Birkhoff integrable.

Question 2

Let $\mathscr{H} \subset \mathbb{R}^{\Omega}$ be pointwise bounded.

 \mathscr{H} has the Bourgain property. \Downarrow ??? $co(\mathscr{H})$ has the Bourgain property.

(日) (部) (注) (注)

Remark

Question 1 has *affirmative* answer if and only if there is a partition of Ω into countably many measurable sets A_1, A_2, \ldots such that

the restriction $f|_{A_n}$ is bounded whenever $\mu(A_n) > 0$.

This is the case if B is convex.

Remark

Question 2 has *affirmative* answer if and only if there is a partition of Ω into countably many measurable sets A_1, A_2, \ldots such that

$$\mathscr{H}|_{A_n} = \{h|_{A_n}: h \in \mathscr{H}\}$$

is *uniformly* bounded whenever $\mu(A_n) > 0$.

Example (Fremlin)

There is a pointwise bounded $\mathscr{H} \subset \mathbb{R}^{[0,1]}$ such that:

- \mathscr{H} has the Bourgain property.
- For each $h \in \mathscr{H}$ we have h = 0 a.e.
- $co(\mathscr{H})$ does not have the Bourgain property.

Corollary

There are $f:[0,1] \longrightarrow c_0(\mathfrak{c})$ and $B \subset B_{c_0(\mathfrak{c})^*}$ norming such that:

- $Z_{f,B}$ has the Bourgain property.
- For each $x^* \in c_0(\mathfrak{c})^*$ we have $x^* \circ f = 0$ a.e.
- f is not Birkhoff integrable.

Theorem

Let $\mathscr{H} \subset \mathbb{R}^{\Omega}$ be pointwise bounded. If \mathscr{H} has the Bourgain property, then

 $\overline{aco}(\mathscr{H})^{\mathfrak{T}_p(\Omega)}$ is made up of measurable functions.

Corollary

Let $f: \Omega \longrightarrow X$ and $B \subset B_{X^*}$ norming. If $Z_{f,B}$ has the Bourgain property, then f is scalarly measurable: $x^* \circ f$ is measurable for every $x^* \in X^*$.

(日) (四) (王) (王)

We consider the following cardinal number:

$$\kappa(\mu) = \min\{\#(\mathscr{E}): \ \mathscr{E} \subset \Sigma, \ \mu(E) = 0 \ \forall E \in \mathscr{E}, \ \mu^*(\cup \mathscr{E}) > 0\}$$

provided that such families \mathscr{E} exist (e.g. μ atomless).

Lemma

Suppose that $dens(B_{X^*}, w^*) < \kappa(\mu)$. If $f : \Omega \longrightarrow X$ is scalarly measurable, then the function

$$\|f\|: \Omega \longrightarrow \mathbb{R}, \quad t \mapsto \|f(t)\|,$$

is measurable.

・ロト ・ 同ト ・ ヨト ・ ヨト

Counterexamples Positive results

Theorem

 $\begin{array}{l} \text{Suppose that } \mathrm{dens}(B_{X^*},w^*)<\kappa(\mu).\\ \text{Let } f:\Omega\longrightarrow X \text{ and } B\subset B_{X^*} \text{ norming such that} \end{array}$

 $Z_{f,B}$ is uniformly integrable and has the Bourgain property.

Then f is Birkhoff integrable.

Examples where dens $(B_{X^*}, w^*) < \kappa(\mu)$:

- B_{X*} is w*-separable.
- (Under Martin's Axiom) dens(X) < c and µ ≡ Lebesgue measure on [0,1].

A few references

- G. Birkhoff, *Integration of functions with values in a Banach space*, Trans. Amer. Math. Soc. **38** (1935), no. 2, 357–378.
- B. Cascales and J. Rodríguez, *The Birkhoff integral and the property of Bourgain*, Math. Ann. **331** (2005), no. 2, 259–279.
- L. H. Riddle and E. Saab, *On functions that are universally Pettis integrable*, Illinois J. Math. **29** (1985), no. 3, 509–531.
- J. Rodríguez, *The Bourgain property and convex hulls*, submitted (2005).

・ 同 ト・ イヨ ト・ イヨ ト