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Definition
We say that k is a Kunen cardinal if 2(k x k) = 2(k) ® Z(k).

@ Any Kunen cardinal is less than or equal to c.

@ w; is a Kunen cardinal.

Theorem [Fremlin]

K is a Kunen cardinal if and only if

Ba(¢!(k),w) =Bo(¢!(x)).

Theorem [Talagrand]

K is a Kunen cardinal if and only if
Bo(M x M) = Bo(M) @ Bo(M)

for every metric space M with weight(M) = k.
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Given a compact space K, we have several c-algebras on C(K):

Ba(Cp(K)) < Bo(Cp(K))

N N
Ba(Cy(K)) < Bo(Cu(K))
N
Bo(C(K))

@ Ba(C,(K)) is generated by {6, : t € K}. [Edgar]
@ Ba(Cy(K)) =Bo(C(K)) if K is metrizable.
o Bo(C,(K)) =Bo(C(K)) if K is Valdivia. [Valdivia + Edgar]

Is there a non-metrizable K such that Ba(C,(K)) =Bo(C(K)) ?
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We consider the Cantor cube K = 2% = {0,1}* for a cardinal k.

2¥is Valdivia = Bo((,(2%)) =Bo(C(2¥)) J

So, in this case the picture is simpler:

| Ba(G,(2)) C Ba(Gu(2¥)) € Bo(C(2Y))]

Moreover:

Ba(C,(2¥)) = Ba(Cy(2X)) <= K<c¢ |

» Any Radon measure on 2¢ has a uniformly distributed sequence! [Fremlin]

@ /(k)— C(2%).
@ ((w1) = Y for every non-separable subspace Y < C(2?). [Hagler]
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Main result

Theorem [Avilés-Plebanek-R.]

For a cardinal k the following statements are equivalent:
@ « is a Kunen cardinal.
Q@ Ba(C,(2%)) = Bo(C(2")).
© All equivalent norms on C(2*) are Ba(C,(2*))-measurable.

Corollary [Fremlin]

K is a Kunen cardinal if and only if

Ba(¢!(k),w) =Bo(¢!(x)).

If G is a compact group and weight(G) is a Kunen cardinal, then

Ba(C,(G)) = Bo(C(G)).
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The case Kk =

Proposition

Let K be a compact space satisfying:

(%) For each n €N and each closed set F C K" there is a decreasing
sequence (F,) of closed separable subsets of K" s.t. F =\ Fpn,.

Then Ba(C,(K)) = Bo(Co(K)).

Theorem [Parovitenko]

Proposition
— Every compact space of weight < @

1 efi
2 il propany () is a continuous image of BN\ N.

» Consequence:

[Ba(G,(2)) = Bo(C(2)|




