Measurability in $C\left(2^{K}\right)$ and Kunen cardinals

A. Avilés, G. Plebanek, J. Rodríguez

Function Theory on Infinite Dimensional Spaces XII Madrid - February 2012

σ-algebras in Banach spaces

We have several σ-algebras on a given Banach space X :

$$
\mathrm{Ba}(X, w) \subset \operatorname{Bo}(X, w) \subset \operatorname{Bo}(X)
$$

σ-algebras in Banach spaces

We have several σ-algebras on a given Banach space X :

$$
\operatorname{Ba}(X, w) \subset \operatorname{Bo}(X, w) \subset \operatorname{Bo}(X)
$$

- $\mathrm{Ba}(X, w)$ is the σ-algebra generated by X^{*}. [Edgar]

σ-algebras in Banach spaces

We have several σ-algebras on a given Banach space X :

$$
\operatorname{Ba}(X, w) \subset \operatorname{Bo}(X, w) \subset \operatorname{Bo}(X)
$$

- $\mathrm{Ba}(X, w)$ is the σ-algebra generated by X^{*}. [Edgar]
- $\mathrm{Ba}(X, w)=\mathrm{Bo}(X)$ if X is separable.

σ-algebras in Banach spaces

We have several σ-algebras on a given Banach space X :

$$
\operatorname{Ba}(X, w) \subset \operatorname{Bo}(X, w) \subset \operatorname{Bo}(X)
$$

- $\mathrm{Ba}(X, w)$ is the σ-algebra generated by X^{*}. [Edgar]
- $\mathrm{Ba}(X, w)=\mathrm{Bo}(X)$ if X is separable.
- $\operatorname{Bo}(X, w)=\operatorname{Bo}(X)$ if X admits a Kadec renorming. [Edgar]

σ-algebras in Banach spaces

We have several σ-algebras on a given Banach space X :

$$
\mathrm{Ba}(X, w) \subset \operatorname{Bo}(X, w) \subset \operatorname{Bo}(X)
$$

- $\mathrm{Ba}(X, w)$ is the σ-algebra generated by X^{*}. [Edgar]
- $\mathrm{Ba}(X, w)=\mathrm{Bo}(X)$ if X is separable.
- $\operatorname{Bo}(X, w)=\operatorname{Bo}(X)$ if X admits a Kadec renorming. [Edgar]
- $\mathrm{Ba}(X, w) \neq \mathrm{Bo}(X, w) \neq \mathrm{Bo}(X)$ for $X=\ell^{\infty}$. [Talagrand]

σ-algebras in Banach spaces

We have several σ-algebras on a given Banach space X :

$$
\mathrm{Ba}(X, w) \subset \operatorname{Bo}(X, w) \subset \operatorname{Bo}(X)
$$

- $\mathrm{Ba}(X, w)$ is the σ-algebra generated by X^{*}. [Edgar]
- $\mathrm{Ba}(X, w)=\mathrm{Bo}(X)$ if X is separable.
- $\operatorname{Bo}(X, w)=\operatorname{Bo}(X)$ if X admits a Kadec renorming. [Edgar]
- $\mathrm{Ba}(X, w) \neq \mathrm{Bo}(X, w) \neq \mathrm{Bo}(X)$ for $X=\ell^{\infty}$. [Talagrand]
- $\mathrm{Ba}(X, w)=\mathrm{Bo}(X)$ for $X=\ell^{1}\left(\omega_{1}\right)$. [Fremlin]

Kunen cardinals

Definition

We say that κ is a Kunen cardinal if $\mathscr{P}(\kappa \times \kappa)=\mathscr{P}(\kappa) \otimes \mathscr{P}(\kappa)$.

Kunen cardinals

Definition

We say that κ is a Kunen cardinal if $\mathscr{P}(\kappa \times \kappa)=\mathscr{P}(\kappa) \otimes \mathscr{P}(\kappa)$.

- Any Kunen cardinal is less than or equal to \mathbf{c}.
- ω_{1} is a Kunen cardinal.

Definition

We say that κ is a Kunen cardinal if $\mathscr{P}(\kappa \times \kappa)=\mathscr{P}(\kappa) \otimes \mathscr{P}(\kappa)$.

- Any Kunen cardinal is less than or equal to \mathfrak{c}.
- ω_{1} is a Kunen cardinal.

Theorem [Fremlin]

κ is a Kunen cardinal if and only if

$$
\operatorname{Ba}\left(\ell^{1}(\kappa), w\right)=\operatorname{Bo}\left(\ell^{1}(\kappa)\right) .
$$

Kunen cardinals

Definition

We say that κ is a Kunen cardinal if $\mathscr{P}(\kappa \times \kappa)=\mathscr{P}(\kappa) \otimes \mathscr{P}(\kappa)$.

- Any Kunen cardinal is less than or equal to \mathfrak{c}.
- ω_{1} is a Kunen cardinal.

Theorem [Fremlin]

κ is a Kunen cardinal if and only if

$$
\operatorname{Ba}\left(\ell^{1}(\kappa), w\right)=\operatorname{Bo}\left(\ell^{1}(\kappa)\right) .
$$

Theorem [Talagrand]

κ is a Kunen cardinal if and only if

$$
\operatorname{Bo}(M \times M)=\operatorname{Bo}(M) \otimes \operatorname{Bo}(M)
$$

for every metric space M with weight $(M)=\kappa$.

σ-algebras in Banach spaces of continuous functions

Given a compact space K, we have several σ-algebras on $C(K)$:

$$
\begin{array}{ccc}
\operatorname{Ba}\left(C_{p}(K)\right) & \subset & \operatorname{Bo}\left(C_{p}(K)\right) \\
\cap & & \cap \\
\operatorname{Ba}\left(C_{w}(K)\right) & \subset & \operatorname{Bo}\left(C_{w}(K)\right) \\
& & \cap \\
& & \operatorname{Bo}(C(K))
\end{array}
$$

σ-algebras in Banach spaces of continuous functions

Given a compact space K, we have several σ-algebras on $C(K)$:

$$
\begin{array}{ccc}
\mathrm{Ba}\left(C_{p}(K)\right) & \subset & \mathrm{Bo}\left(C_{p}(K)\right) \\
\cap & & \cap \\
\operatorname{Ba}\left(C_{w}(K)\right) & \subset & \operatorname{Bo}\left(C_{w}(K)\right) \\
& & \cap \\
& & \operatorname{Bo}(C(K))
\end{array}
$$

- $\mathrm{Ba}\left(C_{p}(K)\right)$ is generated by $\left\{\delta_{t}: t \in K\right\}$. [Edgar]

Given a compact space K, we have several σ-algebras on $C(K)$:

$$
\begin{array}{ccc}
\operatorname{Ba}\left(C_{p}(K)\right) & \subset & \operatorname{Bo}\left(C_{p}(K)\right) \\
\cap & & \cap \\
\operatorname{Ba}\left(C_{w}(K)\right) & \subset & \operatorname{Bo}\left(C_{w}(K)\right) \\
& & \cap \\
& & \operatorname{Bo}(C(K))
\end{array}
$$

- $\mathrm{Ba}\left(C_{p}(K)\right)$ is generated by $\left\{\delta_{t}: t \in K\right\}$. [Edgar]
- $\mathrm{Ba}\left(C_{p}(K)\right)=\mathrm{Bo}(C(K))$ if K is metrizable.

Given a compact space K, we have several σ-algebras on $C(K)$:

$$
\begin{array}{ccc}
\operatorname{Ba}\left(C_{p}(K)\right) & \subset & \operatorname{Bo}\left(C_{p}(K)\right) \\
\cap & & \cap \\
\operatorname{Ba}\left(C_{w}(K)\right) & \subset & \operatorname{Bo}\left(C_{w}(K)\right) \\
& & \cap \\
& & \operatorname{Bo}(C(K))
\end{array}
$$

- $\mathrm{Ba}\left(C_{p}(K)\right)$ is generated by $\left\{\delta_{t}: t \in K\right\}$. [Edgar]
- $\mathrm{Ba}\left(C_{p}(K)\right)=\mathrm{Bo}(C(K))$ if K is metrizable.
- $\operatorname{Bo}\left(C_{p}(K)\right)=\operatorname{Bo}(C(K))$ if K is Valdivia. [Valdivia + Edgar]

Given a compact space K, we have several σ-algebras on $C(K)$:

$$
\begin{array}{ccc}
\mathrm{Ba}\left(C_{p}(K)\right) & \subset & \operatorname{Bo}\left(C_{p}(K)\right) \\
\cap & & \cap \\
\mathrm{Ba}\left(C_{w}(K)\right) & \subset & \operatorname{Bo}\left(C_{w}(K)\right) \\
& & \cap \\
& & \operatorname{Bo}(C(K))
\end{array}
$$

- $\mathrm{Ba}\left(C_{p}(K)\right)$ is generated by $\left\{\delta_{t}: t \in K\right\}$. [Edgar]
- $\mathrm{Ba}\left(C_{p}(K)\right)=\mathrm{Bo}(C(K))$ if K is metrizable.
- $\operatorname{Bo}\left(C_{p}(K)\right)=\operatorname{Bo}(C(K))$ if K is Valdivia. [Valdivia + Edgar]

Question

Is there a non-metrizable K such that $\operatorname{Ba}\left(C_{p}(K)\right)=\operatorname{Bo}(C(K))$?

Our setting

We consider the Cantor cube $K=2^{K}=\{0,1\}^{K}$ for a cardinal κ.

Our setting

We consider the Cantor cube $K=2^{K}=\{0,1\}^{\kappa}$ for a cardinal κ.

$$
2^{\kappa} \text { is Valdivia } \Longrightarrow \operatorname{Bo}\left(C_{p}\left(2^{\kappa}\right)\right)=\operatorname{Bo}\left(C\left(2^{\kappa}\right)\right)
$$

Our setting

We consider the Cantor cube $K=2^{K}=\{0,1\}^{\kappa}$ for a cardinal κ.

$$
2^{\kappa} \text { is Valdivia } \Longrightarrow \operatorname{Bo}\left(C_{p}\left(2^{\kappa}\right)\right)=\operatorname{Bo}\left(C\left(2^{\kappa}\right)\right)
$$

So, in this case the picture is simpler:

$$
\mathrm{Ba}\left(C_{p}\left(2^{K}\right)\right) \subset \mathrm{Ba}\left(C_{w}\left(2^{K}\right)\right) \subset \mathrm{Bo}\left(C\left(2^{K}\right)\right)
$$

Our setting

We consider the Cantor cube $K=2^{\kappa}=\{0,1\}^{\kappa}$ for a cardinal κ.

$$
2^{\kappa} \text { is Valdivia } \Longrightarrow \operatorname{Bo}\left(C_{p}\left(2^{\kappa}\right)\right)=\operatorname{Bo}\left(C\left(2^{\kappa}\right)\right)
$$

So, in this case the picture is simpler:

$$
\mathrm{Ba}\left(C_{p}\left(2^{K}\right)\right) \subset \mathrm{Ba}\left(C_{w}\left(2^{K}\right)\right) \subset \mathrm{Bo}\left(C\left(2^{K}\right)\right)
$$

Moreover:

$$
\operatorname{Ba}\left(C_{p}\left(2^{\kappa}\right)\right)=\operatorname{Ba}\left(C_{w}\left(2^{\kappa}\right)\right) \Longleftrightarrow \kappa \leq \mathfrak{c}
$$

Our setting

We consider the Cantor cube $K=2^{\kappa}=\{0,1\}^{\kappa}$ for a cardinal κ.

$$
2^{\kappa} \text { is Valdivia } \Longrightarrow \operatorname{Bo}\left(C_{p}\left(2^{\kappa}\right)\right)=\operatorname{Bo}\left(C\left(2^{\kappa}\right)\right)
$$

So, in this case the picture is simpler:

$$
\operatorname{Ba}\left(C_{p}\left(2^{\kappa}\right)\right) \subset \operatorname{Ba}\left(C_{w}\left(2^{\kappa}\right)\right) \subset \operatorname{Bo}\left(C\left(2^{\kappa}\right)\right)
$$

Moreover:

$$
\mathrm{Ba}\left(C_{p}\left(2^{\kappa}\right)\right)=\mathrm{Ba}\left(C_{w}\left(2^{\kappa}\right)\right) \Longleftrightarrow \kappa \leq \mathfrak{c}
$$

- Any Radon measure on $2^{\text {c }}$ has a uniformly distributed sequence! [Fremlin]

Our setting

We consider the Cantor cube $K=2^{\kappa}=\{0,1\}^{\kappa}$ for a cardinal κ.

$$
2^{\kappa} \text { is Valdivia } \Longrightarrow \operatorname{Bo}\left(C_{p}\left(2^{\kappa}\right)\right)=\operatorname{Bo}\left(C\left(2^{\kappa}\right)\right)
$$

So, in this case the picture is simpler:

$$
\mathrm{Ba}\left(C_{p}\left(2^{K}\right)\right) \subset \mathrm{Ba}\left(C_{w}\left(2^{K}\right)\right) \subset \mathrm{Bo}\left(C\left(2^{K}\right)\right)
$$

Moreover:

$$
\operatorname{Ba}\left(C_{p}\left(2^{\kappa}\right)\right)=\mathrm{Ba}\left(C_{w}\left(2^{\kappa}\right)\right) \Longleftrightarrow \kappa \leq \mathfrak{c}
$$

- Any Radon measure on $2^{\text {c }}$ has a uniformly distributed sequence! [Fremlin]

Remark

- $\ell^{1}(\kappa) \hookrightarrow C\left(2^{\kappa}\right)$.

Our setting

We consider the Cantor cube $K=2^{\kappa}=\{0,1\}^{\kappa}$ for a cardinal κ.

$$
2^{\kappa} \text { is Valdivia } \Longrightarrow \operatorname{Bo}\left(C_{p}\left(2^{\kappa}\right)\right)=\operatorname{Bo}\left(C\left(2^{\kappa}\right)\right)
$$

So, in this case the picture is simpler:

$$
\mathrm{Ba}\left(C_{p}\left(2^{K}\right)\right) \subset \mathrm{Ba}\left(C_{w}\left(2^{K}\right)\right) \subset \mathrm{Bo}\left(C\left(2^{K}\right)\right)
$$

Moreover:

$$
\mathrm{Ba}\left(C_{p}\left(2^{\kappa}\right)\right)=\mathrm{Ba}\left(C_{w}\left(2^{\kappa}\right)\right) \Longleftrightarrow \kappa \leq \mathfrak{c}
$$

- Any Radon measure on $2^{\text {c }}$ has a uniformly distributed sequence! [Fremlin]

Remark

- $\ell^{1}(\kappa) \hookrightarrow C\left(2^{\kappa}\right)$.
- $\ell^{1}\left(\omega_{1}\right) \hookrightarrow Y$ for every non-separable subspace $Y \hookrightarrow C\left(2^{\omega_{1}}\right)$. [Hagler]

Main result

Theorem [Avilés-Plebanek-R.]
For a cardinal κ the following statements are equivalent:
(1) κ is a Kunen cardinal.
(2) $\mathrm{Ba}\left(C_{p}\left(2^{\kappa}\right)\right)=\mathrm{Bo}\left(C\left(2^{\kappa}\right)\right)$.

Main result

Theorem [Avilés-Plebanek-R.]
For a cardinal κ the following statements are equivalent:
(1) κ is a Kunen cardinal.
(2) $\mathrm{Ba}\left(C_{p}\left(2^{\kappa}\right)\right)=\mathrm{Bo}\left(C\left(2^{\kappa}\right)\right)$.

Corollary [Fremlin]

κ is a Kunen cardinal if and only if

$$
\mathrm{Ba}\left(\ell^{1}(\kappa), w\right)=\operatorname{Bo}\left(\ell^{1}(\kappa)\right) .
$$

Main result

Theorem [Avilés-Plebanek-R.]

For a cardinal κ the following statements are equivalent:
(1) κ is a Kunen cardinal.
(2) $\mathrm{Ba}\left(C_{p}\left(2^{\kappa}\right)\right)=\mathrm{Bo}\left(C\left(2^{\kappa}\right)\right)$.
(3) All equivalent norms on $C\left(2^{\kappa}\right)$ are $\mathrm{Ba}\left(C_{p}\left(2^{\kappa}\right)\right)$-measurable.

Corollary [Fremlin]

κ is a Kunen cardinal if and only if

$$
\operatorname{Ba}\left(\ell^{1}(\kappa), w\right)=\operatorname{Bo}\left(\ell^{1}(\kappa)\right) .
$$

Main result

Theorem [Avilés-Plebanek-R.]

For a cardinal κ the following statements are equivalent:
(1) κ is a Kunen cardinal.
(2) $\mathrm{Ba}\left(C_{p}\left(2^{\kappa}\right)\right)=\mathrm{Bo}\left(C\left(2^{\kappa}\right)\right)$.
(3) All equivalent norms on $C\left(2^{\kappa}\right)$ are $\mathrm{Ba}\left(C_{p}\left(2^{\kappa}\right)\right)$-measurable.

Corollary [Fremlin]

κ is a Kunen cardinal if and only if

$$
\operatorname{Ba}\left(\ell^{1}(\kappa), w\right)=\operatorname{Bo}\left(\ell^{1}(\kappa)\right) .
$$

Corollary

If G is a compact group and weight (G) is a Kunen cardinal, then

$$
\operatorname{Ba}\left(C_{p}(G)\right)=\operatorname{Bo}(C(G)) .
$$

The case $\kappa=\omega_{1}$

Proposition

Let K be a compact space satisfying:
(\star) For each $n \in \mathbb{N}$ and each closed set $F \subseteq K^{n}$ there is a decreasing sequence $\left(F_{m}\right)$ of closed separable subsets of K^{n} s.t. $F=\bigcap F_{m}$.

Then $\mathrm{Ba}\left(C_{p}(K)\right)=\operatorname{Bo}\left(C_{p}(K)\right)$.

The case $\kappa=\omega_{1}$

Proposition

Let K be a compact space satisfying:
(*) For each $n \in \mathbb{N}$ and each closed set $F \subseteq K^{n}$ there is a decreasing sequence $\left(F_{m}\right)$ of closed separable subsets of K^{n} s.t. $F=\bigcap F_{m}$.

Then $\mathrm{Ba}\left(C_{p}(K)\right)=\mathrm{Bo}\left(C_{p}(K)\right)$.

Proposition

$2^{\omega_{1}}$ satisfies property (\star).

The case $\kappa=\omega_{1}$

Proposition

Let K be a compact space satisfying:
(\star) For each $n \in \mathbb{N}$ and each closed set $F \subseteq K^{n}$ there is a decreasing sequence $\left(F_{m}\right)$ of closed separable subsets of K^{n} s.t. $F=\bigcap F_{m}$.

Then $\mathrm{Ba}\left(C_{p}(K)\right)=\mathrm{Bo}\left(C_{p}(K)\right)$.

Proposition

 $2^{\omega_{1}}$ satisfies property (\star).
Theorem [Parovičenko]

Every compact space of weight $\leq \omega_{1}$ is a continuous image of $\beta \mathbb{N} \backslash \mathbb{N}$.

The case $\kappa=\omega_{1}$

Proposition

Let K be a compact space satisfying:
(\star) For each $n \in \mathbb{N}$ and each closed set $F \subseteq K^{n}$ there is a decreasing sequence $\left(F_{m}\right)$ of closed separable subsets of K^{n} s.t. $F=\bigcap F_{m}$.

Then $\mathrm{Ba}\left(C_{p}(K)\right)=\mathrm{Bo}\left(C_{p}(K)\right)$.

Proposition

$2^{\omega_{1}}$ satisfies property (\star).

Theorem [Parovičenko]

Every compact space of weight $\leq \omega_{1}$ is a continuous image of $\beta \mathbb{N} \backslash \mathbb{N}$.

Consequence:

$$
\mathrm{Ba}\left(C_{p}\left(2^{\omega_{1}}\right)\right)=\operatorname{Bo}\left(C\left(2^{\omega_{1}}\right)\right)
$$

