Measurability in $C(2^{\kappa})$ and Kunen cardinals

A. Avilés, G. Plebanek, J. Rodríguez

Function Theory on Infinite Dimensional Spaces XII Madrid – February 2012

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ● のへで

We have several σ -algebras on a given Banach space X:

 $\operatorname{Ba}(X,w) \subset \operatorname{Bo}(X,w) \subset \operatorname{Bo}(X)$

・ロト ・ 日 ・ モー・ ・ モー・ うへで

We have several σ -algebras on a given Banach space X:

 $\operatorname{Ba}(X,w) \subset \operatorname{Bo}(X,w) \subset \operatorname{Bo}(X)$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

• Ba(X, w) is the σ -algebra generated by X^{*}. [Edgar]

We have several σ -algebras on a given Banach space X:

 $\operatorname{Ba}(X,w) \subset \operatorname{Bo}(X,w) \subset \operatorname{Bo}(X)$

- Ba(X, w) is the σ -algebra generated by X^* . [Edgar]
- Ba(X, w) = Bo(X) if X is separable.

We have several σ -algebras on a given Banach space X:

 $\operatorname{Ba}(X,w) \subset \operatorname{Bo}(X,w) \subset \operatorname{Bo}(X)$

- Ba(X, w) is the σ -algebra generated by X^* . [Edgar]
- Ba(X, w) = Bo(X) if X is separable.
- Bo(X, w) = Bo(X) if X admits a Kadec renorming. [Edgar]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

We have several σ -algebras on a given Banach space X:

 $\operatorname{Ba}(X,w) \subset \operatorname{Bo}(X,w) \subset \operatorname{Bo}(X)$

- Ba(X, w) is the σ -algebra generated by X^* . [Edgar]
- Ba(X, w) = Bo(X) if X is separable.
- Bo(X, w) = Bo(X) if X admits a Kadec renorming. [Edgar]

• $Ba(X, w) \neq Bo(X, w) \neq Bo(X)$ for $X = \ell^{\infty}$. [Talagrand]

We have several σ -algebras on a given Banach space X:

 $\operatorname{Ba}(X,w) \subset \operatorname{Bo}(X,w) \subset \operatorname{Bo}(X)$

- Ba(X, w) is the σ -algebra generated by X^* . [Edgar]
- Ba(X, w) = Bo(X) if X is separable.
- Bo(X, w) = Bo(X) if X admits a Kadec renorming. [Edgar]

- $Ba(X, w) \neq Bo(X, w) \neq Bo(X)$ for $X = \ell^{\infty}$. [Talagrand]
- $\operatorname{Ba}(X, w) = \operatorname{Bo}(X)$ for $X = \ell^1(\omega_1)$. [Fremlin]

Definition

We say that κ is a **Kunen cardinal** if $\mathscr{P}(\kappa \times \kappa) = \mathscr{P}(\kappa) \otimes \mathscr{P}(\kappa)$.

Definition

We say that κ is a Kunen cardinal if $\mathscr{P}(\kappa \times \kappa) = \mathscr{P}(\kappa) \otimes \mathscr{P}(\kappa)$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ ○ ◆ ○ ◆

- Any Kunen cardinal is less than or equal to \mathfrak{c} .
- ω₁ is a Kunen cardinal.

Definition

We say that κ is a Kunen cardinal if $\mathscr{P}(\kappa \times \kappa) = \mathscr{P}(\kappa) \otimes \mathscr{P}(\kappa)$.

- Any Kunen cardinal is less than or equal to \mathfrak{c} .
- *ω*₁ is a Kunen cardinal.

Theorem [Fremlin]

 κ is a Kunen cardinal if and only if

 $\operatorname{Ba}(\ell^1(\kappa), w) = \operatorname{Bo}(\ell^1(\kappa)).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Definition

We say that κ is a Kunen cardinal if $\mathscr{P}(\kappa \times \kappa) = \mathscr{P}(\kappa) \otimes \mathscr{P}(\kappa)$.

- $\bullet\,$ Any Kunen cardinal is less than or equal to $\mathfrak{c}.$
- ω_1 is a Kunen cardinal.

Theorem [Fremlin]

 κ is a Kunen cardinal if and only if

$$\operatorname{Ba}(\ell^{1}(\kappa), w) = \operatorname{Bo}(\ell^{1}(\kappa)).$$

Theorem [Talagrand]

 κ is a Kunen cardinal if and only if

```
\operatorname{Bo}(M \times M) = \operatorname{Bo}(M) \otimes \operatorname{Bo}(M)
```

for every **metric space** *M* with weight(*M*) = κ .

Given a compact space K, we have several σ -algebras on C(K):

$$Ba(C_p(K)) \subset Bo(C_p(K))$$

$$\cap \qquad \cap$$

$$Ba(C_w(K)) \subset Bo(C_w(K))$$

$$\cap$$

$$Bo(C(K))$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Given a compact space K, we have several σ -algebras on C(K):

$$Ba(C_{p}(K)) \subset Bo(C_{p}(K))$$

$$\cap \qquad \cap$$

$$Ba(C_{w}(K)) \subset Bo(C_{w}(K))$$

$$\cap$$

$$Bo(C(K))$$

◆□ > ◆□ > ◆臣 > ◆臣 > ● 臣 ● のへの

• Ba $(C_p(K))$ is generated by $\{\delta_t : t \in K\}$. [Edgar]

Given a compact space K, we have several σ -algebras on C(K):

$$Ba(C_{p}(K)) \subset Bo(C_{p}(K))$$

$$\cap \qquad \cap$$

$$Ba(C_{w}(K)) \subset Bo(C_{w}(K))$$

$$\cap$$

$$Bo(C(K))$$

- Ba $(C_p(K))$ is generated by $\{\delta_t : t \in K\}$. [Edgar]
- $Ba(C_p(K)) = Bo(C(K))$ if K is metrizable.

Given a compact space K, we have several σ -algebras on C(K):

$$Ba(C_{p}(K)) \subset Bo(C_{p}(K))$$

$$\cap \qquad \cap$$

$$Ba(C_{w}(K)) \subset Bo(C_{w}(K))$$

$$\cap$$

$$Bo(C(K))$$

- Ba $(C_{p}(K))$ is generated by $\{\delta_{t} : t \in K\}$. [Edgar]
- $Ba(C_p(K)) = Bo(C(K))$ if K is metrizable.
- $Bo(C_p(K)) = Bo(C(K))$ if K is Valdivia. [Valdivia + Edgar]

Given a compact space K, we have several σ -algebras on C(K):

$$Ba(C_{p}(K)) \subset Bo(C_{p}(K))$$

$$\cap \qquad \cap$$

$$Ba(C_{w}(K)) \subset Bo(C_{w}(K))$$

$$\cap$$

$$Bo(C(K))$$

- Ba($C_p(K)$) is generated by $\{\delta_t : t \in K\}$. [Edgar]
- $Ba(C_p(K)) = Bo(C(K))$ if K is metrizable.
- $\operatorname{Bo}(C_p(K)) = \operatorname{Bo}(C(K))$ if K is Valdivia. [Valdivia + Edgar]

Question

Is there a **non-metrizable** K such that $Ba(C_p(K)) = Bo(C(K))$?

We consider the Cantor cube $K = 2^{\kappa} = \{0, 1\}^{\kappa}$ for a cardinal κ .

We consider the Cantor cube $K = 2^{\kappa} = \{0, 1\}^{\kappa}$ for a cardinal κ .

 2^{κ} is Valdivia $\implies \operatorname{Bo}(C_p(2^{\kappa})) = \operatorname{Bo}(C(2^{\kappa}))$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

We consider the Cantor cube $K = 2^{\kappa} = \{0, 1\}^{\kappa}$ for a cardinal κ .

$$2^{\kappa}$$
 is Valdivia \implies Bo $(C_{\rho}(2^{\kappa})) = Bo(C(2^{\kappa}))$

So, in this case the picture is simpler:

$$|\operatorname{Ba}(C_p(2^{\kappa})) \subset \operatorname{Ba}(C_w(2^{\kappa})) \subset \operatorname{Bo}(C(2^{\kappa}))|$$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

We consider the Cantor cube $K = 2^{\kappa} = \{0, 1\}^{\kappa}$ for a cardinal κ .

$$2^{\kappa}$$
 is Valdivia \implies Bo $(C_{\rho}(2^{\kappa})) = Bo(C(2^{\kappa}))$

So, in this case the picture is simpler:

$$\operatorname{Ba}(C_p(2^{\kappa})) \subset \operatorname{Ba}(C_w(2^{\kappa})) \subset \operatorname{Bo}(C(2^{\kappa}))$$

Moreover:

$$\operatorname{Ba}(C_{\rho}(2^{\kappa})) = \operatorname{Ba}(C_{w}(2^{\kappa})) \iff \kappa \leq \mathfrak{c}$$

イロン イロン イヨン イヨン 三日

We consider the Cantor cube $K = 2^{\kappa} = \{0, 1\}^{\kappa}$ for a cardinal κ .

$$2^{\kappa}$$
 is Valdivia \implies Bo $(C_{\rho}(2^{\kappa})) = Bo(C(2^{\kappa}))$

So, in this case the picture is simpler:

$$\operatorname{Ba}(C_p(2^{\kappa})) \subset \operatorname{Ba}(C_w(2^{\kappa})) \subset \operatorname{Bo}(C(2^{\kappa}))$$

Moreover:

$$\operatorname{Ba}(C_p(2^{\kappa})) = \operatorname{Ba}(C_w(2^{\kappa})) \iff \kappa \leq \mathfrak{c}$$

▶ Any Radon measure on 2^c has a uniformly distributed sequence! [Fremlin]

We consider the Cantor cube $K = 2^{\kappa} = \{0, 1\}^{\kappa}$ for a cardinal κ .

$$2^{\kappa}$$
 is Valdivia \implies Bo $(C_{\rho}(2^{\kappa})) = Bo(C(2^{\kappa}))$

So, in this case the picture is simpler:

$$\operatorname{Ba}(C_p(2^{\kappa})) \subset \operatorname{Ba}(C_w(2^{\kappa})) \subset \operatorname{Bo}(C(2^{\kappa}))$$

Moreover:

$$\operatorname{Ba}(C_p(2^{\kappa})) = \operatorname{Ba}(C_w(2^{\kappa})) \iff \kappa \leq \mathfrak{c}$$

▶ Any Radon measure on 2^c has a uniformly distributed sequence! [Fremlin]

Remark

•
$$\ell^1(\kappa) \hookrightarrow C(2^{\kappa})$$
.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ● のへで

We consider the Cantor cube $K = 2^{\kappa} = \{0, 1\}^{\kappa}$ for a cardinal κ .

$$2^{\kappa}$$
 is Valdivia \implies Bo $(C_{\rho}(2^{\kappa})) = Bo(C(2^{\kappa}))$

So, in this case the picture is simpler:

$$\operatorname{Ba}(C_{\rho}(2^{\kappa})) \subset \operatorname{Ba}(C_{w}(2^{\kappa})) \subset \operatorname{Bo}(C(2^{\kappa}))$$

Moreover:

$$\operatorname{Ba}(C_{\rho}(2^{\kappa})) = \operatorname{Ba}(C_{w}(2^{\kappa})) \iff \kappa \leq \mathfrak{c}$$

▶ Any Radon measure on 2^c has a uniformly distributed sequence! [Fremlin]

Remark

•
$$\ell^1(\kappa) \hookrightarrow C(2^{\kappa})$$
.

• $\ell^1(\omega_1) \hookrightarrow Y$ for every non-separable subspace $Y \hookrightarrow C(2^{\omega_1})$. [Hagler]

イロト イロト イヨト イヨト 二日

Theorem [Avilés-Plebanek-R.]

For a cardinal κ the following statements are equivalent:

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

- **(**) κ is a **Kunen** cardinal.
- $a(C_p(2^{\kappa})) = Bo(C(2^{\kappa})).$

Theorem [Avilés-Plebanek-R.]

For a cardinal κ the following statements are equivalent:

- **(**) κ is a **Kunen** cardinal.
- $a(C_p(2^{\kappa})) = Bo(C(2^{\kappa})).$

Corollary [Fremlin]

 κ is a Kunen cardinal if and only if

$$\operatorname{Ba}(\ell^{1}(\kappa), w) = \operatorname{Bo}(\ell^{1}(\kappa)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Theorem [Avilés-Plebanek-R.]

For a cardinal κ the following statements are equivalent:

- **(**) κ is a **Kunen** cardinal.
- $a(C_p(2^{\kappa})) = Bo(C(2^{\kappa})).$
- (a) All equivalent norms on $C(2^{\kappa})$ are $Ba(C_p(2^{\kappa}))$ -measurable.

Corollary [Fremlin]

 κ is a Kunen cardinal if and only if

$$\operatorname{Ba}(\ell^{1}(\kappa), w) = \operatorname{Bo}(\ell^{1}(\kappa)).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Theorem [Avilés-Plebanek-R.]

For a cardinal κ the following statements are equivalent:

- **1** κ is a **Kunen** cardinal.
- $a(C_p(2^{\kappa})) = Bo(C(2^{\kappa})).$
- 3 All equivalent norms on $C(2^{\kappa})$ are $Ba(C_p(2^{\kappa}))$ -measurable.

Corollary [Fremlin]

 κ is a Kunen cardinal if and only if

$$\operatorname{Ba}(\ell^1(\kappa), w) = \operatorname{Bo}(\ell^1(\kappa)).$$

Corollary

If G is a compact group and weight (G) is a Kunen cardinal, then

 $\operatorname{Ba}(C_p(G)) = \operatorname{Bo}(C(G)).$

Let K be a compact space satisfying:

(*) For each $n \in \mathbb{N}$ and each closed set $F \subseteq K^n$ there is a decreasing sequence (F_m) of closed separable subsets of K^n s.t. $F = \bigcap F_m$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Then $\operatorname{Ba}(C_{\rho}(K)) = \operatorname{Bo}(C_{\rho}(K)).$

Let K be a compact space satisfying:

(*) For each $n \in \mathbb{N}$ and each closed set $F \subseteq K^n$ there is a decreasing sequence (F_m) of closed separable subsets of K^n s.t. $F = \bigcap F_m$.

Then $\operatorname{Ba}(C_p(K)) = \operatorname{Bo}(C_p(K)).$

Let K be a compact space satisfying:

(★) For each n ∈ N and each closed set F ⊆ Kⁿ there is a decreasing sequence (F_m) of closed separable subsets of Kⁿ s.t. F = ∩ F_m.

Then $\operatorname{Ba}(C_p(K)) = \operatorname{Bo}(C_p(K)).$

Theorem [Parovičenko]

Every compact space of weight $\leq \omega_1$ is a continuous image of $\beta \mathbb{N} \setminus \mathbb{N}$.

Let K be a compact space satisfying:

(*) For each n ∈ N and each closed set F ⊆ Kⁿ there is a decreasing sequence (F_m) of closed separable subsets of Kⁿ s.t. F = ∩ F_m.
 Then Ba(C_p(K)) = Bo(C_p(K)).

 Proposition

 2^{ω_1} satisfies property (*).

Theorem [Parovičenko]

Every compact space of weight $\leq \omega_1$ is a continuous image of $\beta \mathbb{N} \setminus \mathbb{N}$.

$$\operatorname{Ba}(C_p(2^{\omega_1})) = \operatorname{Bo}(C(2^{\omega_1}))$$