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More generally:

XD/li(c) == 3Y C X* norming and || - ||-closed subspace
such that (X, u(X,Y)) is not complete.
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We say that (Bx:,w™) is Efremouv iff

CY ={x"eX*: I(x})C C st. x;>x*}| Itis unknown what happens in ZFC or
under other axioms.
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Theorem (Guirao, Martinez-Cervantes, R.)

Under CH, there is a Banach space X such that (Bx:,w") is sequential
and X is not universally Mackey complete.
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