Completeness in the Mackey topology

José Rodríguez

Universidad de Murcia

Function Theory on Infinite Dimensional Spaces XVI Madrid, November 20, 2019

Research supported by Agencia Estatal de Investigación/FEDER (MTM2017-86182-P) and Fundación Séneca (20797/PI/18)

イロト イポト イヨト イヨト 二日

Banach-Dieudonné

Let $f : X^* \to \mathbb{R}$ be a linear functional.

If $f|_{B_{X^*}}$ is w*-continuous, then f is w*-continuous (and so $f \in X$).

Banach-Dieudonné

Let $f : X^* \to \mathbb{R}$ be a linear functional. If $f|_{B_{Y^*}}$ is w*-continuous, then f is w*-continuous (and so $f \in X$).

•• Let $Y \subset X^*$ be a **w***-**dense** subspace.

Definition

The **Mackey topology** $\mu(X, Y)$ is the topology on X of uniform convergence on elements of the family

 $\mathscr{K}(Y) := \{ K \subset Y : K \text{ is absolutely convex and } w^* \text{-compact} \}.$

Banach-Dieudonné

Let $f : X^* \to \mathbb{R}$ be a linear functional.

If $f|_{B_{X^*}}$ is w*-continuous, then f is w*-continuous (and so $f \in X$).

▶ Let $Y \subset X^*$ be a **w**^{*}-**dense** subspace.

Definition

The Mackey topology $\mu(X, Y)$ is the topology on X of uniform convergence on elements of the family

 $\mathscr{K}(Y) := \{ K \subset Y : K \text{ is absolutely convex and } w^* \text{-compact} \}.$

Theorem (Grothendieck)

 $(X, \mu(X, Y))$ is complete \iff for every linear functional $f : Y \to \mathbb{R}$ we have: If $f|_K$ is w*-continuous $\forall K \in \mathscr{K}(Y)$, then f is w*-continuous (i.e. $\exists x \in X \text{ s.t. } f(y) = \langle x, y \rangle \ \forall y \in Y$).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Banach-Dieudonné

Let $f : X^* \to \mathbb{R}$ be a linear functional.

If $f|_{B_{X^*}}$ is w*-continuous, then f is w*-continuous (and so $f \in X$).

▶ Let $Y \subset X^*$ be a **w**^{*}-**dense** subspace.

Definition

The Mackey topology $\mu(X, Y)$ is the topology on X of uniform convergence on elements of the family

 $\mathscr{K}(Y) := \{ K \subset Y : K \text{ is absolutely convex and } w^* \text{-compact} \}.$

Theorem (Grothendieck)

 $(X, \mu(X, Y))$ is complete \iff for every linear functional $f : Y \to \mathbb{R}$ we have: If $f|_K$ is w*-continuous $\forall K \in \mathscr{K}(Y)$, then f is w*-continuous (i.e. $\exists x \in X \text{ s.t. } f(y) = \langle x, y \rangle \ \forall y \in Y$).

Question (Arendt, Kunze)

Is $(X, \mu(X, Y))$ is complete for every norming and $\|\cdot\|$ -closed $Y \subset X^*$???

Example

Let $X = \ell_1([0,1])$ and $Y = C([0,1]) \subset X^* = \ell_{\infty}([0,1])$. Then Y is norming and $\|\cdot\|$ -closed, but $(X, \mu(X, Y))$ is **not** complete.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Example

Let $X = \ell_1([0,1])$ and $Y = C([0,1]) \subset X^* = \ell_{\infty}([0,1])$. Then Y is norming and $\|\cdot\|$ -closed, but $(X, \mu(X, Y))$ is **not** complete.

Sketch of proof:

• Define
$$f: Y \to \mathbb{R}$$
 by $f(y) := \int_0^1 y(t) dt$.

Example

Let $X = \ell_1([0,1])$ and $Y = C([0,1]) \subset X^* = \ell_{\infty}([0,1])$. Then Y is norming and $\|\cdot\|$ -closed, but $(X, \mu(X, Y))$ is **not** complete.

Sketch of proof:

• Define
$$f: Y \to \mathbb{R}$$
 by $f(y) := \int_0^1 y(t) dt$. Then f is **not** w^* -continuous.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Example

Let $X = \ell_1([0,1])$ and $Y = C([0,1]) \subset X^* = \ell_{\infty}([0,1])$. Then Y is norming and $\|\cdot\|$ -closed, but $(X, \mu(X, Y))$ is **not** complete.

Sketch of proof:

• Define $f: Y \to \mathbb{R}$ by $f(y) := \int_0^1 y(t) dt$. Then f is **not** w^* -continuous.

イロト (部) (日) (日) (日) (日)

• But $f|_K$ is w*-continuous for every $K \in \mathcal{K}(Y)$. Why?

Example

Let $X = \ell_1([0,1])$ and $Y = C([0,1]) \subset X^* = \ell_{\infty}([0,1])$. Then Y is norming and $\|\cdot\|$ -closed, but $(X, \mu(X, Y))$ is **not** complete.

Sketch of proof:

• Define $f: Y \to \mathbb{R}$ by $f(y) := \int_0^1 y(t) dt$. Then f is **not** w^* -continuous.

イロト (部) (日) (日) (日) (日)

- But $f|_K$ is w^* -continuous for every $K \in \mathscr{K}(Y)$. Why?
 - **1** f is w^{*}-sequentially continuous.

Example

Let $X = \ell_1([0,1])$ and $Y = C([0,1]) \subset X^* = \ell_{\infty}([0,1])$. Then Y is norming and $\|\cdot\|$ -closed, but $(X, \mu(X, Y))$ is **not** complete.

Sketch of proof:

• Define $f: Y \to \mathbb{R}$ by $f(y) := \int_0^1 y(t) dt$. Then f is **not** w^* -continuous.

• But $f|_K$ is w*-continuous for every $K \in \mathscr{K}(Y)$. Why?

- **1** *f* is w*-sequentially continuous.
- 2 Every $K \in \mathcal{K}(Y)$ is **Fréchet-Urysohn** for the w^* -topology.

イロト (部) (日) (日) (日) (日)

Example

Let $X = \ell_1([0,1])$ and $Y = C([0,1]) \subset X^* = \ell_{\infty}([0,1])$. Then Y is norming and $\|\cdot\|$ -closed, but $(X, \mu(X, Y))$ is **not** complete.

Sketch of proof:

- Define $f: Y \to \mathbb{R}$ by $f(y) := \int_0^1 y(t) dt$. Then f is **not** w^* -continuous.
- But $f|_K$ is w^* -continuous for every $K \in \mathscr{K}(Y)$. Why?
 - **1** f is w*-sequentially continuous.
 - 2 Every $K \in \mathscr{K}(Y)$ is **Fréchet-Urysohn** for the w^* -topology.

More generally:

Theorem $X \supset \ell_1(c) \implies \exists Y \subset X^* \text{ norming and } \|\cdot\|\text{-closed subspace}$ such that $(X, \mu(X, Y))$ is **not** complete.

▶ Let $Y \subset X^*$ be a **w**^{*}-**dense** subspace.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

I Let $Y \subset X^*$ be a **w**^{*}-**dense** subspace.

Proposition				
	$(X, \mu(X, Y))$ is complete	\implies	Y is norming .	

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ ○ ◆ ○ ◆

▶ Let $Y \subset X^*$ be a **w**^{*}-dense subspace.

Proposition

 $(X,\mu(X,Y))$ is complete \implies Y is norming.

Proposition Suppose Y is $\|\cdot\|$ -closed. Let $f: Y \to \mathbb{R}$ be a linear functional. If $f|_{\mathcal{K}}$ is w*-continuous $\forall \mathcal{K} \in \mathscr{K}(Y)$, then f is w*-sequentially continuous.

•• Let $Y \subset X^*$ be a **w**^{*}-**dense** subspace.

$(X,\mu(X,Y))$ is complete \implies Y is norming.

Proposition Suppose Y is $\|\cdot\|$ -closed. Let $f: Y \to \mathbb{R}$ be a linear functional. If $f|_K$ is w*-continuous $\forall K \in \mathscr{K}(Y)$, then f is w*-sequentially continuous.

Theorem

Proposition

Suppose **Y** is $\|\cdot\|$ -closed and (B_{X^*}, w^*) is **Fréchet-Urysohn**. Then:

•• Let $Y \subset X^*$ be a **w**^{*}-**dense** subspace.

$(X,\mu(X,Y))$ is complete \implies Y is norming.

Proposition Suppose Y is $\|\cdot\|$ -closed. Let $f: Y \to \mathbb{R}$ be a linear functional. If $f|_K$ is w*-continuous $\forall K \in \mathscr{K}(Y)$, then f is w*-sequentially continuous.

Theorem

Proposition

Suppose **Y** is $\|\cdot\|$ -closed and (B_{X^*}, w^*) is **Fréchet-Urysohn**. Then:

 $(X,\mu(X,Y))$ is complete \iff Y is norming \iff (Y,w^*) is Mazur.

We say that X is universally Mackey complete [resp. universally Mazur] iff

 $(X, \mu(X, Y))$ is complete [resp. (Y, w^*) is Mazur]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

for every norming and $\|\cdot\|$ -closed subspace $Y \subset X^*$.

We say that X is universally Mackey complete [resp. universally Mazur] iff

 $(X, \mu(X, Y))$ is complete [resp. (Y, w^*) is Mazur]

for every norming and $\|\cdot\|$ -closed subspace $Y \subset X^*$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

We say that X is universally Mackey complete [resp. universally Mazur] iff

 $(X, \mu(X, Y))$ is complete [resp. (Y, w^*) is Mazur]

for every norming and $\|\cdot\|$ -closed subspace $Y \subset X^*$.

We say that X is universally Mackey complete [resp. universally Mazur] iff

 $(X, \mu(X, Y))$ is complete [resp. (Y, w^*) is Mazur]

for every norming and $\|\cdot\|$ -closed subspace $Y \subset X^*$.

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > のへで

We say that X is universally Mackey complete [resp. universally Mazur] iff

 $(X, \mu(X, Y))$ is complete [resp. (Y, w^*) is Mazur]

for every norming and $\|\cdot\|$ -closed subspace $Y \subset X^*$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Definition

We say that (B_{X^*}, w^*) is **Efremov** iff $\overline{C}^{w^*} = \{x^* \in X^* : \exists (x_n^*) \subset C \text{ s.t. } x_n^* \xrightarrow{w^*} x^*\}$ for every convex set $C \subset B_{X^*}$.

We say that X is universally Mackey complete [resp. universally Mazur] iff

 $(X, \mu(X, Y))$ is complete [resp. (Y, w^*) is Mazur]

for every norming and $\|\cdot\|$ -closed subspace $Y \subset X^*$.

We say that X is universally Mackey complete [resp. universally Mazur] iff

 $(X, \mu(X, Y))$ is complete [resp. (Y, w^*) is Mazur]

for every norming and $\|\cdot\|$ -closed subspace $Y \subset X^*$.

for every convex set $C \subset B_{X^*}$.

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

We say that (B_{X^*}, w^*) is **(convexly) sequential** iff for every **(convex) non**- w^* -closed set $C \subset B_{X^*}$ there exist $x^* \in X^* \setminus C$ and $(x_n^*) \subset C$ such that $x_n^* \xrightarrow{w^*} x^*$.

We say that (B_{X^*}, w^*) is **(convexly) sequential** iff for every **(convex) non**- w^* -closed set $C \subset B_{X^*}$ there exist $x^* \in X^* \setminus C$ and $(x_n^*) \subset C$ such that $x_n^* \xrightarrow{w^*} x^*$.

We say that (B_{X^*}, w^*) is **(convexly) sequential** iff for every **(convex) non**- w^* -closed set $C \subset B_{X^*}$ there exist $x^* \in X^* \setminus C$ and $(x_n^*) \subset C$ such that $x_n^* \xrightarrow{w^*} x^*$.

Theorem (Guirao, Martínez-Cervantes, R.)

Suppose (B_{X^*}, w^*) is convexly sequential. Then:

X is universally Mazur \iff X is universally Mackey complete.

We say that (B_{X^*}, w^*) is **(convexly) sequential** iff for every **(convex) non**- w^* -closed set $C \subset B_{X^*}$ there exist $x^* \in X^* \setminus C$ and $(x_n^*) \subset C$ such that $x_n^* \xrightarrow{w^*} x^*$.

Theorem (Guirao, Martínez-Cervantes, R.)

Suppose (B_{X^*}, w^*) is convexly sequential. Then:

X is universally Mazur \iff X is universally Mackey complete.

Theorem (Guirao, Martínez-Cervantes, R.)

Under CH, there is a Banach space X such that (B_{X^*}, w^*) is sequential and X is **not** universally Mackey complete.

୨୯୯