# On Banach spaces which are weak\* sequentially dense in its bidual

José Rodríguez

Universidad de Murcia

# Workshop on Banach spaces and Banach lattices Madrid, September 9, 2019

Research supported by Agencia Estatal de Investigación/FEDER (MTM2017-86182-P) and Fundación Séneca (20797/PI/18)

イロト イロト イヨト イヨト 二日

| Goldstine's theorem                     |  |
|-----------------------------------------|--|
| $B_X$ is $w^*$ -dense in $B_{X^{**}}$ . |  |

Goldstine's theorem  $B_X$  is  $w^*$ -dense in  $B_{X^{**}}$ . Therefore, X is  $w^*$ -dense in  $X^{**}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

| Goldstine's theorem                                                  |  |
|----------------------------------------------------------------------|--|
| $B_X$ is w*-dense in $B_{X^{**}}$ . Therefore, X is w*-dense in X**. |  |
|                                                                      |  |
| Notation                                                             |  |

 $X \in \mathfrak{SD}$  iff X is  $w^*$ -sequentially dense in  $X^{**}$ .





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

• X\* is separable

 $[\iff (B_{X^{**}}, w^*) \text{ is metrizable }]$ 



 $(B_{X^{**}}, w^*)$  is Fréchet-Urysohn  $\implies X \in \mathfrak{SD}$ 

うせん 川田 (山田) (田) (日)



 $(B_{X^{**}}, w^*)$  is Fréchet-Urysohn  $\implies X \in \mathfrak{SD}$ 

◆□> ◆□> ◆目> ◆目> ◆目> ● ●



 $(B_{X^{**}}, w^*)$  is Fréchet-Urysohn  $\implies X \in \mathfrak{SD}$ 

・ロ・・西・・田・・日・ のへの



イロン イロン イヨン イヨン 三日



 $(B_{X^{**}}, w^*)$  is Fréchet-Urysohn  $\implies X \in \mathfrak{SD} \implies X \not\supseteq \ell_1.$ 

Theorem (Odell-Rosenthal, Bourgain-Fremlin-Talagrand)

Suppose X is **separable**. Then:

 $(B_{X^{**}}, w^*)$  is Fréchet-Urysohn  $\iff X \in \mathfrak{SD} \iff X 
ot \geq \ell_1.$ 



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



#### ◆□> ◆□> ◆目> ◆目> ・目 ・のへぐ



◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで



◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで



 $(B_{X^{**}}, w^*)$  is Corson  $\iff X \in \mathfrak{SD}$  and X is Asplund.



 $(B_{X^{**}}, w^*)$  is Corson  $\iff X \in \mathfrak{SD}$  and X is Asplund.

A **Banach lattice** X is Asplund if and only if  $X \not\supseteq \ell_1$ .

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ● のへ⊙



 $(B_{X^{**}}, w^*)$  is Corson  $\iff X \in \mathfrak{SD}$  and X is Asplund.

A Banach lattice X is Asplund if and only if  $X \not\supseteq \ell_1$ .

#### Corollary

Suppose X is a **Banach lattice**. Then  $(B_{X^{**}}, w^*)$  is Corson  $\iff X \in \mathfrak{SD}$ .



 $(B_{X^{**}}, w^*)$  is Corson  $\iff X \in \mathfrak{SD}$  and X is Asplund.

A Banach lattice X is Asplund if and only if  $X \not\supseteq \ell_1$ .

# Corollary

Suppose X is a **Banach lattice**. Then  $(B_{X^{**}}, w^*)$  is Corson  $\iff X \in \mathfrak{SD}$ .

# Question

$$X \in \mathfrak{SD} \implies (B_{X^{**}}, w^*)$$
 is Fréchet-Urysohn ???

Which topological properties does  $(B_{X^*}, w^*)$  enjoy whenever  $X \in \mathfrak{SD}$  ???

Which topological properties does  $(B_{X^*}, w^*)$  enjoy whenever  $X \in \mathfrak{SD}$  ???

Given a set  $A \subset X^*$ , we write

$$S_1(A) := \big\{ x^* \in X^* : \exists (x_n^*) \subset A \text{ such that } w^* \text{-} \lim_{n \to \infty} x_n^* = x^* \big\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Which topological properties does  $(B_{X^*}, w^*)$  enjoy whenever  $X \in \mathfrak{SD}$  ???

Given a set  $A \subset X^*$ , we write

$$S_1(A) := \left\{ x^* \in X^* : \exists (x_n^*) \subset A \text{ such that } w^* \text{-} \lim_{n \to \infty} x_n^* = x^* \right\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

# Definition

We say that  $(B_{X^*}, w^*)$  is

• Efremov iff  $S_1(C) = \overline{C}^{w^*}$  for every convex set  $C \subset B_{X^*}$ ;

Which topological properties does  $(B_{X^*}, w^*)$  enjoy whenever  $X \in \mathfrak{SD}$  ???

Given a set  $A \subset X^*$ , we write

$$S_1(A) := \big\{ x^* \in X^* : \exists (x_n^*) \subset A \text{ such that } w^* \text{-} \lim_{n \to \infty} x_n^* = x^* \big\}.$$

# Definition

We say that  $(B_{X^*}, w^*)$  is

- **()** Efremov iff  $S_1(C) = \overline{C}^{w^*}$  for every convex set  $C \subset B_{X^*}$ ;
- **2** convexly sequential iff for every convex set  $C \subset B_{X^*}$  we have

$$S_1(C) = C \implies C \text{ is } w^*\text{-closed};$$

Which topological properties does  $(B_{X^*}, w^*)$  enjoy whenever  $X \in \mathfrak{SD}$  ???

Given a set  $A \subset X^*$ , we write

$$S_1(A) := \big\{ x^* \in X^* : \exists (x_n^*) \subset A \text{ such that } w^* - \lim_{n \to \infty} x_n^* = x^* \big\}.$$

#### Definition

We say that  $(B_{X^*}, w^*)$  is

- **1** Efremov iff  $S_1(C) = \overline{C}^{w^*}$  for every convex set  $C \subset B_{X^*}$ ;
- **2** convexly sequential iff for every convex set  $C \subset B_{X^*}$  we have

$$S_1(C) = C \implies C \text{ is } w^*\text{-closed};$$



Which topological properties does  $(B_{X^*}, w^*)$  enjoy whenever  $X \in \mathfrak{SD}$  ???

Given a set  $A \subset X^*$ , we write

$$S_1(A) := \{ x^* \in X^* : \exists (x_n^*) \subset A \text{ such that } w^* - \lim_{n \to \infty} x_n^* = x^* \}.$$

#### Definition

We say that  $(B_{X^*}, w^*)$  is

- **1** Efremov iff  $S_1(C) = \overline{C}^{w^*}$  for every convex set  $C \subset B_{X^*}$ ;
- **2** convexly sequential iff for every convex set  $C \subset B_{X^*}$  we have

$$S_1(C) = C \implies C \text{ is } w^*\text{-closed};$$



Which topological properties does  $(B_{X^*}, w^*)$  enjoy whenever  $X \in \mathfrak{SD}$  ???

Given a set  $A \subset X^*$ , we write

$$S_1(A) := \big\{ x^* \in X^* : \exists (x_n^*) \subset A \text{ such that } w^* \text{-} \lim_{n \to \infty} x_n^* = x^* \big\}.$$

#### Definition

We say that  $(B_{X^*}, w^*)$  is

- **1** Efremov iff  $S_1(C) = \overline{C}^{w^*}$  for every convex set  $C \subset B_{X^*}$ ;
- **2** convexly sequential iff for every convex set  $C \subset B_{X^*}$  we have

$$S_1(C) = C \implies C \text{ is } w^* \text{-closed};$$

Onvex block compact iff every sequence in B<sub>X\*</sub> admits a w\*-convergent convex block subsequence.



Which topological properties does  $(B_{X^*}, w^*)$  enjoy whenever  $X \in \mathfrak{SD}$  ???

Given a set  $A \subset X^*$ , we write

$$S_1(A) := \big\{ x^* \in X^* : \exists (x_n^*) \subset A \text{ such that } w^* \text{-} \lim_{n \to \infty} x_n^* = x^* \big\}.$$

#### Definition

We say that  $(B_{X^*}, w^*)$  is

- **1** Efremov iff  $S_1(C) = \overline{C}^{w^*}$  for every convex set  $C \subset B_{X^*}$ ;
- **2** convexly sequential iff for every convex set  $C \subset B_{X^*}$  we have

$$S_1(C) = C \implies C \text{ is } w^*\text{-closed};$$

Onvex block compact iff every sequence in B<sub>X\*</sub> admits a w\*-convergent convex block subsequence.





#### ◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで





Let  $X = JL_2(\mathscr{F})$  be the **Johnson-Lindenstrauss space** associated to a MAD family  $\mathscr{F}$ . Then  $X \in \mathfrak{SD}$ 



Let  $X = JL_2(\mathscr{F})$  be the **Johnson-Lindenstrauss space** associated to a MAD family  $\mathscr{F}$ . Then  $X \in \mathfrak{SD}$  and  $(B_{X^*}, w^*)$  is **not** Fréchet-Urysohn.



Let  $X = JL_2(\mathscr{F})$  be the Johnson-Lindenstrauss space associated to a MAD family  $\mathscr{F}$ . Then  $X \in \mathfrak{SD}$  and  $(B_{X^*}, w^*)$  is not Fréchet-Urysohn. Moreover:

• (*B<sub>X\*</sub>*, *w*<sup>\*</sup>) is sequential (Martínez-Cervantes);



Let  $X = JL_2(\mathscr{F})$  be the Johnson-Lindenstrauss space associated to a MAD family  $\mathscr{F}$ . Then  $X \in \mathfrak{SD}$  and  $(B_{X^*}, w^*)$  is not Fréchet-Urysohn. Moreover:

- (*B*<sub>X\*</sub>, *w*\*) is sequential (Martínez-Cervantes);
- Under CH, there exist MAD families *ℱ* for which (B<sub>X\*</sub>, w\*) is/isn't Efremov (Avilés, Martínez-Cervantes, R.).



Let  $X = JL_2(\mathscr{F})$  be the Johnson-Lindenstrauss space associated to a MAD family  $\mathscr{F}$ . Then  $X \in \mathfrak{SD}$  and  $(B_{X^*}, w^*)$  is not Fréchet-Urysohn. Moreover:

- (*B*<sub>X\*</sub>, *w*\*) is sequential (Martínez-Cervantes);
- Under CH, there exist MAD families *F* for which (B<sub>X\*</sub>, w\*) is/isn't Efremov (Avilés, Martínez-Cervantes, R.).

#### Theorem

If  $X \in \mathfrak{SD}$ , then  $(B_{X^*}, w^*)$  has countable tightness [Hernández-Rubio]



Let  $X = JL_2(\mathscr{F})$  be the Johnson-Lindenstrauss space associated to a MAD family  $\mathscr{F}$ . Then  $X \in \mathfrak{SD}$  and  $(B_{X^*}, w^*)$  is not Fréchet-Urysohn. Moreover:

- (*B*<sub>X\*</sub>, *w*\*) is sequential (Martínez-Cervantes);
- Under CH, there exist MAD families *F* for which (B<sub>X\*</sub>, w\*) is/isn't Efremov (Avilés, Martínez-Cervantes, R.).

#### Theorem

If  $X \in \mathfrak{SD}$ , then  $(B_{X^*}, w^*)$  has countable tightness [Hernández-Rubio] and is convexly sequential [Avilés, Martínez-Cervantes, R.].



Let  $X = JL_2(\mathscr{F})$  be the Johnson-Lindenstrauss space associated to a MAD family  $\mathscr{F}$ . Then  $X \in \mathfrak{SD}$  and  $(B_{X^*}, w^*)$  is not Fréchet-Urysohn. Moreover:

- (*B*<sub>X\*</sub>, *w*\*) is sequential (Martínez-Cervantes);
- Under CH, there exist MAD families *F* for which (B<sub>X\*</sub>, w\*) is/isn't Efremov (Avilés, Martínez-Cervantes, R.).

#### Theorem

If  $X \in \mathfrak{SD}$ , then  $(B_{X^*}, w^*)$  has countable tightness [Hernández-Rubio] and is convexly sequential [Avilés, Martínez-Cervantes, R.].

#### Question

 $X \in \mathfrak{SD} \implies (B_{X^*}, w^*)$  is sequential or sequentially compact ???

# $X \in \mathfrak{SD} \implies (B_{X^*}, w^*)$ is convexly sequential.

Ingredients:



# $X \in \mathfrak{SD} \implies (B_{X^*}, w^*)$ is convexly sequential.

・ロト・日本・モート・モー うへの

# Ingredients:

Theorem (Bourgain)  $X \not\supseteq \ell_1 \Longrightarrow (B_{X^*}, w^*)$ is convex block compact.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

# Ingredients:

Theorem (Bourgain)  $X \not\supseteq \ell_1 \Longrightarrow (B_{X^*}, w^*)$ is convex block compact.

#### Definition

Let  $K \subset X^*$  be convex  $w^*$ -compact. A set  $B \subset K$  is a **boundary** of K iff  $\forall x \in X \quad \exists x_0^* \in B$  such that  $x_0^*(x) = \sup\{x^*(x) : x^* \in K\}.$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

# Ingredients:

Theorem (Bourgain)

 $\begin{array}{c} X \not \supseteq \ell_1 \Longrightarrow (B_{X^*}, w^*) \\ \text{ is convex block compact.} \end{array}$ 

# Definition

Let  $K \subset X^*$  be convex  $w^*$ -compact. A set  $B \subset K$  is a **boundary** of K iff  $\forall x \in X \quad \exists x_0^* \in B$  such that  $x_0^*(x) = \sup\{x^*(x) : x^* \in K\}.$ 

# Theorem (Efremov, Godefroy)

 $X \in \mathfrak{SD} \Longrightarrow K = \overline{\operatorname{conv}(B)}^{\|\cdot\|}$ for all *K* and *B* as above.

# Ingredients:

Theorem (Bourgain)  $X \not\supseteq \ell_1 \Longrightarrow (B_{X^*}, w^*)$ is convex block compact.

# Definition

Let  $K \subset X^*$  be convex  $w^*$ -compact. A set  $B \subset K$  is a **boundary** of K iff  $\forall x \in X \quad \exists x_0^* \in B \text{ such that}$  $x_0^*(x) = \sup\{x^*(x) : x^* \in K\}.$ 

# Theorem (Efremov, Godefroy)

 $X \in \mathfrak{SD} \implies K = \overline{\operatorname{conv}(B)}^{\|\cdot\|}$ for all *K* and *B* as above.

# Sketch of proof of the implication:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Take 
$$C \subset B_{X^*}$$
 convex.

CLAIM:  $\overline{C}^{w^*} = S_1(S_1(C)).$ 

Why?

# Ingredients:

Theorem (Bourgain)  $X \not\supseteq \ell_1 \Longrightarrow (B_{X^*}, w^*)$ is convex block compact.

# Definition

Let  $K \subset X^*$  be convex  $w^*$ -compact. A set  $B \subset K$  is a **boundary** of K iff  $\forall x \in X \quad \exists x_0^* \in B \text{ such that}$  $x_0^*(x) = \sup\{x^*(x) : x^* \in K\}.$ 

# Theorem (Efremov, Godefroy)

 $X \in \mathfrak{SD} \Longrightarrow K = \overline{\operatorname{conv}(B)}^{\|\cdot\|}$ for all *K* and *B* as above.

# Sketch of proof of the implication:

Take 
$$C \subset B_{X^*}$$
 convex.

CLAIM:  $\overline{C}^{w^*} = S_1(S_1(C)).$ 

Why?

•  $S_1(C)$  is a boundary of  $\overline{C}^{w^*}$ .

# Ingredients:

Theorem (Bourgain)  $X \not\supseteq \ell_1 \Longrightarrow (B_{X^*}, w^*)$ is convex block compact.

# Definition

Let  $K \subset X^*$  be convex  $w^*$ -compact. A set  $B \subset K$  is a **boundary** of K iff  $\forall x \in X \quad \exists x_0^* \in B \text{ such that}$  $x_0^*(x) = \sup\{x^*(x) : x^* \in K\}.$ 

# Theorem (Efremov, Godefroy)

 $X \in \mathfrak{SD} \implies K = \overline{\operatorname{conv}(B)}^{\|\cdot\|}$  for all K and B as above.

# Sketch of proof of the implication:

Take 
$$C \subset B_{X^*}$$
 convex.

CLAIM:  $\overline{C}^{w^*} = S_1(S_1(C)).$ 

# Why?

•  $S_1(C)$  is a boundary of  $\overline{C}^{w^*}$ .

• 
$$\overline{C}^{w^*} = \overline{S_1(C)}^{\|\cdot\|} \subset S_1(S_1(C)).$$