# On Banach spaces which are weak* sequentially dense in its bidual 

José Rodríguez

Universidad de Murcia

# Workshop on Banach spaces and Banach lattices 

Madrid, September 9, 2019

Throughout this talk $X$ is a Banach space.

Throughout this talk $X$ is a Banach space.
Goldstine's theorem
$B_{X}$ is $w^{*}$-dense in $B_{X * *}$.

Throughout this talk $X$ is a Banach space.
Goldstine's theorem
$B_{X}$ is $w^{*}$-dense in $B_{X * *}$. Therefore, $X$ is $w^{*}$-dense in $X^{* *}$.

Throughout this talk $X$ is a Banach space.
Goldstine's theorem
$B_{X}$ is $w^{*}$-dense in $B_{X * *}$. Therefore, $X$ is $w^{*}$-dense in $X^{* *}$.

Notation
$X \in \mathfrak{S} \mathfrak{D}$ iff $X$ is $w^{*}$-sequentially dense in $X^{* *}$.

Throughout this talk $X$ is a Banach space.
Goldstine's theorem
$B_{X}$ is $w^{*}$-dense in $B_{X * *}$. Therefore, $X$ is $w^{*}$-dense in $X^{* *}$.

Notation
$X \in \mathfrak{S} \mathfrak{D}$ iff $X$ is $w^{*}$-sequentially dense in $X^{* *}$.

## $X \in \mathfrak{S} \mathfrak{D}$ if

- $X$ is reflexive (obvious)

Throughout this talk $X$ is a Banach space.
Goldstine's theorem
$B_{X}$ is $w^{*}$-dense in $B_{X * *}$. Therefore, $X$ is $w^{*}$-dense in $X^{* *}$.

## Notation

$X \in \mathfrak{G D}$ iff $X$ is $w^{*}$-sequentially dense in $X^{* *}$.

## $X \in \mathfrak{S} \mathfrak{D}$ if

- $X$ is reflexive (obvious)
- $X^{*}$ is separable
$\left[\Longleftrightarrow\left(B_{X^{* *}}, w^{*}\right)\right.$ is metrizable ]

Throughout this talk $X$ is a Banach space.
Goldstine's theorem
$B_{X}$ is $w^{*}$-dense in $B_{X * *}$. Therefore, $X$ is $w^{*}$-dense in $X^{* *}$.

## Notation

$X \in \mathfrak{S D}$ iff $X$ is $w^{*}$-sequentially dense in $X^{* *}$.

## $X \in \mathfrak{S} \mathfrak{D}$ if

- $X$ is reflexive (obvious)
- $X^{*}$ is separable
[ $\Longleftrightarrow\left(B_{X^{* *}}, w^{*}\right)$ is metrizable ]
$\left(B_{X^{* *}}, w^{*}\right)$ is Fréchet-Urysohn $\Longrightarrow X \in \mathfrak{S} \mathfrak{D}$

Throughout this talk $X$ is a Banach space.

## Goldstine's theorem

$B_{X}$ is $w^{*}$-dense in $B_{X^{* *}}$. Therefore, $X$ is $w^{*}$-dense in $X^{* *}$.

## Notation

$X \in \mathfrak{S} \mathfrak{D}$ iff $X$ is $w^{*}$-sequentially dense in $X^{* *}$.

## $X \in \mathfrak{S} \mathfrak{D}$ if

- $X$ is reflexive (obvious)
- $X^{*}$ is separable
$\left[\Longleftrightarrow\left(B_{X^{* *}}, w^{*}\right)\right.$ is metrizable ]


## $X \notin \mathfrak{S} \mathfrak{D}$ if

- $X$ is weakly sequentially complete and non-reflexive (e.g. $\ell_{1}$ and $L_{1}$ )
$\left(B_{X^{* *}}, w^{*}\right)$ is Fréchet-Urysohn $\Longrightarrow X \in \mathfrak{S D}$

Throughout this talk $X$ is a Banach space.

## Goldstine's theorem

$B_{X}$ is $w^{*}$-dense in $B_{X^{* *}}$. Therefore, $X$ is $w^{*}$-dense in $X^{* *}$.

## Notation

$X \in \mathfrak{S} \mathfrak{D}$ iff $X$ is $w^{*}$-sequentially dense in $X^{* *}$.

## $X \in \mathfrak{S} \mathfrak{D}$ if

- $X$ is reflexive (obvious)
- $X^{*}$ is separable
$\left[\Longleftrightarrow\left(B_{X^{* *}}, w^{*}\right)\right.$ is metrizable ]


## $X \notin \mathfrak{S} \mathfrak{D}$ if

- $X$ is weakly sequentially complete and non-reflexive (e.g. $\ell_{1}$ and $L_{1}$ )
- $X=c_{0}(\Gamma)$ for uncountable $\Gamma$ $\left(B_{X^{* *}}, w^{*}\right)$ is Fréchet-Urysohn $\Longrightarrow X \in \mathfrak{S D}$

Throughout this talk $X$ is a Banach space.

## Goldstine's theorem

$B_{X}$ is $w^{*}$-dense in $B_{X^{* *}}$. Therefore, $X$ is $w^{*}$-dense in $X^{* *}$.

## Notation

$X \in \mathfrak{S} \mathfrak{D}$ iff $X$ is $w^{*}$-sequentially dense in $X^{* *}$.

## $X \in \mathfrak{S} \mathfrak{D}$ if

- $X$ is reflexive (obvious)
- $X^{*}$ is separable
$\left[\Longleftrightarrow\left(B_{X^{* *}}, w^{*}\right)\right.$ is metrizable ]


## $X \notin \mathfrak{S} \mathfrak{D}$ if

- $X$ is weakly sequentially complete and non-reflexive (e.g. $\ell_{1}$ and $L_{1}$ )
- $X=c_{0}(\Gamma)$ for uncountable $\Gamma$

$$
\left(B_{X^{* *}}, w^{*}\right) \text { is Fréchet-Urysohn } \Longrightarrow X \in \mathfrak{S} \mathfrak{D} \Longrightarrow X \not \supset \ell_{1} .
$$

Throughout this talk $X$ is a Banach space.

## Goldstine's theorem

$B_{X}$ is $w^{*}$-dense in $B_{X^{* *}}$. Therefore, $X$ is $w^{*}$-dense in $X^{* *}$.

## Notation

$X \in \mathfrak{S} \mathfrak{D}$ iff $X$ is $w^{*}$-sequentially dense in $X^{* *}$.

## $X \in \mathfrak{S} \mathfrak{D}$ if

- $X$ is reflexive (obvious)
- $X^{*}$ is separable
$\left[\Longleftrightarrow\left(B_{X^{* *}}, w^{*}\right)\right.$ is metrizable ]


## $X \notin \mathfrak{S} \mathfrak{D}$ if

- $X$ is weakly sequentially complete and non-reflexive (e.g. $\ell_{1}$ and $L_{1}$ )
- $X=c_{0}(\Gamma)$ for uncountable $\Gamma$

$$
\left(B_{X^{* *}}, w^{*}\right) \text { is Fréchet-Urysohn } \Longrightarrow X \in \mathfrak{S} \mathfrak{D} \Longrightarrow X \not \supset \ell_{1} .
$$

## Theorem (Odell-Rosenthal, Bourgain-Fremlin-Talagrand)

Suppose $X$ is separable. Then:

$$
\left(B_{X^{* *}}, w^{*}\right) \text { is Fréchet-Urysohn } \Longleftrightarrow X \in \mathfrak{S} \mathfrak{D} \Longleftrightarrow X \not \supset \ell_{1} .
$$

$\left(B_{X^{* *}}, w^{*}\right)$ is Fréchet-Urysohn $\Longrightarrow X \in \mathfrak{S D} \Longrightarrow X \not \supset \ell_{1}$





Theorem (Deville-Godefroy, Orihuela)

$$
\left(B_{X^{* *}}, w^{*}\right) \text { is Corson } \Longleftrightarrow X \in \mathfrak{S D} \text { and } X \text { is Asplund. }
$$



Theorem (Deville-Godefroy, Orihuela)
$\left(B_{X^{*+}}, w^{*}\right)$ is Corson $\Longleftrightarrow X \in \mathfrak{G D}$ and $X$ is Asplund.

A Banach lattice $X$ is Asplund if and only if $X \not \supset \ell_{1}$.


## Theorem (Deville-Godefroy, Orihuela)

$$
\left(B_{X^{* *}}, w^{*}\right) \text { is Corson } \Longleftrightarrow X \in \mathfrak{S} \mathfrak{D} \text { and } X \text { is Asplund. }
$$

A Banach lattice $X$ is Asplund if and only if $X \not \supset \ell_{1}$.

## Corollary

Suppose $X$ is a Banach lattice. Then $\left(B_{X^{* *}}, w^{*}\right)$ is Corson $\Longleftrightarrow X \in \mathfrak{S} \mathfrak{D}$.


## Theorem (Deville-Godefroy, Orihuela)

$$
\left(B_{X^{* *}}, w^{*}\right) \text { is Corson } \Longleftrightarrow X \in \mathfrak{S} \mathfrak{D} \text { and } X \text { is Asplund. }
$$

A Banach lattice $X$ is Asplund if and only if $X \not \supset \ell_{1}$.

## Corollary

Suppose $X$ is a Banach lattice. Then $\left(B_{X^{* *}}, w^{*}\right)$ is Corson $\Longleftrightarrow X \in \mathfrak{S} \mathfrak{D}$.

## Question

$$
X \in \mathfrak{S} \mathfrak{D} \Longrightarrow\left(B_{X^{* *}}, w^{*}\right) \text { is Fréchet-Urysohn ??? }
$$

"Vague" question
Which topological properties does $\left(B_{X^{*}}, w^{*}\right)$ enjoy whenever $X \in \mathfrak{G} \mathfrak{D}$ ???
"Vague" question
Which topological properties does $\left(B_{X^{*}}, w^{*}\right)$ enjoy whenever $X \in \mathfrak{S} \mathfrak{D}$ ???
Given a set $A \subset X^{*}$, we write

$$
S_{1}(A):=\left\{x^{*} \in X^{*}: \exists\left(x_{n}^{*}\right) \subset A \text { such that } w^{*}-\lim _{n \rightarrow \infty} x_{n}^{*}=x^{*}\right\} .
$$

"Vague" question
Which topological properties does ( $B_{X^{*}}, w^{*}$ ) enjoy whenever $X \in \mathfrak{S D}$ ???
Given a set $A \subset X^{*}$, we write

$$
S_{1}(A):=\left\{x^{*} \in X^{*}: \exists\left(x_{n}^{*}\right) \subset A \text { such that } w^{*}-\lim _{n \rightarrow \infty} x_{n}^{*}=x^{*}\right\} .
$$

## Definition

We say that $\left(B_{X^{*}}, w^{*}\right)$ is
(1) Efremov iff $S_{1}(C)=\bar{C}^{w^{*}}$ for every convex set $C \subset B_{X^{*}}$;
"Vague" question
Which topological properties does $\left(B_{X^{*}}, w^{*}\right)$ enjoy whenever $X \in \mathfrak{S D}$ ???
Given a set $A \subset X^{*}$, we write

$$
S_{1}(A):=\left\{x^{*} \in X^{*}: \exists\left(x_{n}^{*}\right) \subset A \text { such that } w^{*}-\lim _{n \rightarrow \infty} x_{n}^{*}=x^{*}\right\} .
$$

## Definition

We say that $\left(B_{X^{*}}, w^{*}\right)$ is
(1) Efremov iff $S_{1}(C)=\bar{C}^{w^{*}}$ for every convex set $C \subset B_{X^{*}}$;
(2) convexly sequential iff for every convex set $C \subset B_{X}$ * we have

$$
S_{1}(C)=C \quad \Longrightarrow \quad C \text { is } w^{*} \text {-closed; }
$$

"Vague" question
Which topological properties does ( $B_{X^{*}}, w^{*}$ ) enjoy whenever $X \in \mathfrak{S D}$ ???
Given a set $A \subset X^{*}$, we write

$$
S_{1}(A):=\left\{x^{*} \in X^{*}: \exists\left(x_{n}^{*}\right) \subset A \text { such that } w^{*}-\lim _{n \rightarrow \infty} x_{n}^{*}=x^{*}\right\} .
$$

## Definition

We say that $\left(B_{X^{*}}, w^{*}\right)$ is
(1) Efremov iff $S_{1}(C)=\bar{C}^{w^{*}}$ for every convex set $C \subset B_{X^{*}}$;
(2) convexly sequential iff for every convex set $C \subset B_{X}$. we have

$$
S_{1}(C)=C \quad \Longrightarrow \quad C \text { is } w^{*} \text {-closed; }
$$


"Vague" question
Which topological properties does ( $B_{X^{*}}, w^{*}$ ) enjoy whenever $X \in \mathfrak{S D}$ ???
Given a set $A \subset X^{*}$, we write

$$
S_{1}(A):=\left\{x^{*} \in X^{*}: \exists\left(x_{n}^{*}\right) \subset A \text { such that } w^{*}-\lim _{n \rightarrow \infty} x_{n}^{*}=x^{*}\right\} .
$$

## Definition

We say that $\left(B_{X^{*}}, w^{*}\right)$ is
(1) Efremov iff $S_{1}(C)=\bar{C}^{w^{*}}$ for every convex set $C \subset B_{X^{*}}$;
(2) convexly sequential iff for every convex set $C \subset B_{X}$ * we have

$$
S_{1}(C)=C \quad \Longrightarrow \quad C \text { is } w^{*} \text {-closed; }
$$



## "Vague" question

Which topological properties does $\left(B_{X^{*}}, w^{*}\right)$ enjoy whenever $X \in \mathfrak{S} \mathfrak{D}$ ???
Given a set $A \subset X^{*}$, we write

$$
S_{1}(A):=\left\{x^{*} \in X^{*}: \exists\left(x_{n}^{*}\right) \subset A \text { such that } w^{*}-\lim _{n \rightarrow \infty} x_{n}^{*}=x^{*}\right\}
$$

## Definition

We say that $\left(B_{X^{*}}, w^{*}\right)$ is
(1) Efremov iff $S_{1}(C)=\bar{C}^{w^{*}}$ for every convex set $C \subset B_{X^{*}}$;
(2) convexly sequential iff for every convex set $C \subset B_{X^{*}}$ we have

$$
S_{1}(C)=C \quad \Longrightarrow \quad C \text { is } w^{*} \text {-closed; }
$$

(3) convex block compact iff every sequence in $B_{X^{*}}$ admits a $w^{*}$-convergent convex block subsequence.


## "Vague" question

Which topological properties does $\left(B_{X^{*}}, w^{*}\right)$ enjoy whenever $X \in \mathfrak{S} \mathfrak{D}$ ???
Given a set $A \subset X^{*}$, we write

$$
S_{1}(A):=\left\{x^{*} \in X^{*}: \exists\left(x_{n}^{*}\right) \subset A \text { such that } w^{*}-\lim _{n \rightarrow \infty} x_{n}^{*}=x^{*}\right\}
$$

## Definition

We say that $\left(B_{X^{*}}, w^{*}\right)$ is
(1) Efremov iff $S_{1}(C)=\bar{C}^{w^{*}}$ for every convex set $C \subset B_{X^{*}}$;
(2) convexly sequential iff for every convex set $C \subset B_{X^{*}}$ we have

$$
S_{1}(C)=C \quad \Longrightarrow \quad C \text { is } w^{*} \text {-closed; }
$$

(3) convex block compact iff every sequence in $B_{X^{*}}$ admits a $w^{*}$-convergent convex block subsequence.





## Example

Let $X=J L_{2}(\mathscr{F})$ be the Johnson-Lindenstrauss space associated to a MAD family $\mathscr{F}$. Then $X \in \mathfrak{S D}$


## Example

Let $X=J L_{2}(\mathscr{F})$ be the Johnson-Lindenstrauss space associated to a MAD family $\mathscr{F}$. Then $X \in \mathfrak{S} \mathfrak{D}$ and $\left(B_{X^{*}}, w^{*}\right)$ is not Fréchet-Urysohn.


## Example

Let $X=J L_{2}(\mathscr{F})$ be the Johnson-Lindenstrauss space associated to a MAD family $\mathscr{F}$. Then $X \in \mathfrak{S D}$ and $\left(B_{X^{*}}, w^{*}\right)$ is not Fréchet-Urysohn. Moreover:

- $\left(B_{X^{*}}, w^{*}\right)$ is sequential (Martínez-Cervantes);



## Example

Let $X=J L_{2}(\mathscr{F})$ be the Johnson-Lindenstrauss space associated to a MAD family $\mathscr{F}$. Then $X \in \mathfrak{S D}$ and ( $B_{X^{*}}, w^{*}$ ) is not Fréchet-Urysohn. Moreover:

- ( $B_{X^{*}}, w^{*}$ ) is sequential (Martínez-Cervantes);
- Under CH , there exist MAD families $\mathscr{F}$ for which $\left(B_{X^{*}}, w^{*}\right)$ is/isn't Efremov (Avilés, Martínez-Cervantes, R.).



## Example

Let $X=J L_{2}(\mathscr{F})$ be the Johnson-Lindenstrauss space associated to a MAD family $\mathscr{F}$. Then $X \in \mathfrak{S D}$ and ( $B_{X^{*}}, w^{*}$ ) is not Fréchet-Urysohn. Moreover:

- ( $B_{X^{*}}, w^{*}$ ) is sequential (Martínez-Cervantes);
- Under CH , there exist MAD families $\mathscr{F}$ for which $\left(B_{X^{*}}, w^{*}\right)$ is/isn't Efremov (Avilés, Martínez-Cervantes, R.).


## Theorem

If $X \in \mathfrak{S D}$, then $\left(B_{X^{*}}, w^{*}\right)$ has countable tightness [Hernández-Rubio]


## Example

Let $X=J L_{2}(\mathscr{F})$ be the Johnson-Lindenstrauss space associated to a MAD family $\mathscr{F}$. Then $X \in \mathfrak{S D}$ and ( $B_{X^{*}}, w^{*}$ ) is not Fréchet-Urysohn. Moreover:

- ( $B_{X^{*}}, w^{*}$ ) is sequential (Martínez-Cervantes);
- Under CH , there exist MAD families $\mathscr{F}$ for which $\left(B_{X^{*}}, w^{*}\right)$ is/isn't Efremov (Avilés, Martínez-Cervantes, R.).


## Theorem

If $X \in \mathfrak{S D}$, then $\left(B_{X^{*}}, w^{*}\right)$ has countable tightness [Hernández-Rubio] and is convexly sequential [Avilés, Martínez-Cervantes, R.].


## Example

Let $X=J L_{2}(\mathscr{F})$ be the Johnson-Lindenstrauss space associated to a MAD family $\mathscr{F}$. Then $X \in \mathfrak{S D}$ and ( $B_{X^{*}}, w^{*}$ ) is not Fréchet-Urysohn. Moreover:

- ( $B_{X^{*}}, w^{*}$ ) is sequential (Martínez-Cervantes);
- Under CH , there exist MAD families $\mathscr{F}$ for which $\left(B_{X^{*}}, w^{*}\right)$ is/isn't Efremov (Avilés, Martínez-Cervantes, R.).


## Theorem

If $X \in \mathfrak{S D}$, then $\left(B_{X^{*}}, w^{*}\right)$ has countable tightness [Hernández-Rubio] and is convexly sequential [Avilés, Martínez-Cervantes, R.].

## Question

$$
X \in \mathfrak{S} \mathfrak{D} \Longrightarrow\left(B_{X^{*}}, w^{*}\right) \text { is sequential or sequentially compact ??? }
$$

$X \in \mathfrak{S D} \quad \Longrightarrow \quad\left(B_{X^{*}}, w^{*}\right)$ is convexly sequential.

## Ingredients:

$$
X \in \mathfrak{S} \mathfrak{D} \quad \Longrightarrow \quad\left(B_{X^{*}}, w^{*}\right) \text { is convexly sequential. }
$$

## Ingredients:

$$
\begin{aligned}
& \text { Theorem (Bourgain) } \\
& \begin{aligned}
X \not \supset \ell_{1} \Longrightarrow & \left(B_{X^{*},}, w^{*}\right) \\
& \text { is convex block compact. }
\end{aligned}
\end{aligned}
$$

$$
X \in \mathfrak{S D} \quad \Longrightarrow \quad\left(B_{X^{*}}, w^{*}\right) \text { is convexly sequential. }
$$

## Ingredients:

> Theorem (Bourgain) $\begin{aligned} X \not \supset \ell_{1} \Longrightarrow & \left(B_{X^{*}}, w^{*}\right) \\ & \text { is convex block compact. }\end{aligned}$

## Definition

Let $K \subset X^{*}$ be convex $w^{*}$-compact. A set $B \subset K$ is a boundary of $K$ iff

$$
\begin{aligned}
& \forall x \in X \quad \exists x_{0}^{*} \in B \text { such that } \\
& x_{0}^{*}(x)=\sup \left\{x^{*}(x): x^{*} \in K\right\} .
\end{aligned}
$$

$$
X \in \mathfrak{S D} \quad \Longrightarrow \quad\left(B_{X^{*}}, w^{*}\right) \text { is convexly sequential. }
$$

## Ingredients:

```
Theorem (Bourgain)
\(X \not \supset \ell_{1} \Longrightarrow\left(B_{X^{*}}, w^{*}\right)\)
    is convex block compact.
```


## Definition

Let $K \subset X^{*}$ be convex $w^{*}$-compact. A set $B \subset K$ is a boundary of $K$ iff

$$
\begin{aligned}
& \forall x \in X \quad \exists x_{0}^{*} \in B \quad \text { such that } \\
& x_{0}^{*}(x)=\sup \left\{x^{*}(x): x^{*} \in K\right\}
\end{aligned}
$$

## Theorem (Efremov, Godefroy)

$$
x \in \mathfrak{S} \mathfrak{D} \Longrightarrow K=\overline{\operatorname{conv}(B)}\|\cdot\|
$$

$$
\text { for all } K \text { and } B \text { as above. }
$$

$$
X \in \mathfrak{S} \mathfrak{D} \quad \Longrightarrow \quad\left(B_{X^{*}}, w^{*}\right) \text { is convexly sequential. }
$$

## Ingredients:

## Theorem (Bourgain)

```
X\not\supset\mp@subsup{\ell}{1}{}\Longrightarrow(B\mp@subsup{X}{}{*},\mp@subsup{w}{}{*})
    is convex block compact.
```


## Definition

Let $K \subset X^{*}$ be convex $w^{*}$-compact. A set $B \subset K$ is a boundary of $K$ iff

$$
\begin{aligned}
& \forall x \in X \quad \exists x_{0}^{*} \in B \quad \text { such that } \\
& x_{0}^{*}(x)=\sup \left\{x^{*}(x): x^{*} \in K\right\}
\end{aligned}
$$

Theorem (Efremov, Godefroy)

$$
\begin{aligned}
X \in \mathfrak{S} \mathfrak{D} \Longrightarrow & K=\overline{\operatorname{conv(B)}}\|\cdot\| \\
& \text { for all } K \text { and } B \text { as above. }
\end{aligned}
$$

$$
X \in \mathfrak{S D} \quad \Longrightarrow \quad\left(B_{X^{*}}, w^{*}\right) \text { is convexly sequential. }
$$

## Ingredients:

## Theorem (Bourgain)

$$
\begin{aligned}
X \not \supset \ell_{1} \Longrightarrow & \left(B_{X^{*}}, w^{*}\right) \\
& \text { is convex block compact. }
\end{aligned}
$$

## Definition

Let $K \subset X^{*}$ be convex $w^{*}$-compact. A set $B \subset K$ is a boundary of $K$ iff

$$
\begin{aligned}
& \forall x \in X \quad \exists x_{0}^{*} \in B \quad \text { such that } \\
& x_{0}^{*}(x)=\sup \left\{x^{*}(x): x^{*} \in K\right\} .
\end{aligned}
$$

Theorem (Efremov, Godefroy)

$$
\begin{aligned}
X \in \mathfrak{S D} \Longrightarrow & K=\overline{\operatorname{conv(B)}}\|\cdot\| \\
& \text { for all } K \text { and } B \text { as above. }
\end{aligned}
$$

## Sketch of proof of the implication:

Take $C \subset B_{X *}$ convex.

Claim: $\bar{C}^{w^{*}}=S_{1}\left(S_{1}(C)\right)$.

## Why?

- $S_{1}(C)$ is a boundary of $\bar{C}^{w^{*}}$.

$$
X \in \mathfrak{S D} \quad \Longrightarrow \quad\left(B_{X^{*}}, w^{*}\right) \text { is convexly sequential. }
$$

## Ingredients:

## Theorem (Bourgain)

$$
\begin{aligned}
X \not \supset \ell_{1} \Longrightarrow & \left(B_{X^{*}}, w^{*}\right) \\
& \text { is convex block compact. }
\end{aligned}
$$

## Definition

Let $K \subset X^{*}$ be convex $w^{*}$-compact. A set $B \subset K$ is a boundary of $K$ iff

$$
\begin{aligned}
& \forall x \in X \quad \exists x_{0}^{*} \in B \quad \text { such that } \\
& x_{0}^{*}(x)=\sup \left\{x^{*}(x): x^{*} \in K\right\}
\end{aligned}
$$

## Sketch of proof of the

 implication:Take $C \subset B_{X *}$ convex.

Claim: $\bar{C}^{w^{*}}=S_{1}\left(S_{1}(C)\right)$.

## Why?

- $S_{1}(C)$ is a boundary of $\bar{C}^{w^{*}}$.
- $\bar{C}^{w^{*}}={\overline{S_{1}(C)}}^{\|\cdot\|} \subset S_{1}\left(S_{1}(C)\right)$.

Theorem (Efremov, Godefroy)

$$
\begin{aligned}
X \in \mathfrak{S D} \Longrightarrow & K=\overline{\operatorname{conv(B)}}\|\cdot\| \\
& \text { for all } K \text { and } B \text { as above. }
\end{aligned}
$$

