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José Rodrı́guez
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Abstract
We show that McShane and Pettis integrability coincide for functions f : [0, 1] → L1(µ), where µ is any
finite measure. On the other hand, assuming the Continuum Hypothesis, we prove that there exist a weakly
Lindelöf determined Banach space X, a scalarly null (hence Pettis integrable) function h : [0, 1] → X and
an absolutely summing operator u : X → Y (where Y is another Banach space) such that the composition
u ◦ h : [0, 1] → Y is not Bochner integrable; in particular, h is not McShane integrable.

1 Introduction

The Riemann integral of a function f : [0, 1] → R is obtained as the limit of sums of the form
∑n

i=1(bi − bi−1)f (ti)

when max1≤i≤n(bi − bi−1) → 0, where 0 = b0 ≤ t1 ≤ b1 ≤ · · · ≤ bn−1 ≤ tn ≤ bn = 1. Kurzweil and Henstock modified
this limit process to obtain a notion of integral, usually called Kurzweil-Henstock integral , which extends Lebesgue’s
one, see e.g. [12]. Roughly, in this integration theory one requires that the integral is well approximated by means of
the “Riemann sums” associated to all tagged partitions such that bi−bi−1 ≤ δ(ti) for all i, where δ is a certain positive
function. The McShane integral , introduced in [14], is obtained from the Kurzweil-Henstock integral by dropping the
restriction “ti ∈ [bi−1, bi]” and considering those tagged partitions such that [bi−1, bi] ⊂ [ti − δ(ti), ti + δ(ti)] for all i.
Curiously, this variant allows to recover the Lebesgue integral:

Theorem (McShane) . A function f : [0, 1] → R is Lebesgue integrable if and only if there is α ∈ R with the
following property: for each ε > 0 there is a function δ : [0, 1] → R+ such that

∣∣∣ n∑
i=1

(bi − bi−1)f (ti)− α
∣∣∣ ≤ ε

for every partition 0 = b0 < b1 < · · · < bn = 1 and every choice of points t1, . . . , tn ∈ [0, 1] such that
[bi−1, bi] ⊂ [ti − δ(ti), ti + δ(ti)] for all i. In this case, α =

∫ 1

0 f (t) dt.

Several methods of integration for functions taking values in a Banach space (X, ‖ · ‖) have been studied over the
years. Among these methods, those developed by Bochner [5] and Pettis [15, 19] have been the most popular ones.
Recall that a function f : [0, 1] → X is called:

• Bochner integrable if it is strongly measurable (i.e. there is a sequence of simple functions fn : [0, 1] → X

converging to f a.e.) and
∫ 1

0 ‖f (t)‖ dt < ∞.

• Pettis integrable if the composition x∗ ◦ f is integrable for all x∗ ∈ X∗ and for each measurable set E ⊂ [0, 1] there
is xE ∈ X (the Pettis integral of f over E) such that

∫
E(x∗ ◦ f )(t) dt = x∗(xE) for all x∗ ∈ X∗.

McShane’s alternative approach to Lebesgue’s integration theory has also been extended to the case of vector-
valued functions, see e.g. [9], [10] and [11].

Definition . A function f : [0, 1] → X is McShane integrable, with McShane integral x ∈ X, if for each ε > 0 there
is a function δ : [0, 1] → R+ such that ∥∥∥ n∑

i=1

(bi − bi−1)f (ti)− x
∥∥∥ ≤ ε

for every partition 0 = b0 < b1 < · · · < bn = 1 and every choice of points t1, . . . , tn ∈ [0, 1] such that
[bi−1, bi] ⊂ [ti − δ(ti), ti + δ(ti)] for all i.

It is known that for a function f : [0, 1] → X the following implications hold:

Bochner integrable ⇒ McShane integrable ⇒ Pettis integrable

and the corresponding “integrals” coincide, while no reverse arrow is true in general, see [10] and [11]. However,
McShane and Pettis integrability are always equivalent for functions taking values in separable Banach spaces,
see [10] and [11]. The point here is that a function f : [0, 1] → X is strongly measurable if and only if it is scalarly
measurable (i.e. x∗ ◦ f is measurable for all x∗ ∈ X∗) and there is a null set E ⊂ [0, 1] such that f ([0, 1] \ E) is
separable (Pettis’ measurability theorem).

Recently, Di Piazza and Preiss [3] discussed the equivalence of McShane and Pettis integrability for functions taking
values in certain non-separable Banach spaces. They showed that such equivalence holds for:

• Banach spaces admitting an equivalent uniformly convex norm (for instance, Lp(µ) with 1 < p < ∞ and µ any
finite measure).

• c0(Γ) (where Γ is any non-empty set).

An essential part of their proofs relies, on the one hand, on the existence of a suitable PRI (projectional resolution
of the identity) in those spaces (which are WCG –weakly compactly generated–) and, on the other hand, on the
reduction to the case of scalarly null functions. Recall that f : [0, 1] → X is called scalarly null if for each x∗ ∈ X∗ we
have x∗ ◦ f = 0 a.e. When X is WCG (or, more generally, weakly Lindelöf), for each scalarly measurable function
f : [0, 1] → X there is a strongly measurable one g : [0, 1] → X such that f − g is scalarly null, see [6].

Question (Di Piazza-Preiss) . Suppose X is WCG and let f : [0, 1] → X be a Pettis integrable function. Is f

McShane integrable?

In view of the comments above, an affirmative answer to the following question (attributed to Musial in [3]) within the
setting of WCG spaces would imply that the previous question has affirmative answer too.

Question (Musial) . Let f : [0, 1] → X be a scalarly null function. Is f McShane integrable?

In [3] Musial’s question was answered in the negative, under CH (the Continuum Hypothesis), by means of an
example of a function taking values in `∞([0, 1]) (which is not WCG).

2 McShane and Pettis integrability for L1(µ)-valued functions

Let µ be a finite, non-negative, countably additive measure defined on a σ-algebra. The Banach space L1(µ) is
always WCG, while it may be non-separable. Our main result answers affirmatively to the previous questions for
L1(µ)-valued functions:

Theorem . A function f : [0, 1] → L1(µ) is McShane integrable if and only if it is Pettis integrable.

We next present a brief sketch of the proof in order to give an idea of the techniques involved:

• Let P be the class of all Banach spaces X for which every scalarly null function f : [0, 1] → X is McShane
integrable. Since L1(µ) is WCG, we only have to check that this space belongs to P.

• Given an infinite cardinal κ, we denote by Σκ the product σ-algebra on {0, 1}κ and λκ stands for the usual product
probability on Σκ. Recall that dens(L1(λκ)), the density character of L1(λκ), is exactly κ.

• As a consequence of Maharam’s theorem, L1(µ) is isometrically isomorphic to an `1-sum(⊕
i∈I

Xi

)
1

where I is countable and each Xi is either `1(Γi) (with Γi countable) or L1(λκi
) (with κi an infinite cardinal).

• Since the class P is closed under countable `1-sums and contains all separable Banach spaces, it only remains
to prove that L1(λκ) belongs to P whenever κ is an uncountable cardinal.

• Let i : L2(λκ) → L1(λκ) be the “inclusion” operator. Using that Hilbert spaces belong to P, one can prove that
every L1(λκ)-valued scalarly null function whose range is contained in i(L2(λκ)) is McShane integrable.

• Roughly, the proof finishes by “approximating” L1(λκ)-valued scalarly null functions by i(L2(λκ))-valued ones. This
is the most technical part of the proof and requires the following lemmas.

• A collection {Pα}ω≤α≤κ of bounded linear projections on a Banach space X with dens(X) = κ is called a SPRI
(separable projectional resolution of the identity) if Pω ≡ 0, Pκ is the identity on X and:

– For each ω ≤ α < κ, the subspace (Pα+1 − Pα)(X) is separable.
– Pα ◦ Pβ = Pβ ◦ Pα = Pβ whenever ω ≤ β ≤ α ≤ κ.
– x ∈ span{(Pα+1 − Pα)(x) : ω ≤ α < κ} for every x ∈ X.

• Lemma 1. L1(λκ) admits a SPRI {Pα}ω≤α≤κ such that, for each ω ≤ α < κ, the subspace (Pα+1 − Pα)(L1(λκ)) has
a Schauder basis made up of Σκ-simple functions.

• Lemma 2. Let {Pα}ω≤α≤κ be a SPRI on a WCG Banach space X with dens(X) = κ. Then, for each x∗ ∈ X∗, the
set of all ω ≤ α < κ for which x∗|(Pα+1−Pα)(X) 6≡ 0 is countable.

• Lemma 3. The pointwise limit of a sequence of scalarly null McShane integrable functions is again scalarly null
and McShane integrable.
This lemma is a consequence of “Vitali’s convergence theorem” for the McShane integral, see [9] and [10].

Remark. Our theorem can be seen as an strengthening of the equivalence of McShane and Pettis integrability in
Hilbert spaces, because `2(κ) is isomorphic to a closed subspace of L1(λκ) for any infinite cardinal κ.

3 A scalarly null function which is not McShane integrable

A Banach space X is weakly Lindelöf determined (WLD) if (BX∗, w∗) is a Corson compactum, i.e. it embeds into

Σ(Γ) = {s ∈ [−1, 1]Γ : s(γ) = 0 for all but countably many γ ∈ Γ}

endowed with the product topology, for some set Γ. The class of WLD spaces is strictly bigger than that of WCG
spaces and is made up of weakly Lindelöf spaces. Every non-separable WLD space admits a PRI as well as a
SPRI. In addition, the conclusion of Lemma 2 (and its analogue for a PRI) is still valid within this class of spaces.
For a detailed account on WLD spaces we refer the reader to [7] and [8].

In view of the above, it is also natural to think about the questions of Di Piazza-Preiss and Musial inside this class
of Banach spaces. It turns out that we cannot expect a general result on the coincidence of McShane and Pettis
integrability in WLD spaces. Indeed, we have the following:

Example . Under CH, there exist a WLD Banach space X and a scalarly null function f : [0, 1] → X which is not
McShane integrable.

In this example, the key to distinguish Pettis integrability from McShane integrability has to do with the behavior of
the composition of a vector-valued function with an absolutely summing operator, as we next explain.

Recall that an operator u : X → Y between Banach spaces is absolutely summing if it takes unconditionally con-
vergent series to absolutely convergent ones. As one may expect, absolutely summing operators also “improve” the
integrability properties of vector-valued functions. This topic has been studied by several authors over the years,
see e.g. [2], [4], [13] and [17]. Given an X-valued Pettis integrable function f , the Y -valued composition u ◦ f is
Bochner integrable in many cases (but not always), for instance:

• When f is McShane integrable, see [13, 17].

• When X is a subspace of a weakly Lindelöf C(K) space, see [17].

The latter is the case if X is WLD and (BX∗, w∗) has property (M) (i.e. every Radon probability on it has separable
support). It is known that for a Banach space X the following implications hold:

WCG ⇒ WLD and (BX∗, w∗) has property (M) ⇒ WLD
m

C(BX∗) WLD

and no reverse arrow is true in general. In fact, the statement “every Corson compactum has property (M)” is
undecidable in ZFC (true under Martin’s Axiom and the negation of CH, false under CH). See [1], [7] and [16].

The results in [17] left open the question of whether u ◦ f is Bochner integrable provided that X is WLD or f is
scalarly null or the indefinite Pettis integral of f has norm relatively compact range.

It turns out that this is not true in general, since the composition of the function f given in our example with
certain absolutely summing operator is not Bochner integrable . In particular, this property implies that f is
not McShane integrable. Our example is based on the WLD Banach space whose dual unit ball fails property (M)
constructed, under CH, by Plebanek and Kalenda [16].
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