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Abstract
We study the Birkhoff integral of functions f : Ω −→ X defined on a complete probability space (Ω, Σ, µ)

with values in a Banach space X. We prove that if f is bounded then its Birkhoff integrability is equivalent
to the fact that the set of compositions of f with elements of the dual unit ball Zf = {〈x∗, f〉 : x∗ ∈ BX∗} has
Bourgain property. We characterize the weak Radon-Nikodým property in dual Banach spaces via Birkhoff
integrable Radon-Nikodým derivatives. A non necessarily bounded function f is shown to be Birkhoff inte-
grable if, and only if, Zf is uniformly integrable, has Bourgain property and f is bounded when restricted to
the members of positive measure of some measurable countable partition of Ω. As a consequence it turns
out that the range of the indefinite integral of a Birkhoff integrable function is relatively norm compact. Some
other applications are given.

1 Introduction

From now on (Ω, Σ, µ) is a complete probability space and (X, ‖ · ‖) is a real Banach space. The starting point of
our investigation goes back to the paper by Garrett Birkhoff [1], dated in 1935, in which he studied the integration of
functions f : Ω −→ X. Birkhoff’s idea was to extend, to the setting of Banach-valued functions, “Fréchet’s elegant
interpretation of the Lebesgue integral”, see [2]. Fréchet’s views inspired Birkhoff to give the following definition.

Definition 1 Let f : Ω −→ X be a function. If Γ is a partition of Ω into countably many sets (An) of Σ, the
function f is called summable with respect to Γ if the restriction f |An is bounded whenever µ(An) > 0 and the
set of sums

J(f, Γ) =
{∑

n

f (tn)µ(An) : tn ∈ An

}
is made up of unconditionally convergent series. The function f is said Birkhoff integrable if for every ε > 0

there is a countable partition Γ = (An) of Ω in Σ for which f is summable and ‖ · ‖-diam(J(f, Γ)) < ε. In this
case, the Birkhoff integral (B)

∫
Ω f dµ of f is the only point in the intersection⋂
{co(J(f, Γ)) : f is summable with respect to Γ}.

It has been known for long that

f Bochner integrable =⇒ f Birkhoff integrable =⇒ f Pettis integrable,~w
f Riemann integrable

and none of the reverse implications hold in general, see [1, 10, 11]. If f is Birkhoff integrable then (B)
∫

Ω f dµ =

(Pettis)
∫

Ω f dµ and both integrals are, from now onwards, simply written as
∫

Ω f dµ. When the range space X is
separable, Birkhoff and Pettis integrability are the same, [10].

2 Birkhoff integral for bounded functions

Theorem 1 Let f : Ω −→ X be a bounded function. The following statements are equivalent:

(i) f is Birkhoff integrable;

(ii) for every ε > 0 there is a countable partition Γ = (An) of Ω in Σ such that for each tk, t
′
k ∈ Ak, k ∈ N, we

have ∣∣∣ m∑
k=1

〈x∗, f〉(tk)µ(Ak)−
m∑

k=1

〈x∗, f〉(t′k)µ(Ak)
∣∣∣ < ε

for every m ∈ N and every x∗ ∈ BX∗;

(iii) Zf = {〈x∗, f〉 : x∗ ∈ BX∗} has Bourgain property;

(iv) there is a norming set B ⊂ BX∗ such that Zf,B = {〈x∗, f〉 : x∗ ∈ B} has Bourgain property.

Definition 2 ([5, 8, 12]) We say that a family F ⊂ RΩ has Bourgain property if for every ε > 0 and every A ∈ Σ with
µ(A) > 0 there are B1, . . . , Bn ⊂ A, Bi ∈ Σ, with µ(Bi) > 0 such that for every f ∈ F

inf
1≤i≤n

| · |-diam(f (Bi)) < ε.

If F ⊂ RΩ has Bourgain property, then F is stable, see [13, 9-5-4]. While speaking about a bounded function
f : Ω −→ X, its Bochner integrability is equivalent to strong measurability; a deep result by Talagrand, [13, Theorem
6-1-2], establishes that f is Pettis integrable when Zf = {〈x∗, f〉 : x∗ ∈ BX∗} is stable. Along this line, our Theorem 1
says somehow that

Bourgain property is to Birkhoff integrability what strong measurability is to Bochner integrability.

Riddle and Saab proved in [12, Theorem 13] that any bounded function f : Ω −→ X∗ is Pettis integrable whenever
{〈f, x〉 : x ∈ BX} has Bourgain property. The particular case of Theorem 1 that is isolated below improves Riddle
and Saab’s result.

Corollary 2 Let f : Ω −→ X∗ be a bounded function. Then f is Birkhoff integrable if, and only if, {〈f, x〉 : x ∈ BX} ⊂
RΩ has Bourgain property.

3 The weak Radon-Nikodým property in dual Banach spaces
via Birkhoff integrable derivatives

Theorem 3 Let X be a Banach space. The following statements are equivalent:

(i) X∗ has the weak Radon-Nikodým property;

(ii) X does not contain a copy of `1;

(iii) for every complete probability space (Ω, Σ, µ) and every µ-continuous countably additive vector measure
ν : Σ −→ X∗ of σ-finite variation there is a Birkhoff integrable function f : Ω −→ X∗ such that

ν(E) =

∫
E

f dµ

for every E ∈ Σ;

(iv) for every complete probability space (Ω, Σ, µ) and every bounded operator T : L1(µ) −→ X∗ there is a
bounded Birkhoff integrable function f : Ω −→ X∗ such that

〈x∗∗, T (g)〉 =

∫
Ω

g〈x∗∗, f〉 dµ

for every x∗∗ ∈ X∗∗ and every g ∈ L1(µ).

Recall that a dual Banach space X∗ is said to have the weak Radon-Nikodým property (WRNP, for short), [15,
Definition 5.8], if for every complete probability space (Ω, Σ, µ) and every µ-continuous countably additive vector
measure ν : Σ −→ X∗ of σ-finite variation there is a Pettis integrable function f : Ω −→ X∗ such that ν(E) =

∫
E f dµ

for every E ∈ Σ. Efforts of several mathematicians led to the well-known characterization of Banach spaces X

without copies of `1 as those for which X∗ has the WRNP, see [8, 13, 15] and the references therein. Our Theorem 3
states that

for dual spaces X∗ the presence of WRNP entitle us to change Pettis integrable Radon-Nikodým derivatives
to Birkhoff integrable Radon-Nikodým derivatives.

Theorem 4 Let f : Ω −→ X be a function. The following conditions are equivalent:

(i) f is Birkhoff integrable;

(ii) Zf is uniformly integrable, Zf has Bourgain property and there is a countable partition Γ = (An) of Ω in Σ such
that f (An) is bounded whenever µ(An) > 0.

Fremlin proved in [3] that for every Birkhoff integrable function f : Ω −→ X the set Zf is stable. Since Bourgain
property is more restrictive than stability, [13, 9-5-4], Fremlin’s result is a weaker form of Theorem 4.

Corollary 5 If f : Ω −→ X is Birkhoff integrable, then the range of the indefinite integral {
∫

A f dµ : A ∈ Σ} is relatively
norm compact.

A consequence of Theorem 3 is that if X∗ has the WRNP, then every Pettis integrable function f : Ω −→ X∗ is
scalarly equivalent to a Birkhoff integrable function.

Theorem 6 Let f : Ω −→ X∗ be a function such that Zf is uniformly integrable and has Bourgain property. Then
there is a Birkhoff integrable function g : Ω −→ X∗ which is scalarly equivalent to f .

4 Relationship with other recently studied integrals
of Banach-valued functions

We end up this poster by paying a visit to the Riemann-Lebesgue integrals recently introduced in [6, 7]. Given a
function f : Ω −→ X, a countable partition Γ = (An) of Ω in Σ and a choice T = (tn) in Γ (i.e. tn ∈ An for every n), we
consider the formal series

S(f, Γ, T ) :=
∑

n

f (tn)µ(An).

As usual, we say that another partition Γ′ of Ω, into countable elements of Σ, is finer than Γ when each element of Γ′

is contained in some element of Γ.

Proposition 7 below shows that for a function f : Ω −→ X its Birkhoff integral (upon its existence) can be realized
as the limit refining partitions of the net {S(f, Γ, T )}Γ. We mention that functions f : Ω −→ X satisfying (iii) in
Proposition 7 are called unconditionally Riemann-Lebesgue integrable functions in [7].

Proposition 7 Let f : Ω −→ X be a function. The following conditions are equivalent:

(i) f is Birkhoff integrable;

(ii) there exists x ∈ X with the following property: for every ε > 0 there is a countable partition Γ of Ω in Σ

such that f is summable with respect to Γ and ‖S(f, Γ, T )− x‖ < ε for every choice T in Γ;

(iii) there exists y ∈ X with the following property: for every ε > 0 there is a countable partition Γ of Ω in Σ

such that f is summable with respect to each countable partition Γ′ finer than Γ and ‖S(f, Γ′, T ′) − y‖ < ε

for every choice T ′ in Γ′.

In this case, x = y =
∫

Ω f dµ.

It turns out that

unconditional Riemann-Lebesgue integrability = Birkhoff integrability.

Functions f : Ω → X for which Zf is stable and such that ‖f‖ has a µ-integrable majorant have caught the attention
of several authors over the years, see [4, 9, 13, 14] amongst others. These functions are called by Fremlin Tala-
grand integrable functions [4] and they are characterized by Talagrand as those functions satisfying the law of
large numbers, see [14]. As the last application of our techniques here we characterize those functions f for which
Zf has Bourgain property and ‖f‖ has a µ-integrable majorant.

Proposition 8 Let f : Ω −→ X be a function. The following conditions are equivalent:

(i) f is Riemann-Lebesgue integrable;

(ii) Zf has Bourgain property and there is g ∈ L1(µ) such that ‖f‖ ≤ g µ-almost everywhere.

Recall that a function f : Ω −→ X is said to be Riemann-Lebesgue integrable , [6, 7], if there exists x ∈ X with the
following property: for every ε > 0 there is a countable partition Γ of Ω in Σ such that for every countable partition Γ′

finer than Γ and every choice T ′ in Γ′, the series S(f, Γ′, T ′) is absolutely convergent and ‖S(f, Γ′, T ′)−x‖ < ε. Every
Riemann-Lebesgue integrable function is Birkhoff integrable after Proposition 7.
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