Abstract

We study the Birkhoff integral of functions $f: \Omega \longrightarrow X$ defined on a complete probability space (Ω, Σ, μ) with values in a Banach space X. We prove that if f is bounded then its Birkhoff integrability is equivalent to the fact that the set of compositions of f with elements of the dual unit ball $Z_f = \{\langle x^*, f \rangle : x^* \in B_{X^*}\}$ has Bourgain property. We characterize the weak Radon-Nikodým property in dual Banach spaces via Birkhoff integrable Radon-Nikodým derivatives. A non necessarily bounded function f is shown to be Birkhoff integrable if, and only if, Z_f is uniformly integrable, has Bourgain property and f is bounded when restricted to the members of positive measure of some measurable countable partition of Ω . As a consequence it turns out that the range of the indefinite integral of a Birkhoff integrable function is relatively norm compact. Some other applications are given.

Introduction

From now on (Ω, Σ, μ) is a complete probability space and $(X, \|\cdot\|)$ is a real Banach space. The starting point of our investigation goes back to the paper by Garrett Birkhoff [1], dated in 1935, in which he studied the integration of functions $f: \Omega \longrightarrow X$. Birkhoff's idea was to extend, to the setting of Banach-valued functions, "Fréchet's elegant interpretation of the Lebesgue integral", see [2]. Fréchet's views inspired Birkhoff to give the following definition.

Definition 1 Let $f : \Omega \longrightarrow X$ be a function. If Γ is a partition of Ω into countably many sets (A_n) of Σ , the function f is called summable with respect to Γ if the restriction $f|_{A_n}$ is bounded whenever $\mu(A_n) > 0$ and the set of sums

$$J(f,\Gamma) = \left\{ \sum_{n \in I} f(t_n) \mu(A_n) : t_n \in A_n \right\}$$

is made up of unconditionally convergent series. The function f is said **Birkhoff integrable** if for every $\varepsilon > 0$ there is a countable partition $\Gamma = (A_n)$ of Ω in Σ for which f is summable and $\|\cdot\|$ -diam $(J(f, \Gamma)) < \varepsilon$. In this case, the **Birkhoff integral** (B) $\int_{\Omega} f d\mu$ of f is the only point in the intersection

 $\bigcap \{ \overline{\mathbf{co}(J(f,\Gamma))} : f \text{ is summable with respect to } \Gamma \}.$

It has been known for long that

f **Bochner** integrable

f **Birkhoff** integrable \implies f **Pettis** integrable, \implies f **Riemann** integrable

and none of the reverse implications hold in general, see [1, 10, 11]. If f is Birkhoff integrable then $(B) \int_{\Omega} f d\mu = 1$ (Pettis) $\int_{\Omega} f d\mu$ and both integrals are, from now onwards, simply written as $\int_{\Omega} f d\mu$. When the range space X is separable, Birkhoff and Pettis integrability are the same, [10].

2 Birkhoff integral for bounded functions

Theorem 1 Let $f : \Omega \longrightarrow X$ be a bounded function. The following statements are equivalent: (*i*) *f* is Birkhoff integrable;

(ii) for every $\varepsilon > 0$ there is a countable partition $\Gamma = (A_n)$ of Ω in Σ such that for each $t_k, t'_k \in A_k$, $k \in \mathbb{N}$, we have

$$\left|\sum_{k=1}^{m} \langle x^*, f \rangle(t_k) \mu(A_k) - \sum_{k=1}^{m} \langle x^*, f \rangle(t'_k) \mu(A_k)\right| < \varepsilon$$

for every $m \in \mathbb{N}$ and every $x^* \in B_{X^*}$;

(iii) $Z_f = \{ \langle x^*, f \rangle : x^* \in B_{X^*} \}$ has Bourgain property;

(iv) there is a norming set $B \subset B_{X^*}$ such that $Z_{f,B} = \{\langle x^*, f \rangle : x^* \in B\}$ has Bourgain property.

Definition 2 ([5, 8, 12]) We say that a family $\mathcal{F} \subset \mathbb{R}^{\Omega}$ has **Bourgain property** if for every $\varepsilon > 0$ and every $A \in \Sigma$ with $\mu(A) > 0$ there are $B_1, \ldots, B_n \subset A$, $B_i \in \Sigma$, with $\mu(B_i) > 0$ such that for every $f \in \mathcal{F}$

 $\inf_{1 \le i \le n} |\cdot| - \operatorname{diam}(f(B_i)) < \varepsilon.$

If $\mathcal{F} \subset \mathbb{R}^{\Omega}$ has Bourgain property, then \mathcal{F} is stable, see [13, 9-5-4]. While speaking about a bounded function $f: \Omega \longrightarrow X$, its Bochner integrability is equivalent to strong measurability; a deep result by Talagrand, [13, Theorem 6-1-2], establishes that f is Pettis integrable when $Z_f = \{\langle x^*, f \rangle : x^* \in B_{X^*}\}$ is stable. Along this line, our Theorem 1 says somehow that

Birkhoff integral and the property of Bourgain

B. Cascales (beca@um.es), J. Rodriguez (joserr@um.es)

Departamento de Matemáticas, Universidad de Murcia, 30.100 Espinardo (Murcia), Spain

Bourgain property is to Birkhoff integrability what strong measurability is to Bochner integrability.

Riddle and Saab proved in [12, Theorem 13] that any bounded function $f: \Omega \longrightarrow X^*$ is Pettis integrable whenever $\{\langle f, x \rangle : x \in B_X\}$ has Bourgain property. The particular case of Theorem 1 that is isolated below improves Riddle and Saab's result.

Corollary 2 Let $f: \Omega \longrightarrow X^*$ be a bounded function. Then f is Birkhoff integrable if, and only if, $\{\langle f, x \rangle : x \in B_X\} \subset I$ \mathbb{R}^{Ω} has Bourgain property.

3 The weak Radon-Nikodým property in dual Banach spaces via Birkhoff integrable derivatives

Theorem 3 Let X be a Banach space. The following statements are equivalent: (i) X^* has the weak Radon-Nikodým property;

(ii) X does not contain a copy of ℓ^1 ;

(iii) for every complete probability space (Ω, Σ, μ) and every μ -continuous countably additive vector measure $\nu: \Sigma \longrightarrow X^*$ of σ -finite variation there is a Birkhoff integrable function $f: \Omega \longrightarrow X^*$ such that

 $\nu(E) = \int_{E} f \, d\mu$

for every $E \in \Sigma$;

(iv) for every complete probability space (Ω, Σ, μ) and every bounded operator $T : L^1(\mu) \longrightarrow X^*$ there is a bounded Birkhoff integrable function $f: \Omega \longrightarrow X^*$ such that

 $\langle x^{**}, T(g) \rangle = \int_{\Omega} g \langle x^{**}, f \rangle \ d\mu$

for every $x^{**} \in X^{**}$ and every $g \in L^1(\mu)$.

Recall that a dual Banach space X^* is said to have the weak Radon-Nikodým property (WRNP, for short), [15, Definition 5.8], if for every complete probability space (Ω, Σ, μ) and every μ -continuous countably additive vector measure $\nu: \Sigma \longrightarrow X^*$ of σ -finite variation there is a Pettis integrable function $f: \Omega \longrightarrow X^*$ such that $\nu(E) = \int_F f d\mu$ for every $E \in \Sigma$. Efforts of several mathematicians led to the well-known characterization of Banach spaces X without copies of ℓ^1 as those for which X^{*} has the WRNP, see [8, 13, 15] and the references therein. Our Theorem 3 states that

for dual spaces X^* the presence of WRNP entitle us to change Pettis integrable Radon-Nikodým derivatives to Birkhoff integrable Radon-Nikodým derivatives.

Theorem 4 Let $f : \Omega \longrightarrow X$ be a function. The following conditions are equivalent: (*i*) *f* is Birkhoff integrable;

(ii) Z_f is uniformly integrable, Z_f has Bourgain property and there is a countable partition $\Gamma = (A_n)$ of Ω in Σ such that $f(A_n)$ is bounded whenever $\mu(A_n) > 0$.

Fremlin proved in [3] that for every Birkhoff integrable function $f: \Omega \longrightarrow X$ the set Z_f is stable. Since Bourgain property is more restrictive than stability, [13, 9-5-4], Fremlin's result is a weaker form of Theorem 4. **Corollary 5** If $f: \Omega \longrightarrow X$ is Birkhoff integrable, then the range of the indefinite integral $\{\int_A f d\mu : A \in \Sigma\}$ is relatively norm compact.

A consequence of Theorem 3 is that if X^* has the WRNP, then every Pettis integrable function $f: \Omega \longrightarrow X^*$ is scalarly equivalent to a Birkhoff integrable function.

Theorem 6 Let $f: \Omega \longrightarrow X^*$ be a function such that Z_f is uniformly integrable and has Bourgain property. Then there is a Birkhoff integrable function $g: \Omega \longrightarrow X^*$ which is scalarly equivalent to f.

4 Relationship with other recently studied integrals of Banach-valued functions

We end up this poster by paying a visit to the **Riemann-Lebesgue integrals** recently introduced in [6, 7]. Given a function $f: \Omega \longrightarrow X$, a countable partition $\Gamma = (A_n)$ of Ω in Σ and a *choice* $T = (t_n)$ in Γ (i.e. $t_n \in A_n$ for every n), we consider the formal series

 $S(f, \Gamma, T) := \sum f(t_n) \mu(A_n).$

As usual, we say that another partition Γ' of Ω , into countable elements of Σ , is finer than Γ when each element of Γ' is contained in some element of Γ .

Proposition 7 are called **unconditionally Riemann-Lebesgue integrable** functions in [7].

Proposition 7 Let $f : \Omega \longrightarrow X$ be a function. The following conditions are equivalent: (i) f is Birkhoff integrable;

- for every choice T' in Γ' .

In this case, $x = y = \int_{\Omega} f d\mu$.

It turns out that

Functions $f: \Omega \to X$ for which Z_f is stable and such that ||f|| has a μ -integrable majorant have caught the attention of several authors over the years, see [4, 9, 13, 14] amongst others. These functions are called by Fremlin Talagrand integrable functions [4] and they are characterized by Talagrand as those functions satisfying the law of *large numbers*, see [14]. As the last application of our techniques here we characterize those functions f for which Z_f has Bourgain property and ||f|| has a μ -integrable majorant.

Proposition 8 Let $f: \Omega \longrightarrow X$ be a function. The following conditions are equivalent:

(i) f is Riemann-Lebesgue integrable;

(ii) Z_f has Bourgain property and there is $g \in \mathcal{L}^1(\mu)$ such that $||f|| \leq g \mu$ -almost everywhere.

Recall that a function $f: \Omega \longrightarrow X$ is said to be **Riemann-Lebesgue integrable**, [6, 7], if there exists $x \in X$ with the following property: for every $\varepsilon > 0$ there is a countable partition Γ of Ω in Σ such that for every countable partition Γ' finer than Γ and every choice T' in Γ' , the series $S(f, \Gamma', T')$ is absolutely convergent and $||S(f, \Gamma', T') - x|| < \varepsilon$. Every Riemann-Lebesgue integrable function is Birkhoff integrable after Proposition 7.

References

- 357–378. MR 1 501 815
- Mathématique de France **43** (1915), 248–265.
- Department Research Report 92-10, 1999.
- 127–147. MR 94k:46083
- *tion*, Mat. Fiz. Anal. Geom. **9** (2002), no. 1, 48–65. MR 1 911 073
- Geom. 7 (2000), no. 1, 49–65. MR 2001e:28017
- (1993), School on Measure Theory and Real Analysis (Grado, 1991). MR 94k:46084
- and Real Analysis (Italian) (Grado, 1993). MR 97f:60016
- 2,103c
- 509–531. MR 86i:28012
- 86j:46042
- en Informatica, Amsterdam, 1989. MR 90h:46037

Partially supported by the research grant BFM2002-01719 MCyT, Spain. The second author was supported by a FPU grant of SEEU-MECD, Spain.

Proposition 7 below shows that for a function $f: \Omega \longrightarrow X$ its Birkhoff integral (upon its existence) can be realized as the limit refining partitions of the net $\{S(f, \Gamma, T)\}_{\Gamma}$. We mention that functions $f : \Omega \longrightarrow X$ satisfying (iii) in

(ii) there exists $x \in X$ with the following property: for every $\varepsilon > 0$ there is a countable partition Γ of Ω in Σ such that f is summable with respect to Γ and $||S(f, \Gamma, T) - x|| < \varepsilon$ for every choice T in Γ ; (iii) there exists $y \in X$ with the following property: for every $\varepsilon > 0$ there is a countable partition Γ of Ω in Σ such that f is summable with respect to each countable partition Γ' finer than Γ and $||S(f, \Gamma', T') - y|| < \varepsilon$

unconditional Riemann-Lebesgue integrability = Birkhoff integrability.

[1] G. Birkhoff, Integration of functions with values in a Banach space, Trans. Amer. Math. Soc. 38 (1935), no. 2,

[2] M. Fréchet, Sur l'intégrale d'une fonctionnelle étendue à un ensemble abstrait, Bulletin de la Société

[3] D. H. Fremlin, The McShane and Birkhoff integrals of vector-valued functions, University of Essex Mathematics

[4] D. H. Fremlin and J. Mendoza, On the integration of vector-valued functions, Illinois J. Math. 38 (1994), no. 1,

[5] N. Ghoussoub, G. Godefroy, B. Maurey, and W. Schachermayer, Some topological and geometrical structures *in Banach spaces*, Mem. Amer. Math. Soc. **70** (1987), no. 378, iv+116. MR 89h:46024

[6] V. Kadets, B. Shumyatskiy, R. Shvidkoy, L. Tseytlin, and K. Zheltukhin, Some remarks on vector-valued integra-

[7] V. M. Kadets and L. M. Tseytlin, On "integration" of non-integrable vector-valued functions, Mat. Fiz. Anal.

[8] K. Musial, Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ. Trieste 23 (1991), no. 1, 177–262

[9] K. Musial, A few remarks concerning the strong law of large numbers for non-separable Banach space valued functions, Rend. Istit. Mat. Univ. Trieste 26 (1994), no. suppl., 221–242 (1995), Workshop on Measure Theory

[10] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), no. 2, 277–304. MR 1 501 970 [11] R. S. Phillips, Integration in a convex linear topological space, Trans. Amer. Math. Soc. 47 (1940), 114–145. MR

[12] L. H. Riddle and E. Saab, On functions that are universally Pettis integrable, Illinois J. Math. 29 (1985), no. 3,

[13] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224. MR

[14] M. Talagrand, The Glivenko-Cantelli problem, Ann. Probab. 15 (1987), no. 3, 837–870. MR 88h:60012

[15] D. van Dulst, Characterizations of Banach spaces not containing l^1 , CWI Tract, vol. 59, Centrum voor Wiskunde