Measurable selectors and set-valued Pettis integral in non-separable Banach spaces

B. Cascales, V. Kadets, J. Rodríguez

Instituto Universitario de Matemática Pura y Aplicada Universidad Politécnica de Valencia

Murcia, 17th December 2007

(日) (문) (문) (문) (문)

Multi-functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• (Ω,Σ,μ) is a complete probability space,

- (Ω,Σ,μ) is a complete probability space,
- X is a Banach space.

- (Ω,Σ,μ) is a complete probability space,
- X is a Banach space.

- (Ω,Σ,μ) is a complete probability space,
- X is a Banach space.

Our multi-functions will take values in the family cwk(X) of all convex

- (Ω,Σ,μ) is a complete probability space,
- X is a Banach space.

Our multi-functions will take values in the family cwk(X) of all convex weakly compact

- (Ω,Σ,μ) is a complete probability space,
- X is a Banach space.

Our multi-functions will take values in the family cwk(X) of all convex weakly compact (non-empty) subsets of X.

- (Ω,Σ,μ) is a complete probability space,
- X is a Banach space.

Our multi-functions will take values in the family cwk(X) of all convex weakly compact (non-empty) subsets of X.

Example: a multi-function $F: [0,1] \rightarrow cwk(\mathbb{R})$

- (Ω,Σ,μ) is a complete probability space,
- X is a Banach space.

Our multi-functions will take values in the family cwk(X) of all convex weakly compact (non-empty) subsets of X.

Example: a multi-function $F:[0,1] \to cwk(\mathbb{R})$ can be written as

F(t) = [g(t), G(t)]

for some real-valued functions $g \leq G$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶

AUMANN (1965):

・ロト ・回ト ・ヨト ・ヨト ・ヨー のへで

AUMANN (1965):

Study via integrable selectors,

AUMANN (1965):

Study via integrable selectors, with

$$\int F \ d\mu = \left\{ \int f \ d\mu : \ f \text{ integrable selector of } F \right\}$$

◆□> ◆□> ◆目> ◆目> ●目

AUMANN (1965):

Study via integrable selectors, with

$$\int F \ d\mu = \left\{ \int f \ d\mu : \ f \text{ integrable selector of } F \right\}$$

(日) (四) (E) (E) (E)

DEBREU (1967):

AUMANN (1965):

Study via integrable selectors, with

$$\int F \, d\mu = \left\{ \int f \, d\mu : f \text{ integrable selector of } F \right\}.$$

(日) (문) (문) (문) (문)

DEBREU (1967):

Reduction to the case of single-valued functions

AUMANN (1965):

Study via integrable selectors, with

$$\int F \, d\mu = \left\{ \int f \, d\mu : f \text{ integrable selector of } F \right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

DEBREU (1967):

Reduction to the case of $\ensuremath{\textit{single-valued}}$ functions via an $\ensuremath{\textit{embedding}}$

 $j: cwk(X) \rightarrow Y,$

AUMANN (1965):

Study via integrable selectors, with

$$\int F \ d\mu = \left\{ \int f \ d\mu : f \text{ integrable selector of } F \right\}.$$

DEBREU (1967):

Reduction to the case of **single-valued** functions via an **embedding**

 $j: cwk(X) \rightarrow Y,$

where Y is another Banach space.

・ロト ・聞 ト ・ ヨト ・ ヨト ・ ヨー ・ のへで

For $C \subset X$ bounded and $x^* \in X^*$, we write

$$\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{C}) := \sup\{\boldsymbol{x}^*(\boldsymbol{x}): \boldsymbol{x} \in \boldsymbol{C}\}.$$

For $C \subset X$ bounded and $x^* \in X^*$, we write

$$\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{C}) := \sup\{\boldsymbol{x}^*(\boldsymbol{x}): \ \boldsymbol{x} \in \boldsymbol{C}\}.$$

Theorem (Rådström, 1952)

The map $j: cwk(X) \rightarrow \ell_{\infty}(B_{X^*})$ given by

$$j(C)(x^*) = \delta^*(x^*, C)$$

◆□> <回> <E> <E> <E> <</p>

For $C \subset X$ bounded and $x^* \in X^*$, we write

$$\delta^*(x^*, \mathcal{C}) := \sup\{x^*(x): x \in \mathcal{C}\}.$$

Theorem (Rådström, 1952)

The map $j: cwk(X) \rightarrow \ell_{\infty}(B_{X^*})$ given by

$$j(C)(x^*) = \delta^*(x^*, C)$$

is positively homogeneous

For $C \subset X$ bounded and $x^* \in X^*$, we write

$$\delta^*(x^*, \mathcal{C}) := \sup\{x^*(x): x \in \mathcal{C}\}.$$

Theorem (Rådström, 1952)

The map $j: cwk(X) \rightarrow \ell_{\infty}(B_{X^*})$ given by

 $j(C)(x^*) = \delta^*(x^*, C)$

is positively homogeneous and additive.

For $C \subset X$ bounded and $x^* \in X^*$, we write

$$\delta^*(x^*, \mathcal{C}) := \sup\{x^*(x): x \in \mathcal{C}\}.$$

Theorem (Rådström, 1952)

The map $j: cwk(X) \rightarrow \ell_{\infty}(B_{X^*})$ given by

 $j(C)(x^*) = \delta^*(x^*, C)$

is *positively homogeneous* and *additive*. Moreover,

For $C \subset X$ bounded and $x^* \in X^*$, we write

$$\delta^*(x^*, \mathcal{C}) := \sup\{x^*(x): x \in \mathcal{C}\}.$$

Theorem (Rådström, 1952)

The map $j: cwk(X) \rightarrow \ell_{\infty}(B_{X^*})$ given by

$$j(C)(x^*) = \delta^*(x^*, C)$$

is positively homogeneous and additive. Moreover, j is an **isometry** from cwk(X) (equipped with the Hausdorff distance) into $\ell_{\infty}(B_{X^*})$.

▲□▶ <圖▶ < ≧▶ < ≧▶ = 20000</p>

Definition

A multi-function $F: \Omega \rightarrow cwk(X)$ is called **Debreu integrable**

Definition

A multi-function $F: \Omega \rightarrow cwk(X)$ is called **Debreu integrable** iff the single-valued function

 $j \circ F : \Omega \to \ell_{\infty}(B_{X^*})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

is Bochner integrable.

Definition

A multi-function $F: \Omega \rightarrow cwk(X)$ is called **Debreu integrable** iff the single-valued function

 $j \circ F : \Omega \to \ell_{\infty}(B_{X^*})$

is Bochner integrable.

Theorem (Debreu 1967, Byrne 1978)

Let $F: \Omega \rightarrow cwk(X)$ be a Debreu integrable multi-function.

Definition

A multi-function $F: \Omega \rightarrow cwk(X)$ is called **Debreu integrable** iff the single-valued function

 $j \circ F : \Omega \to \ell_{\infty}(B_{X^*})$

is Bochner integrable.

Theorem (Debreu 1967, Byrne 1978)

Let $F: \Omega \rightarrow cwk(X)$ be a Debreu integrable multi-function. Then:

Definition

A multi-function $F: \Omega \rightarrow cwk(X)$ is called **Debreu integrable** iff the single-valued function

 $j \circ F : \Omega \to \ell_{\infty}(B_{X^*})$

is Bochner integrable.

Theorem (Debreu 1967, Byrne 1978)

Let $F: \Omega \rightarrow cwk(X)$ be a Debreu integrable multi-function. Then:

• There is $C \in cwk(X)$ satisfying $j(C) = \int j \circ F \ d\mu$.

Definition

A multi-function $F: \Omega \rightarrow cwk(X)$ is called **Debreu integrable** iff the single-valued function

 $j \circ F : \Omega \to \ell_{\infty}(B_{X^*})$

is Bochner integrable.

Theorem (Debreu 1967, Byrne 1978)

Let $F: \Omega \rightarrow cwk(X)$ be a Debreu integrable multi-function. Then:

- There is $C \in cwk(X)$ satisfying $j(C) = \int j \circ F \ d\mu$.
- F admits Bochner integrable selectors

Definition

A multi-function $F: \Omega \rightarrow cwk(X)$ is called **Debreu integrable** iff the single-valued function

 $j \circ F : \Omega \to \ell_{\infty}(B_{X^*})$

is Bochner integrable.

Theorem (Debreu 1967, Byrne 1978)

Let $F: \Omega \rightarrow cwk(X)$ be a Debreu integrable multi-function. Then:

- There is $C \in cwk(X)$ satisfying $j(C) = \int j \circ F \ d\mu$.
- F admits Bochner integrable selectors and

$$C = \left\{ \int f \ d\mu : \ f \ \text{Bochner integrable selector of } F \right\}$$

Set-valued Pettis integral

▲□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □▶
For a multi-function $F: \Omega \rightarrow cwk(X)$ and $x^* \in X^*$,

For a multi-function $F : \Omega \to cwk(X)$ and $x^* \in X^*$, we define

 $\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}):\boldsymbol{\Omega}\to\mathbb{R},\quad \boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F})(\boldsymbol{\omega}):=\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}(\boldsymbol{\omega})).$

For a multi-function $F : \Omega \to cwk(X)$ and $x^* \in X^*$, we define

 $\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}):\boldsymbol{\Omega}\to\mathbb{R},\quad \boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F})(\boldsymbol{\omega}):=\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}(\boldsymbol{\omega})).$

Definition (Castaing-Valadier, 1977)

Suppose *X* is **separable**.

For a multi-function $F : \Omega \to cwk(X)$ and $x^* \in X^*$, we define

 $\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}):\boldsymbol{\Omega}\to\mathbb{R},\quad \boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F})(\boldsymbol{\omega}):=\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}(\boldsymbol{\omega})).$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F : \Omega \rightarrow cwk(X)$ is called **Pettis integrable** iff

For a multi-function $F: \Omega \rightarrow cwk(X)$ and $x^* \in X^*$, we define

 $\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}):\boldsymbol{\Omega}\to\mathbb{R},\quad \boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F})(\boldsymbol{\omega}):=\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}(\boldsymbol{\omega})).$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F : \Omega \rightarrow cwk(X)$ is called **Pettis integrable** iff

• $\delta^*(x^*, F)$ is integrable for every $x^* \in X^*$;

For a multi-function $F : \Omega \to cwk(X)$ and $x^* \in X^*$, we define

 $\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}):\boldsymbol{\Omega}\to\mathbb{R},\quad \boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F})(\boldsymbol{\omega}):=\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}(\boldsymbol{\omega})).$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F : \Omega \rightarrow cwk(X)$ is called **Pettis integrable** iff

- $\delta^*(x^*, F)$ is integrable for every $x^* \in X^*$;
- for each $A \in \Sigma$, there is $\int_A F \ d\mu \in cwk(X)$

For a multi-function $F : \Omega \to cwk(X)$ and $x^* \in X^*$, we define

 $\delta^*(x^*, F) : \Omega \to \mathbb{R}, \quad \delta^*(x^*, F)(\omega) := \delta^*(x^*, F(\omega)).$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F : \Omega \rightarrow cwk(X)$ is called **Pettis integrable** iff

- $\delta^*(x^*, F)$ is integrable for every $x^* \in X^*$;
- for each $A \in \Sigma$, there is $\int_A F d\mu \in cwk(X)$ such that

$$\delta^* \left(x^*, \int_A F \ d\mu \right) = \int_A \delta^* (x^*, F) \ d\mu \qquad \forall x^* \in X^*$$

For a multi-function $F : \Omega \to cwk(X)$ and $x^* \in X^*$, we define

 $\delta^*(x^*, F) : \Omega \to \mathbb{R}, \quad \delta^*(x^*, F)(\omega) := \delta^*(x^*, F(\omega)).$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F : \Omega \rightarrow cwk(X)$ is called **Pettis integrable** iff

- $\delta^*(x^*, F)$ is integrable for every $x^* \in X^*$;
- for each $A \in \Sigma$, there is $\int_A F d\mu \in cwk(X)$ such that

$$\delta^* \left(x^*, \int_A F \ d\mu \right) = \int_A \delta^* (x^*, F) \ d\mu \qquad \forall x^* \in X^*$$

Studied by:

For a multi-function $F: \Omega \rightarrow cwk(X)$ and $x^* \in X^*$, we define

 $\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}):\boldsymbol{\Omega}\to\mathbb{R},\quad \boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F})(\boldsymbol{\omega}):=\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}(\boldsymbol{\omega})).$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F : \Omega \rightarrow cwk(X)$ is called **Pettis integrable** iff

- $\delta^*(x^*, F)$ is integrable for every $x^* \in X^*$;
- for each $A \in \Sigma$, there is $\int_A F d\mu \in cwk(X)$ such that

$$\left| \delta^* \left(x^*, \int_A F \ d\mu \right) = \int_A \delta^* (x^*, F) \ d\mu \right| \quad \forall x^* \in X^*.$$

Studied by: Castaing-Valadier (1977),

For a multi-function $F: \Omega \rightarrow cwk(X)$ and $x^* \in X^*$, we define

 $\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}):\boldsymbol{\Omega}\to\mathbb{R},\quad \boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F})(\boldsymbol{\omega}):=\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}(\boldsymbol{\omega})).$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F : \Omega \rightarrow cwk(X)$ is called **Pettis integrable** iff

- $\delta^*(x^*, F)$ is integrable for every $x^* \in X^*$;
- for each $A \in \Sigma$, there is $\int_A F d\mu \in cwk(X)$ such that

$$\left| \delta^* \left(x^*, \int_A F \ d\mu \right) = \int_A \delta^* (x^*, F) \ d\mu \right| \quad \forall x^* \in X^*.$$

Studied by: Castaing-Valadier (1977), Di Piazza-Musial (2005-06),

For a multi-function $F: \Omega \rightarrow cwk(X)$ and $x^* \in X^*$, we define

 $\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}):\boldsymbol{\Omega}\to\mathbb{R},\quad \boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F})(\boldsymbol{\omega}):=\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}(\boldsymbol{\omega})).$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F : \Omega \rightarrow cwk(X)$ is called **Pettis integrable** iff

- $\delta^*(x^*, F)$ is integrable for every $x^* \in X^*$;
- for each $A \in \Sigma$, there is $\int_A F d\mu \in cwk(X)$ such that

$$\left| \delta^* \left(x^*, \int_A F \ d\mu \right) = \int_A \delta^* (x^*, F) \ d\mu \right| \quad \forall x^* \in X^*.$$

Studied by: Castaing-Valadier (1977), Di Piazza-Musial (2005-06), El Amri-Hess (2000),

For a multi-function $F: \Omega \rightarrow cwk(X)$ and $x^* \in X^*$, we define

 $\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}):\boldsymbol{\Omega}\to\mathbb{R},\quad \boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F})(\boldsymbol{\omega}):=\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{F}(\boldsymbol{\omega})).$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F : \Omega \rightarrow cwk(X)$ is called **Pettis integrable** iff

- $\delta^*(x^*, F)$ is integrable for every $x^* \in X^*$;
- for each $A \in \Sigma$, there is $\int_A F d\mu \in cwk(X)$ such that

$$\left| \delta^* \left(x^*, \int_A F \ d\mu \right) = \int_A \delta^* (x^*, F) \ d\mu \right| \quad \forall x^* \in X^*.$$

Studied by: Castaing-Valadier (1977), Di Piazza-Musial (2005-06), El Amri-Hess (2000), Ziat (1997-2000), etc.

The role of separability I

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

The role of separability I

Main reason

Separability allows to find measurable selectors !!

Separability allows to find measurable selectors !!

Definition

Let M be a metric space.

Separability allows to find measurable selectors !!

Definition

Let M be a metric space. A multi-function $F:\Omega\to 2^M$ having closed non-empty values

Separability allows to find measurable selectors !!

Definition

Let *M* be a metric space. A multi-function $F : \Omega \rightarrow 2^M$ having closed non-empty values is called **Effros measurable** iff

 $\{\omega \in \Omega: F(\omega) \cap U \neq \emptyset\} \in \Sigma \quad \forall \text{ open } U \subset M.$

Separability allows to find measurable selectors !!

Definition

Let *M* be a metric space. A multi-function $F : \Omega \to 2^M$ having closed non-empty values is called **Effros measurable** iff

 $\{\omega \in \Omega: F(\omega) \cap U \neq \emptyset\} \in \Sigma \quad \forall \text{ open } U \subset M.$

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let M be a separable complete metric space

Separability allows to find measurable selectors !!

Definition

Let *M* be a metric space. A multi-function $F : \Omega \to 2^M$ having closed non-empty values is called **Effros measurable** iff

 $\{\omega \in \Omega: F(\omega) \cap U \neq \emptyset\} \in \Sigma \quad \forall \text{ open } U \subset M.$

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let *M* be a separable complete metric space and $F : \Omega \to 2^M$ an Effros measurable multi-function having closed non-empty values.

Separability allows to find measurable selectors !!

Definition

Let *M* be a metric space. A multi-function $F : \Omega \to 2^M$ having closed non-empty values is called **Effros measurable** iff

 $\{\omega \in \Omega: F(\omega) \cap U \neq \emptyset\} \in \Sigma \quad \forall \text{ open } U \subset M.$

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let *M* be a separable complete metric space and $F : \Omega \to 2^M$ an Effros measurable multi-function having closed non-empty values. Then *F* admits **Borel measurable selectors**.

The role of separability II

・ロト ・回ト ・ヨト ・ヨト ・ヨー のへで

The role of separability II

Definition

A multi-function $F: \Omega \rightarrow cwk(X)$ is called scalarly measurable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

A multi-function $F : \Omega \to cwk(X)$ is called **scalarly measurable** iff $\delta^*(x^*, F)$ is measurable for every $x^* \in X^*$.

A multi-function $F : \Omega \to cwk(X)$ is called **scalarly measurable** iff $\delta^*(x^*, F)$ is measurable for every $x^* \in X^*$.

Theorem (Castaing-Valadier, 1977)

Suppose X is separable.

A multi-function $F : \Omega \to cwk(X)$ is called **scalarly measurable** iff $\delta^*(x^*, F)$ is measurable for every $x^* \in X^*$.

Theorem (Castaing-Valadier, 1977)

Suppose X is separable. Then a multi-function $F : \Omega \to cwk(X)$ is scalarly measurable if and only if it is Effros measurable.

A multi-function $F : \Omega \to cwk(X)$ is called **scalarly measurable** iff $\delta^*(x^*, F)$ is measurable for every $x^* \in X^*$.

Theorem (Castaing-Valadier, 1977)

Suppose X is separable. Then a multi-function $F : \Omega \to cwk(X)$ is scalarly measurable if and only if it is Effros measurable.

Corollary

Suppose *X* is separable.

A multi-function $F : \Omega \to cwk(X)$ is called **scalarly measurable** iff $\delta^*(x^*, F)$ is measurable for every $x^* \in X^*$.

Theorem (Castaing-Valadier, 1977)

Suppose X is separable. Then a multi-function $F : \Omega \to cwk(X)$ is scalarly measurable if and only if it is Effros measurable.

Corollary

Suppose X is separable.

Then every scalarly measurable multi-function $F: \Omega \rightarrow cwk(X)$ admits strongly measurable selectors.

(▲□) (圖) (E) (E) (E) (0)

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose *X* is separable.

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let $F : \Omega \to cwk(X)$ be a multi-function. TFAE:

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let $F : \Omega \to cwk(X)$ be a multi-function. TFAE:

(1) *F* is **Pettis integrable**.

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let $F : \Omega \to cwk(X)$ be a multi-function. TFAE:

- (1) F is **Pettis integrable**.
- (2) The family

 $\{\delta^*(x^*,F): x^* \in B_{X^*}\} \subset \mathbb{R}^{\Omega}$

is uniformly integrable.

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let $F : \Omega \to cwk(X)$ be a multi-function. TFAE:

- (1) F is **Pettis integrable**.
- (2) The family

$$\{\delta^*(x^*,F): x^* \in B_{X^*}\} \subset \mathbb{R}^{\Omega}$$

is uniformly integrable.

(3) *F* is scalarly measurable and **every** strongly measurable selector of *F* is Pettis integrable.

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let $F : \Omega \to cwk(X)$ be a multi-function. TFAE:

- (1) F is **Pettis integrable**.
- (2) The family

$$\{\delta^*(x^*,F): x^* \in B_{X^*}\} \subset \mathbb{R}^{\Omega}$$

is uniformly integrable.

(3) *F* is scalarly measurable and **every** strongly measurable selector of *F* is Pettis integrable.

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let $F : \Omega \to cwk(X)$ be a multi-function. TFAE:

- (1) F is Pettis integrable.
- (2) The family

$$\{\delta^*(x^*,F): x^* \in B_{X^*}\} \subset \mathbb{R}^{\Omega}$$

is uniformly integrable.

(3) *F* is scalarly measurable and **every** strongly measurable selector of *F* is Pettis integrable.

In this case:

$$\int_{A} F \ d\mu = \left\{ \int_{A} f \ d\mu : f \text{ Pettis integrable selector of } F \right\}$$

for all $A \in \Sigma$.

Our aim

▲□> <圖> <필> <필> <=> <</p>
Our main goal

To study the set-valued Pettis integral for arbitrary Banach spaces.

Our main goal

To study the set-valued Pettis integral for arbitrary Banach spaces.

The price

To find **scalarly measurable selectors** for scalarly measurable multi-functions without the separability assumption.

Set-valued Pettis integral for arbitrary Banach spaces

・ロト ・聞 ト ・ ヨト ・ ヨト ・ ヨー ・ のへで

A multi-function $F: \Omega \rightarrow cwk(X)$ is called **Pettis integrable** iff

- $\delta^*(x^*, F)$ is integrable for each $x^* \in X^*$;
- for each $A \in \Sigma$, there is $\int_A F \ d\mu \in cwk(X)$ such that

$$\boxed{\delta^*\left(x^*,\int_A F \ d\mu\right) = \int_A \delta^*(x^*,F) \ d\mu} \quad \forall x^* \in X^*.$$

◆□ → <□ → < Ξ → < Ξ → < Ξ → < ○ < ○</p>

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \rightarrow cwk(X)$ be a Pettis integrable multi-function.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Theorem (Cascales, Kadets, R.)

Let $F : \Omega \to cwk(X)$ be a Pettis integrable multi-function. Then:

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \rightarrow cwk(X)$ be a Pettis integrable multi-function. Then:

• F admits scalarly measurable selectors.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \rightarrow cwk(X)$ be a Pettis integrable multi-function. Then:

- F admits scalarly measurable selectors.
- Every scalarly measurable selector of F is Pettis integrable.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \rightarrow cwk(X)$ be a Pettis integrable multi-function. Then:

- F admits scalarly measurable selectors.
- Every scalarly measurable selector of F is Pettis integrable.
- The formula

$$\int_{A} F \ d\mu = \overline{\left\{\int_{A} f \ d\mu : f \text{ Pettis integrable selector of } F\right\}}$$

holds for all $A \in \Sigma$.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \rightarrow cwk(X)$ be a Pettis integrable multi-function. Then:

- F admits scalarly measurable selectors.
- Every scalarly measurable selector of F is Pettis integrable.
- The formula

$$\int_{A} F \ d\mu = \overline{\left\{\int_{A} f \ d\mu : f \text{ Pettis integrable selector of } F\right\}}$$

holds for all $A \in \Sigma$.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \rightarrow cwk(X)$ be a Pettis integrable multi-function. Then:

- F admits scalarly measurable selectors.
- Every scalarly measurable selector of F is Pettis integrable.
- The formula

$$\int_{A} F \ d\mu = \overline{\left\{\int_{A} f \ d\mu : f \text{ Pettis integrable selector of } F\right\}}$$

holds for all $A \in \Sigma$.

Remark

The "closure" can be removed if X^* is w^* -separable.

Lemma (Cascales, Kadets, R.)

Lemma (Cascales, Kadets, R.)

Let $F, G: \Omega \rightarrow \mathit{cwk}(X)$ be two multi-functions such that:

(日) (문) (문) (문) (문)

• F is Pettis integrable;

Lemma (Cascales, Kadets, R.)

- F is Pettis integrable;
- *G* is scalarly measurable;

Lemma (Cascales, Kadets, R.)

- F is Pettis integrable;
- *G* is scalarly measurable;
- for each $x^* \in X^*$, we have $\delta^*(x^*, G) \leq \delta^*(x^*, F)$ μ -a.e.

Lemma (Cascales, Kadets, R.)

- F is Pettis integrable;
- *G* is scalarly measurable;
- for each $x^* \in X^*$, we have $\delta^*(x^*, G) \leq \delta^*(x^*, F)$ μ -a.e.

Lemma (Cascales, Kadets, R.)

Let $F, G: \Omega \rightarrow cwk(X)$ be two multi-functions such that:

- F is Pettis integrable;
- *G* is scalarly measurable;
- for each $x^* \in X^*$, we have $\delta^*(x^*, G) \leq \delta^*(x^*, F)$ μ -a.e.

Then G is Pettis integrable

Lemma (Cascales, Kadets, R.)

Let $F, G: \Omega \rightarrow cwk(X)$ be two multi-functions such that:

- F is Pettis integrable;
- *G* is scalarly measurable;
- for each $x^* \in X^*$, we have $\delta^*(x^*, G) \leq \delta^*(x^*, F)$ μ -a.e.

Then G is Pettis integrable and

$$\int_A G \ d\mu \subset \int_A F \ d\mu \qquad \forall A \in \Sigma.$$

Lemma (Cascales, Kadets, R.)

Let $F, G: \Omega \rightarrow cwk(X)$ be two multi-functions such that:

- F is Pettis integrable;
- G is scalarly measurable;
- for each $x^* \in X^*$, we have $\delta^*(x^*, G) \le \delta^*(x^*, F)$ μ -a.e.

Then G is Pettis integrable and

$$\int_A G \ d\mu \subset \int_A F \ d\mu \qquad \forall A \in \Sigma.$$

Hint: check that $x^* \rightsquigarrow \int_A \delta^*(x^*, G) \ d\mu$ is Mackey continuous.

Lemma (Cascales, Kadets, R.)

Let $F, G: \Omega \rightarrow cwk(X)$ be two multi-functions such that:

- F is Pettis integrable;
- G is scalarly measurable;
- for each $x^* \in X^*$, we have $\delta^*(x^*, G) \le \delta^*(x^*, F)$ μ -a.e.

Then G is Pettis integrable and

$$\int_{\mathcal{A}} G \ d\mu \subset \int_{\mathcal{A}} F \ d\mu \qquad \forall A \in \Sigma.$$

Hint: check that $x^* \rightsquigarrow \int_{\mathcal{A}} \delta^*(x^*, G) \ d\mu$ is Mackey continuous.

Lemma (Valadier, 1971)

Let $F: \Omega \rightarrow cwk(X)$ be a scalarly measurable multi-function.

Lemma (Cascales, Kadets, R.)

Let $F, G: \Omega \rightarrow cwk(X)$ be two multi-functions such that:

- F is Pettis integrable;
- G is scalarly measurable;
- for each $x^* \in X^*$, we have $\delta^*(x^*, G) \leq \delta^*(x^*, F) \mu$ -a.e.

Then G is Pettis integrable and

$$\int_A G \ d\mu \subset \int_A F \ d\mu \qquad \forall A \in \Sigma.$$

Hint: check that $x^* \rightsquigarrow \int_{\mathcal{A}} \delta^*(x^*, \mathcal{G}) \ d\mu$ is **Mackey** continuous.

Lemma (Valadier, 1971)

Let $F:\Omega\to cwk(X)$ be a scalarly measurable multi-function. Fix $x_0^*\in X^*$ and consider the multi-function

$$G: \Omega \to \mathit{cwk}(X), \quad G(\omega) := \{ x \in F(\omega) : \ x_0^*(x) = \delta^*(x_0^*, F(\omega)) \}.$$

Lemma (Cascales, Kadets, R.)

Let $F, G: \Omega \rightarrow cwk(X)$ be two multi-functions such that:

- F is Pettis integrable;
- G is scalarly measurable;
- for each $x^* \in X^*$, we have $\delta^*(x^*, G) \leq \delta^*(x^*, F)$ μ -a.e.

Then G is Pettis integrable and

$$\int_{\mathcal{A}} G \ d\mu \subset \int_{\mathcal{A}} F \ d\mu \qquad \forall A \in \Sigma.$$

Hint: check that $x^* \rightsquigarrow \int_{\mathcal{A}} \delta^*(x^*, \mathcal{G}) \ d\mu$ is **Mackey** continuous.

Lemma (Valadier, 1971)

Let $F:\Omega \to cwk(X)$ be a scalarly measurable multi-function. Fix $x_0^* \in X^*$ and consider the multi-function

$$G: \Omega \to \mathit{cwk}(X), \quad G(\omega) := \{ x \in F(\omega) : \ x_0^*(x) = \delta^*(x_0^*, F(\omega)) \}.$$

Then *G* is scalarly measurable.

Scalarly measurable selectors

・ロト ・個ト ・ヨト ・ヨト ・ヨー のへで

We say that X has the Scalarly Measurable Selector Property with respect to μ (shortly μ -SMSP)

We say that X has the **Scalarly Measurable Selector Property** with respect to μ (shortly μ -SMSP) iff every scalarly measurable multi-function $F : \Omega \to cwk(X)$ admits a scalarly measurable selector.

(日) (문) (문) (문) (문)

We say that X has the **Scalarly Measurable Selector Property** with respect to μ (shortly μ -SMSP) iff every scalarly measurable multi-function $F: \Omega \to cwk(X)$ admits a scalarly measurable selector.

We say that X has the **Scalarly Measurable Selector Property** with respect to μ (shortly μ -SMSP) iff every scalarly measurable multi-function $F: \Omega \to cwk(X)$ admits a scalarly measurable selector.

X has the μ -SMSP in each of the following cases . . .

• X is separable.

We say that X has the **Scalarly Measurable Selector Property** with respect to μ (shortly μ -**SMSP**) iff every scalarly measurable multi-function $F : \Omega \to cwk(X)$ admits a scalarly measurable selector.

- X is separable.
- X^{*} is w^{*}-separable (Valadier, 1971).

We say that X has the **Scalarly Measurable Selector Property** with respect to μ (shortly μ -**SMSP**) iff every scalarly measurable multi-function $F : \Omega \to cwk(X)$ admits a scalarly measurable selector.

- X is separable.
- X^{*} is w^{*}-separable (Valadier, 1971).
- X is reflexive (Cascales, Kadets, R.).

We say that X has the **Scalarly Measurable Selector Property** with respect to μ (shortly μ -**SMSP**) iff every scalarly measurable multi-function $F : \Omega \to cwk(X)$ admits a scalarly measurable selector.

- X is separable.
- X^{*} is w^{*}-separable (Valadier, 1971).
- X is reflexive (Cascales, Kadets, R.).
- (X^{*}, w^{*}) is angelic and has density character ≤ ω₁ (Cascales, Kadets, R.).

We say that X has the **Scalarly Measurable Selector Property** with respect to μ (shortly μ -**SMSP**) iff every scalarly measurable multi-function $F : \Omega \to cwk(X)$ admits a scalarly measurable selector.

- X is separable.
- X^{*} is w^{*}-separable (Valadier, 1971).
- X is reflexive (Cascales, Kadets, R.).
- (X^{*}, w^{*}) is angelic and has density character ≤ ω₁ (Cascales, Kadets, R.).

We say that X has the **Scalarly Measurable Selector Property** with respect to μ (shortly μ -**SMSP**) iff every scalarly measurable multi-function $F : \Omega \to cwk(X)$ admits a scalarly measurable selector.

X has the μ -SMSP in each of the following cases . . .

- X is separable.
- X^{*} is w^{*}-separable (Valadier, 1971).
- X is reflexive (Cascales, Kadets, R.).
- (X^{*}, w^{*}) is angelic and has density character ≤ ω₁
 (Cascales, Kadets, R.).

► We **do not know** an example of a scalarly measurable multi-function <u>without</u> scalarly measurable selectors !!

Characterization of set-valued Pettis integrability

・ロト ・聞 ト ・ ヨト ・ ヨト ・ ヨー ・ のへで

Characterization of set-valued Pettis integrability

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function.
Characterization of set-valued Pettis integrability

Theorem (Cascales, Kadets, R.)

Let $F : \Omega \rightarrow cwk(X)$ be a multi-function. Consider the following statements:

Characterization of set-valued Pettis integrability

Theorem (Cascales, Kadets, R.)

Let $F : \Omega \rightarrow cwk(X)$ be a multi-function. Consider the following statements:

(1) F is Pettis integrable.

Characterization of set-valued Pettis integrability

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is Pettis integrable.
- (2) The family

 $\{\delta^*(x^*,F): x^* \in B_{X^*}\} \subset \mathbb{R}^{\Omega}$

is uniformly integrable.

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is Pettis integrable.
- (2) The family

$$\{\delta^*(x^*,F):\ x^*\in B_{X^*}\}\subset \mathbb{R}^\Omega$$

is uniformly integrable.

(3) F is scalarly measurable and every scalarly measurable selector of F is Pettis integrable.

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is Pettis integrable.
- (2) The family

$$\{\delta^*(x^*,F):\ x^*\in B_{X^*}\}\subset \mathbb{R}^\Omega$$

is uniformly integrable.

(3) F is scalarly measurable and every scalarly measurable selector of F is Pettis integrable.

Let $F: \Omega \to cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is Pettis integrable.
- (2) The family

$$\{\delta^*(x^*,F):\ x^*\in B_{X^*}\}\subset \mathbb{R}^\Omega$$

is uniformly integrable.

(3) F is scalarly measurable and every scalarly measurable selector of F is Pettis integrable.

Then:

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is Pettis integrable.
- (2) The family

$$\{\delta^*(x^*,F):\ x^*\in B_{X^*}\}\subset \mathbb{R}^\Omega$$

is uniformly integrable.

(3) F is scalarly measurable and every scalarly measurable selector of F is Pettis integrable.

Then:

• $(1) \Longrightarrow (2) + (3).$

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is Pettis integrable.
- (2) The family

$$\{\delta^*(x^*,F):\ x^*\in B_{X^*}\}\subset \mathbb{R}^\Omega$$

is uniformly integrable.

(3) F is scalarly measurable and every scalarly measurable selector of F is Pettis integrable.

Then:

•
$$(1) \Longrightarrow (2) + (3).$$

• (3) \Longrightarrow (1) if X has the μ -SMSP.

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is Pettis integrable.
- (2) The family

$$\{\delta^*(x^*,F):\ x^*\in B_{X^*}\}\subset \mathbb{R}^\Omega$$

is uniformly integrable.

(3) F is scalarly measurable and every scalarly measurable selector of F is Pettis integrable.

Then:

- $(1) \Longrightarrow (2) + (3).$
- (3) \Longrightarrow (1) if X has the μ -SMSP.
- (1) \iff (2) \iff (3) if X has the μ -SMSP and the μ -PIP.

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is Pettis integrable.
- (2) The family

$$\{ oldsymbol{\delta}^*(x^*, {\mathcal F}): \; x^* \in {\mathcal B}_{{\mathcal X}^*} \} \subset {\mathbb R}^\Omega$$

is uniformly integrable.

(3) F is scalarly measurable and every scalarly measurable selector of F is Pettis integrable.

Then:

- $(1) \Longrightarrow (2) + (3).$
- (3) \Longrightarrow (1) if X has the μ -SMSP.
- (1) \iff (2) \iff (3) if X has the μ -SMSP and the μ -PIP.

The case of norm compact values

・ロト ・個ト ・ヨト ・ヨト ・ヨー のへで

◆□> ◆□> ◆目> ◆目> ●目

Suppose (X^*, w^*) is angelic.

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE: (1) F is Pettis integrable.

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE: (1) F is Pettis integrable.

(2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

(1) F is Pettis integrable.

(2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE: (1) *F* is Pettis integrable. (2) $\{S^*(w^*, \Gamma) : w^* \in P_{-1}\}$ is uniformly integrable.

(2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.

In this case, $\int_A F \ d\mu$ is norm compact for all $A \in \Sigma$.

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

(1) F is Pettis integrable.

(2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.

In this case, $\int_A F d\mu$ is norm compact for all $A \in \Sigma$.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic.

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

(1) F is Pettis integrable.

(2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.

In this case, $\int_A F d\mu$ is norm compact for all $A \in \Sigma$.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a scalarly measurable multi-function having norm compact values.

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

(1) F is Pettis integrable.

(2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.

In this case, $\int_A F d\mu$ is norm compact for all $A \in \Sigma$.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a scalarly measurable multi-function having norm compact values. Then F admits scalarly measurable selectors.

Theorem (Leese, 1974)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

```
\{\omega \in \Omega: F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ norm closed } C \subset X.
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Theorem (Leese, 1974)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega \in \Omega: F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ norm closed } C \subset X.$

Then F admits norm Borel measurable selectors in the following cases:

Theorem (Leese, 1974)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega \in \Omega: F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ norm closed } C \subset X.$

Then F admits norm Borel measurable selectors in the following cases:

(a) X has an equivalent strictly convex norm

Theorem (Leese, 1974)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega \in \Omega: F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ norm closed } C \subset X.$

Then F admits norm Borel measurable selectors in the following cases:

(a) X has an equivalent strictly convex norm and F has norm compact values.

Theorem (Leese, 1974)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega \in \Omega: F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ norm closed } C \subset X.$

Then F admits norm Borel measurable selectors in the following cases:

- (a) X has an equivalent strictly convex norm and F has norm compact values.
- (b) X has an equivalent uniformly convex norm.

Theorem (Leese, 1974)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega \in \Omega: F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ norm closed } C \subset X.$

Then F admits norm Borel measurable selectors in the following cases:

- (a) X has an equivalent strictly convex norm and F has norm compact values.
- (b) X has an equivalent uniformly convex norm.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega\in\Omega:\ F(\omega)\cap C\neq \emptyset\}\in\Sigma\quad\forall\ \underline{\text{convex closed}}\ C\subset X.$

Theorem (Leese, 1974)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega \in \Omega: F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ norm closed } C \subset X.$

Then F admits norm Borel measurable selectors in the following cases:

- (a) X has an equivalent strictly convex norm and F has norm compact values.
- (b) X has an equivalent uniformly convex norm.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega \in \Omega: \ F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ <u>convex closed } C \subset X.$ </u>

(1) If X has an equivalent strictly convex norm,

Theorem (Leese, 1974)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega \in \Omega: F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ norm closed } C \subset X.$

Then F admits norm Borel measurable selectors in the following cases:

- (a) X has an equivalent strictly convex norm and F has norm compact values.
- (b) X has an equivalent uniformly convex norm.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega \in \Omega: F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ <u>convex closed } C \subset X.</u>$

(1) If X has an equivalent strictly convex norm, then F admits a selector $f: \Omega \to X$ such that $f^{-1}(C) \in \Sigma$ for all convex closed set $C \subset X$.

Theorem (Leese, 1974)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega \in \Omega: F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ norm closed } C \subset X.$

Then F admits norm Borel measurable selectors in the following cases:

- (a) X has an equivalent strictly convex norm and F has norm compact values.
- (b) X has an equivalent uniformly convex norm.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega \in \Omega: \ F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ <u>convex closed } C \subset X.$ </u>

- (1) If X has an equivalent strictly convex norm, then F admits a selector $f: \Omega \to X$ such that $f^{-1}(C) \in \Sigma$ for all convex closed set $C \subset X$.
- (2) If X has an equivalent locally uniformly rotund norm,

Theorem (Leese, 1974)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega \in \Omega: F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ norm closed } C \subset X.$

Then F admits norm Borel measurable selectors in the following cases:

- (a) X has an equivalent strictly convex norm and F has norm compact values.
- (b) X has an equivalent uniformly convex norm.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \rightarrow cwk(X)$ be a multi-function satisfying

 $\{\omega \in \Omega: F(\omega) \cap C \neq \emptyset\} \in \Sigma \quad \forall \text{ <u>convex closed } C \subset X.$ </u>

(1) If X has an equivalent strictly convex norm, then F admits a selector $f: \Omega \to X$ such that $f^{-1}(C) \in \Sigma$ for all convex closed set $C \subset X$.

(2) If X has an equivalent locally uniformly rotund norm, then F admits a norm Borel measurable selector. Preprint available at

http://misuma.um.es/beca

and

http://www.uv.es/roruizjo

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○へ⊙