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Multi-functions

Integration of multi-functions F : Ω→ 2X , where

(Ω,Σ,µ) is a complete probability space,

X is a Banach space.

Our multi-functions will take values in the family cwk(X ) of all
convex weakly compact (non-empty) subsets of X .

Example: a multi-function F : [0,1]→ cwk(R) can
be written as

F (t) = [g(t),G (t)]

for some real-valued functions g ≤ G .
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Origins of set-valued integration

AUMANN (1965):

Study via integrable selectors, with∫
F dµ =

{∫
f dµ : f integrable selector of F

}
. g

G
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DEBREU (1967):

Reduction to the case of single-valued functions
via an embedding

j : cwk(X )→ Y ,

where Y is another Banach space.
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The Rådström embedding theorem

For C ⊂ X bounded and x∗ ∈ X ∗, we write

δ
∗(x∗,C ) := sup{x∗(x) : x ∈ C}.

Theorem (Rådström, 1952)

The map j : cwk(X )→ `∞(BX ∗) given by

j(C )(x∗) = δ
∗(x∗,C )

is positively homogeneous and additive.

Moreover, j is an isometry from cwk(X ) (equipped with the
Hausdorff distance) into `∞(BX ∗).
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The Debreu integral

Definition

A multi-function F : Ω→ cwk(X ) is called Debreu integrable iff
the single-valued function

j ◦F : Ω→ `∞(BX ∗)

is Bochner integrable.

Theorem (Debreu 1967, Byrne 1978)

Let F : Ω→ cwk(X ) be a Debreu integrable multi-function. Then:

There is C ∈ cwk(X ) satisfying j(C ) =
∫

j ◦F dµ.

F admits Bochner integrable selectors and

C =
{∫

f dµ : f Bochner integrable selector of F

}
.
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Set-valued Pettis integral

For a multi-function F : Ω→ cwk(X ) and x∗ ∈ X ∗, we define

δ
∗(x∗,F ) : Ω→ R, δ

∗(x∗,F )(ω) := δ
∗(x∗,F (ω)).

Definition (Castaing-Valadier, 1977)

Suppose X is separable. A multi-function F : Ω→ cwk(X ) is
called Pettis integrable iff

δ ∗(x∗,F ) is integrable for every x∗ ∈ X ∗;

for each A ∈ Σ, there is
∫
A F dµ ∈ cwk(X ) such that

δ
∗
(
x∗,

∫
A

F dµ

)
=

∫
A

δ
∗(x∗,F ) dµ ∀x∗ ∈ X ∗.

Studied by: Castaing-Valadier (1977), Di Piazza-Musial (2005-06), El
Amri-Hess (2000), Ziat (1997-2000), etc.
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The role of separability I

Main reason

Separability allows to find measurable selectors !!

Definition

Let M be a metric space. A multi-function F : Ω→ 2M having
closed non-empty values is called Effros measurable iff

{ω ∈Ω : F (ω)∩U 6= /0} ∈ Σ ∀ open U ⊂M.

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let M be a separable complete metric space and F : Ω→ 2M an
Effros measurable multi-function having closed non-empty values.
Then F admits Borel measurable selectors.
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The role of separability II

Definition

A multi-function F : Ω→ cwk(X ) is called scalarly measurable iff
δ ∗(x∗,F ) is measurable for every x∗ ∈ X ∗.

Theorem (Castaing-Valadier, 1977)

Suppose X is separable. Then a multi-function F : Ω→ cwk(X ) is
scalarly measurable if and only if it is Effros measurable.

Corollary

Suppose X is separable.
Then every scalarly measurable multi-function F : Ω→ cwk(X )
admits strongly measurable selectors.
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A characterization of set-valued Pettis integrability

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let F : Ω→ cwk(X ) be a multi-function.
TFAE:

(1) F is Pettis integrable.

(2) The family
{δ

∗(x∗,F ) : x∗ ∈ BX ∗} ⊂ RΩ

is uniformly integrable.

(3) F is scalarly measurable and every strongly measurable
selector of F is Pettis integrable.

In this case:∫
A

F dµ =
{∫

A
f dµ : f Pettis integrable selector of F

}
for all A ∈ Σ.
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Our aim

Our main goal

To study the set-valued Pettis integral for arbitrary Banach spaces.

The price

To find scalarly measurable selectors for scalarly measurable
multi-functions without the separability assumption.
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Set-valued Pettis integral for arbitrary Banach spaces

Definition

A multi-function F : Ω→ cwk(X ) is called Pettis integrable iff

δ ∗(x∗,F ) is integrable for each x∗ ∈ X ∗;

for each A ∈ Σ, there is
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Set-valued Pettis integral and selectors

Theorem (Cascales, Kadets, R.)

Let F : Ω→ cwk(X ) be a Pettis integrable multi-function. Then:

F admits scalarly measurable selectors.

Every scalarly measurable selector of F is Pettis integrable.

The formula∫
A

F dµ =
{∫

A
f dµ : f Pettis integrable selector of F

}
holds for all A ∈ Σ.

Remark

The “closure” can be removed if X ∗ is w∗-separable.
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Some ideas of the proof

Lemma (Cascales, Kadets, R.)

Let F ,G : Ω→ cwk(X ) be two multi-functions such that:

F is Pettis integrable;

G is scalarly measurable;

for each x∗ ∈ X ∗, we have δ ∗(x∗,G )≤ δ ∗(x∗,F ) µ-a.e.

Then G is Pettis integrable and∫
A

G dµ ⊂
∫
A

F dµ ∀A ∈ Σ.

Hint: check that x∗ 
∫
A δ ∗(x∗,G ) dµ is Mackey continuous.

Lemma (Valadier, 1971)

Let F : Ω→ cwk(X ) be a scalarly measurable multi-function.
Fix x∗0 ∈ X ∗ and consider the multi-function

G : Ω→ cwk(X ), G (ω) := {x ∈ F (ω) : x∗0 (x) = δ
∗(x∗0 ,F (ω))}.

Then G is scalarly measurable.
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Scalarly measurable selectors

Definition

We say that X has the Scalarly Measurable Selector Property
with respect to µ (shortly µ-SMSP)
iff every scalarly measurable multi-function F : Ω→ cwk(X )
admits a scalarly measurable selector.

X has the µ-SMSP in each of the following cases . . .

X is separable.

X ∗ is w∗-separable (Valadier, 1971).

X is reflexive (Cascales, Kadets, R.).

(X ∗,w∗) is angelic and has density character ≤ ω1

(Cascales, Kadets, R.).

I We do not know an example of a scalarly measurable
multi-function without scalarly measurable selectors !!
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Characterization of set-valued Pettis integrability

Theorem (Cascales, Kadets, R.)

Let F : Ω→ cwk(X ) be a multi-function. Consider the following
statements:

(1) F is Pettis integrable.

(2) The family
{δ

∗(x∗,F ) : x∗ ∈ BX ∗} ⊂ RΩ

is uniformly integrable.

(3) F is scalarly measurable and every scalarly measurable selector
of F is Pettis integrable.

Then:

(1) =⇒ (2) + (3).

(3) =⇒ (1) if X has the µ-SMSP.

(1) ⇐⇒ (2) ⇐⇒ (3) if X has the µ-SMSP and the µ-PIP.
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The case of norm compact values

Theorem (Cascales, Kadets, R.)

Suppose (X ∗,w∗) is angelic. Let F : Ω→ cwk(X ) be a
multi-function having norm compact values. TFAE:

(1) F is Pettis integrable.

(2) {δ ∗(x∗,F ) : x∗ ∈ BX ∗} is uniformly integrable.

In this case,
∫
A F dµ is norm compact for all A ∈ Σ.

Theorem (Cascales, Kadets, R.)

Suppose (X ∗,w∗) is angelic. Let F : Ω→ cwk(X ) be a scalarly
measurable multi-function having norm compact values.
Then F admits scalarly measurable selectors.
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