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Multi-functions

Integration of multi-functions F : Q — 2X, where
e (Q,Z,u) is a complete probability space,
@ X is a Banach space.
Our multi-functions will take values in the family cwk(X) of all

convex weakly compact (non-empty) subsets of X.

Example: a multi-function F : [0,1] — cwk(R) can
be written as

for some real-valued functions g < G. | |
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AUMANN (1965):

Study via integrable selectors, with

/F du = {/f du: f integrable selector of F}. 9

DEBREU (1967):

_/ (0] F
Reduction to the case of single-valued functions Q Y
via an embedding
F
Jiewk(X) =Y, j

where Y is another Banach space. cwk(X)
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The Radstrom embedding theorem

For C ¢ X bounded and x* € X*, we write

6" (x",C):i=sup{x*(x): xe C}.

Theorem (Radstrom, 1952)

The map j : cwk(X) — lew(Bx-) given by
J(O)(x*) =8"(x*,C)

is positively homogeneous and additive.

Moreover, j is an isometry from cwk(X) (equipped with the
Hausdorff distance) into £ (Bx+).

-
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A multi-function F : Q — cwk(X) is called Debreu integrable iff
the single-valued function

joF :Q = le(Bx+)

is Bochner integrable.

.

Theorem (Debreu 1967, Byrne 1978)

Let F:Q — cwk(X) be a Debreu integrable multi-function. Then:
@ There is C € cwk(X) satisfying j(C) = [jo F du.
@ F admits Bochner integrable selectors and

C= {/f du . f Bochner integrable selector of F}.

.
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S (X F):Q =R, 8K, F) () =38 F().
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Suppose X is separable. A multi-function F : Q — cwk(X) is
called Pettis integrable iff

@ 6"(x*,F) is integrable for every x* € X*;
o for each A€ Z, thereis [, F du € cwk(X) such that

5*(x*,/ F du) :/5*(X*,F) du| Vx*e X~
A A

Studied by: Castaing-Valadier (1977), Di Piazza-Musial (2005-06), El
Amri-Hess (2000), Ziat (1997-2000), etc.
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Main reason

Separability allows to find measurable selectors !!

Definition

Let M be a metric space. A multi-function F : Q — 2M having
closed non-empty values is called Effros measurable iff

{weQ: Flo)NnU#0} €Z VY open UC M.

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let M be a separable complete metric space and F: Q — 2M an
Effros measurable multi-function having closed non-empty values.
Then F admits Borel measurable selectors.
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Definition

A multi-function F : Q — cwk(X) is called scalarly measurable iff
0*(x*, F) is measurable for every x* € X*.

Theorem (Castaing-Valadier, 1977)

Suppose X is separable. Then a multi-function F: Q — cwk(X) is
scalarly measurable if and only if it is Effros measurable.

Suppose X is separable.
Then every scalarly measurable multi-function F : Q — cwk(X)
admits strongly measurable selectors.
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A characterization of set-valued Pettis integrability

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let F: Q — cwk(X) be a multi-function.
TFAE:

(1) F is Pettis integrable.

(2) The family
{8*(x*,F): x* € Bx-} CR%

is uniformly integrable.

(3) F is scalarly measurable and every strongly measurable
selector of F is Pettis integrable.

In this case:

/ F du= {/ f du: f Pettis integrable selector of F}
A A

for all Ac s,
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Our main goal

To study the set-valued Pettis integral for arbitrary Banach spaces.

To find scalarly measurable selectors for scalarly measurable
multi-functions without the separability assumption.
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Let F:Q — cwk(X) be a Pettis integrable multi-function. Then:
@ F admits scalarly measurable selectors.
@ Every scalarly measurable selector of F is Pettis integrable.
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v

The “closure” can be removed if X* is w*-separable.
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Scalarly measurable selectors

Definition

We say that X has the Scalarly Measurable Selector Property
with respect to u (shortly u-SMSP)

iff every scalarly measurable multi-function F : Q — cwk(X)
admits a scalarly measurable selector.

X has the u-SMSP in each of the following cases ...

o X is separable.
o X* is w*-separable (Valadier, 1971).
o X is reflexive (Cascales, Kadets, R.).

o (X*,w") is angelic and has density character < @
(Cascales, Kadets, R.).

» We do not know an example of a scalarly measurable
multi-function without scalarly measurable selectors !!
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Let F: Q — cwk(X) be a multi-function satisfying
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Then F admits norm Borel measurable selectors in the following cases:
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and F has norm compact values.

(b) X has an equivalent uniformly convex norm.

.

Theorem (Cascales, Kadets, R.)

Let F: Q — cwk(X) be a multi-function satisfying
{weQ: F(w)NC#0} X V convex closed C C X.

(1) If X has an equivalent strictly convex norm, then F admits a selector
f:Q — X such that f~1(C) € Z for all convex closed set C C X.

(2) If X has an equivalent locally uniformly rotund norm,

then F admits a norm Borel measurable selector.

.
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