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Abstract. We study some aspects of countably additive vector mea-
sures with values in ℓ∞ and the Banach lattices of real-valued functions
that are integrable with respect to such a vector measure. On the one
hand, we prove that if W ⊆ ℓ∗∞ is a total set not containing sets equiva-
lent to the canonical basis of ℓ1(c), then there is a non-countably addi-
tive ℓ∞-valued map ν de�ned on a σ-algebra such that the composition
x∗ ◦ ν is countably additive for every x∗ ∈ W . On the other hand, we
show that a Banach lattice E is separable whenever it admits a count-
able, positively norming set and both E and E∗ are order continuous.
As a consequence, if ν is a countably additive vector measure de�ned
on a σ-algebra and taking values in a separable Banach space, then the
space L1(ν) is separable whenever L1(ν)

∗ is order continuous.

1. Introduction

Given a σ-algebra Σ and a Banach space X, we denote by ca(Σ, X) the
set of all countably additive X-valued measures de�ned on Σ; when X is
the real �eld, this set is simply denoted by ca(Σ). The topological dual of X
is denoted by X∗. The Orlicz-Pettis theorem implies that a map ν : Σ → X

belongs to ca(Σ, X) if (and only if) the composition x∗ ◦ ν belongs to ca(Σ)

for every x∗ ∈ X∗ (see, e.g., [10, p. 22, Corollary 4]). It is natural to wonder
whether testing on a �big� subset, instead of all X∗, is enough for countable
additivity. For instance, one might consider a total subset of X∗, that is, a
set W ⊆ X∗ satisfying

⋂
x∗∈W kerx∗ = {0}. In general, this does not work.

A typical example is given by the map ν : P(N) → ℓ∞ de�ned on the power
set of N by ν(A) := χA (the characteristic function of A) for all A ⊆ N.
Indeed, ν is not countably additive, while the composition πn◦ν : P(N) → R
is countably additive for every n ∈ N, where πn ∈ ℓ∗∞ is the nth-coordinate
functional given by πn(x) := x(n) for all x ∈ ℓ∞.

Thanks to the injectivity of ℓ∞, such an example can be carried over
to any Banach space containing subspaces isomorphic to ℓ∞. Actually, the
existence of such subspaces is the only obstacle, as the following result of
Diestel and Faires [9] (cf. [10, p. 23, Corollary 7]) shows:
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Theorem 1.1 (Diestel-Faires). Let X be a Banach space.

(i) Suppose that X contains a subspace isomorphic to ℓ∞. Then there

exist a total set W ⊆ X∗ and a map ν : P(N) → X such that

x∗ ◦ ν ∈ ca(P(N)) for every x∗ ∈ W and ν ̸∈ ca(P(N), X).

(ii) Suppose that X does not contain subspaces isomorphic to ℓ∞. Let

W ⊆ X∗ be a total set. If ν : Σ → X is a map de�ned on a σ-

algebra Σ such that x∗ ◦ ν ∈ ca(Σ) for every x∗ ∈ W , then ν ∈
ca(Σ, X).

The following concept (going back to [32, Appendice II]) arises naturally:

De�nition 1.2. Let X be a Banach space. A set W ⊆ X∗ is said to have
the Orlicz-Thomas (OT) property if, for every map ν : Σ → X de�ned on a
σ-algebra Σ, we have ν ∈ ca(Σ, X) whenever x∗ ◦ ν ∈ ca(Σ) for all x∗ ∈ W .

Any set having the OT property is necessarily total (Proposition 3.1).
With this language, the Diestel-Faires Theorem 1.1 says that every total
subset of the dual of a Banach space X has the OT property if and only if
X contains no subspace isomorphic to ℓ∞. Without additional assumptions
on X, one can check that any norm-dense subset of X∗ has the OT property
as explicitly given in [22, Lemma 3.1]; alternatively, we can apply the Vitali-
Hahn-Saks-Nikodým theorem (see, e.g., [10, p. 24, Corollary 10]) together
with the Orlicz-Pettis theorem. Given any total set W ⊆ X∗, a classical
result of Dieudonné and Grothendieck (see, e.g., [10, p. 16, Corollary 3])
states that an X-valued map de�ned on a σ-algebra is bounded and �nitely
additive if (and only if) x∗ ◦ ν is bounded and �nitely additive for every
x∗ ∈ W . This result and the Rainwater-Simons theorem (see, e.g., [12,
Theorem 3.134]) ensure that any James boundary ofX has the OT property,
[13, Proposition 2.9] (see also [22, Remark 3.2(i)]).

The previous discussion makes clear that the particular case of ℓ∞ is
the most interesting one as the OT property is concerned. In this paper we
study the OT property in ℓ∞ and some aspects of the Banach lattices of
real-valued functions which are integrable with respect to countably additive
ℓ∞-valued measures. The paper is organized as follows.

In Section 2 we introduce some terminology and preliminary facts.
In Section 3 we focus on the OT property. We begin with some basic

results in arbitrary Banach spaces, including an application to the factor-
ization of vector measures and their integration operators (Proposition 3.7).
The core of this section is devoted to studying the OT property in ℓ∞. Our
main result here (Theorem 3.15) states that any subset of ℓ∗∞ having the
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OT property contains a copy of the usual basis of ℓ1(c), where c stands for
the cardinality of the continuum (i.e., c = |R|). Some consequences of this
result are given. Let us mention that the existence of copies of the usual
basis of ℓ1(c) inside James boundaries (which always have the OT property)
has been studied thoroughly (see [16, 17] and the references therein).

In Section 4 we study some structural properties of the Banach lattice
L1(ν) of real-valued functions which are integrable with respect to a given
ν ∈ ca(Σ, X), where Σ is a σ-algebra and X is a Banach space. These
spaces play an important role in Banach lattices as well as in operator
theory (see Subsection 2.3 and the references therein). It is known that any
order continuous Banach lattice having a weak order unit is lattice-isometric
to a space of the form L1(ν). Suppose that ν has separable range (as every
ν ∈ ca(Σ, ℓ∞) is known to have). Does it follow that L1(ν) is separable?
The answer is in the negative, in general, even if ν is a �nite measure (see
Subsection 2.4). However, the answer is in the a�rmative with an additional
assumption that L1(ν)

∗ is order continuous, as asserted in Theorem 4.3. We
shall instead prove a more general fact: Theorem 4.6, which asserts that if E
is a Banach lattice admitting a countable, positively norming set and both
E and E∗ are order continuous, then E is separable. In particular, if µ is a
�nite measure for which L1(µ) is non-separable and 1 < p < ∞, then Lp(µ)

is not isomorphic to L1(ν) for any ν with separable range (Example 4.16).

2. Terminology and preliminaries

Given a set S, we denote by P(S) its power set, that is, the set of all
subsets of S. The cardinality of S is denoted by |S|. The density character

of a topological space (T,T), denoted by dens(T,T) or simply dens(T ), is
the minimal cardinality of a T-dense subset of T .

2.1. Banach spaces. All Banach spaces considered in this paper are real.
An operator is a continuous linear map between Banach spaces. Let X be a
Banach space. The norm of X is denoted by ∥ · ∥X or ∥ · ∥. The closed unit
ball of X is BX := {x ∈ X : ∥x∥ ≤ 1}. The weak (resp., weak∗) topology
on X (resp., X∗) is denoted by w (resp., w∗). By a subspace of X we mean
a norm-closed linear subspace. In almost all cases we will deal with norm-
closed linear subspaces, so we prefer to use such an abridged terminology;
when norm-closedness is not assumed, we use the term linear subspace unless
otherwise stated. By a projection from X onto a subspace Y ⊆ X we mean
an operator P : X → X such that P (X) = Y and P is the identity when
restricted to Y . The convex hull and linear span of a set D ⊆ X are denoted
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by co(D) and span(D), respectively, and their closures are denoted by co(D)

and span(D). A set B ⊆ BX∗ is said to be norming if there is a constant
c > 0 such that ∥x∥ ≤ c supx∗∈B |x∗(x)| for every x ∈ X. A set B ⊆ BX∗

is said to be a James boundary of X if for every x ∈ X there is x∗ ∈ B

such that ∥x∥ = x∗(x). If X is a Banach lattice, then its positive cone is
X+ = {x ∈ X : x ≥ 0}. Given a compact Hausdor� topological space K, we
denote by C(K) the Banach space of all real-valued continuous functions
on K, equipped with the supremum norm.

2.2. Banach function spaces. Let (Ω,Σ, µ) be a �nite measure space. To
de�ne Banach function spaces, we consider linear subspaces, not necessarily
norm-closed, of L1(µ). A Banach space E is said to be a Banach function

space (or a Köthe function space) over (Ω,Σ, µ) if the following conditions
hold:

(i) E is a linear subspace of L1(µ);
(ii) if f ∈ L0(µ) and |f | ≤ |g| µ-a.e. for some g ∈ E, then f ∈ E and

∥f∥E ≤ ∥g∥E;
(iii) the characteristic function χA of each A ∈ Σ belongs to E.

In this case, E is a Banach lattice when endowed with the µ-a.e. order and
the inclusion map E → L1(µ) is an operator. The Köthe dual of E is

E ′ := {g ∈ L1(µ) : fg ∈ L1(µ) for all f ∈ E}.

Any g ∈ E ′ gives raise to a functional φg ∈ E∗ de�ned by φg(f) :=
∫
Ω
fg dµ

for all f ∈ E. It is known that E is order continuous if and only if E∗ =

{φg : g ∈ E ′} (see, e.g., [21, p. 29]).

2.3. L1 of a vector measure. For detailed information on the L1 space of
a vector measure we refer the reader to [25, Chapter 3] and the references
given there. Here we just mention the basics needed in this paper. Let (Ω,Σ)
be a measurable space, let X be a Banach space and let ν ∈ ca(Σ, X). A
set A ∈ Σ is said to be ν-null if ν(B) = 0 for every B ∈ Σ with B ⊆ A. The
family of all ν-null sets is denoted by N (ν). By a Rybakov control measure

of ν we mean a �nite measure of the form µ = |x∗ ◦ ν| (the variation of
x∗ ◦ ν) for some x∗ ∈ X∗ such that N (µ) = N (ν) (see, e.g., [10, p. 268,
Theorem 2] for a proof of the existence of Rybakov control measures). A
Σ-measurable function f : Ω → R is called ν-integrable if f ∈ L1(|x∗ ◦ ν|)
for all x∗ ∈ X∗ and, for each A ∈ Σ, there is

∫
A
f dν ∈ X such that

x∗
(∫

A

f dν

)
=

∫
A

f d(x∗ ◦ ν) for all x∗ ∈ X∗.
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By identifying functions which coincide ν-a.e., the set L1(ν) of all (equiva-
lence classes of) ν-integrable functions is a Banach space with the norm

∥f∥L1(ν) := sup
x∗∈BX∗

∫
Ω

|f | d|x∗ ◦ ν|.

The integration operator is the (norm one) operator Iν : L1(ν) → X de�ned
by

Iν(f) :=

∫
Ω

f dν for all f ∈ L1(ν).

If µ is any Rybakov control measure of ν, then L1(ν) is a Banach function
space over (Ω,Σ, µ). As a Banach lattice, L1(ν) is order continuous and has a
weak order unit (the function χΩ). Conversely, any order continuous Banach
lattice having a weak order unit is lattice-isometric to the L1 space of a
countably additive vector measure de�ned on a σ-algebra. Indeed, on the one
hand, such a Banach lattice is lattice-isometric to a Banach function space E
over some �nite measure space (Ω,Σ, µ) (see, e.g., [21, Theorem 1.b.14]).
On the other hand, thanks to the order continuity of E, the map ν : Σ → E

given by ν(A) := χA for all A ∈ Σ is countably additive and one has
E = L1(ν) (see [5, Theorem 8], [11, Proposition 2.4(vi)]).

2.4. The usual measure on {0, 1}I. Let I be a non-empty set. For each
i ∈ I we denote by πi : {0, 1}I → {0, 1} the ith-coordinate projection.
Let ΛI be the σ-algebra on {0, 1}I generated by all the sets of the form⋂

i∈F π−1
i (w(i)), where F ⊆ I is �nite and w ∈ {0, 1}F . The usual product

probability measure on {0, 1}I , denoted by λI , is de�ned on ΛI and satis�es
λI(π

−1
i ({0})) = λI(π

−1
i ({1})) = 1

2
for all i ∈ I. For simplicity, we just call

λI the usual measure on {0, 1}I . We have dens(L1(λI)) = |I| if I is in�nite.
In particular, L1(λI) is not separable whenever I is uncountable. We refer
the reader to [15, �254] for more information on in�nite product measures
and the usual measure on {0, 1}I .

2.5. Measure algebras. Let (Ω,Σ, µ) be a probability space. We consider
the equivalence relation on Σ de�ned by A ∼ B if and only if µ(A△B) = 0.
The set of equivalence classes, denoted by Σ/N (µ), becomes a measure alge-
bra when equipped with the usual Boolean algebra operations and the func-
tional de�ned by µ•(A•) := µ(A) for all A ∈ Σ, where A• ∈ Σ/N (µ) denotes
the equivalence class of A. Given another probability space (Ω0,Σ0, µ0), the
measure algebras of µ and µ0 are said to be isomorphic if there is a Boolean
algebra isomorphism

θ : Σ/N (µ) → Σ0/N (µ0)
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such that µ•
0 ◦ θ = µ•. In this case, there is a lattice isometry Φ : L1(µ) →

L1(µ0) such that
∫
Ω
f dµ =

∫
Ω0

Φ(f) dµ0 and Φ(fχB) = Φ(f)χC whenever
f ∈ L1(µ) and θ(B•) = C•. For more information on measure algebras,
see [14].

3. The Orlicz-Thomas property

3.1. The OT property in arbitrary Banach spaces. Throughout this
subsection X is a Banach space. We begin with an observation:

Proposition 3.1. If W ⊆ X∗ has the OT property, then W is total.

Proof. If W is not total, then there is x ∈ X \ {0} in such a way that
x∗(x) = 0 for all x∗ ∈ W . Let ξ : P(N) → [0, 1] be a �nitely additive
measure which is not countably additive. Then there is a disjoint sequence
(An)n∈N in P(N) such that the sequence (ξ(

⋃
m>n Am))n∈N does not converge

to 0. De�ne ν : P(N) → X by ν(A) := ξ(A)x for all A ⊆ N. For each
x∗ ∈ W we have (x∗ ◦ ν)(A) = 0 for all A ⊆ N, hence x∗ ◦ ν ∈ ca(P(N)).
Since ∥ν(

⋃
m>n Am)∥ = ξ(

⋃
m>n Am)∥x∥ for every n ∈ N, we have ν ̸∈

ca(P(N), X). □

The following proposition is straightforward.

Proposition 3.2. Let W ⊆ X∗. The following statements are equivalent:

(i) W has the OT property.

(ii) co(W ) has the OT property.

(iii) span(W ) has the OT property.

As usual, ω1 denotes the �rst uncountable ordinal. Given a set D ⊆ X∗,
we denote by S1(D) ⊆ X∗ the set of all limits of w∗-convergent sequences
contained in D. For any ordinal α ≤ ω1, we de�ne Sα(D) by trans�nite
induction as follows:

• S0(D) := D,
• Sα(D) := S1(Sβ(D)) if α = β + 1 for some ordinal β < ω1,
• Sα(D) :=

⋃
β<α Sβ(D) if α is a limit ordinal.

Then Sω1(D) is the smallest w∗-sequentially closed subset of X∗ contain-
ing D. In general, we have

D ⊆ D
∥·∥ ⊆ S1(D) ⊆ Sω1(D) ⊆ D

w∗

.

Proposition 3.3. Let W ⊆ X∗. The following statements are equivalent:

(i) W has the OT property.

(ii) W
∥·∥

has the OT property.
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(iii) S1(W ) has the OT property.

(iv) Sω1(W ) has the OT property.

(v) W
w
has the OT property.

Proof. The implications (i)⇒(ii)⇒(iii)⇒(iv) and (i)⇒(v) are obvious.
(iv)⇒(i): Suppose that Sω1(W ) has the OT property. Let ν : Σ → X

be a map de�ned on a σ-algebra Σ such that x∗ ◦ ν ∈ ca(Σ) for all x∗ ∈
W . Bearing in mind the Vitali-Hahn-Saks-Nikodým theorem (see, e.g., [10,
p. 24, Corollary 10]), a standard trans�nite induction argument shows that,
for each ordinal α ≤ ω1, we have x∗ ◦ ν ∈ ca(Σ) for all x∗ ∈ Sα(W ). In
particular, this holds for α = ω1 and so ν ∈ ca(Σ, X).

(v)⇒(i): Since W
w ⊆ co(W )

w
= co(W )

∥·∥
, the set co(W )

∥·∥
has the OT

property. By the equivalence (i)⇔(ii) applied to co(W ), this set has the OT
property and so does W (by Proposition 3.2). □

The following proposition gives an operator-theoretic reformulation of
the OT property. Given a σ-algebra Σ, the set ca(Σ) is a Banach space
when equipped with the variation norm. It is known that a set H ⊆ ca(Σ)

is relatively weakly compact if and only if it is bounded and there is a non-
negative µ0 ∈ ca(Σ) such that H is uniformly µ0-continuous, i.e., for every
ε > 0 there is δ > 0 such that supµ∈H |µ(A)| ≤ ε for every A ∈ Σ satisfying
µ0(A) ≤ δ (see, e.g., [7, p. 92, Theorem 13]).

Proposition 3.4. Let W ⊆ X∗ be a subspace and let ν : Σ → X be a map

de�ned on a σ-algebra Σ such that x∗ ◦ ν ∈ ca(Σ) for all x∗ ∈ W . Then the

map

T : W → ca(Σ), T (x∗) := x∗ ◦ ν,
is an operator and the following statements hold:

(i) If ν ∈ ca(Σ, X), then T is weakly compact.

(ii) If T is weakly compact and BW ⊆ BX∗ is norming, then ν ∈ ca(Σ, X).

Proof. A routine application of the Closed Graph Theorem ensures that T
is an operator.

(i) The fact that ν is countably additive ensures the existence of a non-
negative µ0 ∈ ca(Σ) such that {x∗ ◦ ν : x∗ ∈ BX∗} ⊇ T (BW ) is uniformly
µ0-continuous (see, e.g., [10, p. 14, Corollary 6]).

(ii) Since BW is absolutely convex and norming, we have

(3.1) BW
w∗

⊇ cBX∗

for some c > 0, by the Hahn-Banach separation theorem. Fix a non-negative
µ0 ∈ ca(Σ) such that T (BW ) is uniformly µ0-continuous. Observe that ν is
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�nitely additive because W is total. To prove that ν is countably additive
it su�ces to check that it is µ0-continuous. Fix ε > 0. Choose δ > 0 such
that

|x∗(ν(A))| ≤ cε for every A ∈ Σ with µ0(A) ≤ δ and for every x∗ ∈ BW .

Clearly, the previous inequality is also valid for all x∗ ∈ BW
w∗

and then
(3.1) implies that

∥ν(A)∥ = sup
x∗∈BX∗

|x∗(ν(A))| ≤ ε for every A ∈ Σ with µ0(A) ≤ δ.

Therefore, ν is µ0-continuous and so it is countably additive. □

Proposition 3.5. Let T : X → Y be an operator between Banach spaces

and let ν : Σ → X be a map de�ned on a σ-algebra Σ. The following

statements hold:

(i) T ◦ ν ∈ ca(Σ, Y ) if and only if x∗ ◦ ν ∈ ca(Σ) for all x∗ ∈ T ∗(BY ∗).

(ii) Suppose that T ∗(BY ∗) has the OT property. Then ν ∈ ca(Σ, X) if

and only if T ◦ ν ∈ ca(Σ, Y ).

(iii) If T ∗∗ is injective, then T ∗(BY ∗) has the OT property.

Proof. (i) follows at once from the Orlicz-Pettis theorem. (ii) is a conse-
quence of (i). To prove (iii), note that the injectivity of T ∗∗ is equivalent
(via the Hahn-Banach separation theorem) to the norm denseness of T ∗(Y ∗)

in X∗. From Proposition 3.3 it follows that T ∗(Y ∗) has the OT property.
Since span(T ∗(BY ∗)) = T ∗(Y ∗), we can apply Proposition 3.2 to conclude
that T ∗(BY ∗) has the OT property. □

Typical examples of non-isomorphic embeddings having injective biad-
joints are the operators associated to the Davis-Figiel-Johnson-Peªczy«ski
factorization (see, e.g., [2, Theorem 5.37]). The following simple example
shows that the conclusion of Proposition 3.5(ii) can fail for arbitrary injec-
tive operators.

Example 3.6. Let ν : P(N) → ℓ∞ be the �nitely additive measure de�ned
by ν(A) := χA for all A ⊆ N and let T : ℓ∞ → ℓ1 be the injective operator
de�ned by T ((xn)n∈N) := (2−nxn)n∈N for all (xn)n∈N ∈ ℓ∞. Observe that
T ◦ ν is �nitely additive and

∥(T ◦ ν)(A)∥ =
∑
n∈A

2−n for all A ⊆ N,

so that T ◦ ν ∈ ca(P(N), ℓ1). However, ν ̸∈ ca(P(N), ℓ∞).



ON VECTOR MEASURES WITH VALUES IN ℓ∞ 9

Let T : X → Y be an injective operator between Banach spaces, let
(Ω,Σ) be a measurable space and suppose that the integration operator Iν
of ν ∈ ca(Σ, Y ) factors as

L1(ν)
Iν //

S ""

Y

X
T

??

for some operator S : L1(ν) → X. De�ne ν̃(A) := S(χA) for all A ∈ Σ. In
[22, Theorem 3.7] it was proved that ν̃ ∈ ca(Σ, X) satis�es:

(a) ν = T ◦ ν̃ and N (ν) = N (ν̃);
(b) L1(ν) = L1(ν̃) (with equivalent norms); and
(c) S = Iν̃ .

This result improves [26, Lemma 3.1] in which (b) was obtained via the
Diestel-Faires Theorem 1.1 under the additional assumption that X does
not contain subspaces isomorphic to ℓ∞. In a similar spirit, we have:

Proposition 3.7. Let T : X → Y be an operator between Banach spaces

such that T ∗(BY ∗) has the OT property. Let (Ω,Σ) be a measurable space

and let ν ∈ ca(Σ, Y ) satisfy Iν(L1(ν)) ⊆ T (X). Then there is ν̃ ∈ ca(Σ, X)

such that:

(a) ν = T ◦ ν̃ and N (ν) = N (ν̃);

(b) L1(ν) = L1(ν̃) (with equivalent norms); and

(c) Iν = T ◦ Iν̃.

Proof. Observe that T ∗(BY ∗) is total (by Proposition 3.1) and so T is injec-
tive. For each A ∈ Σ we have ν(A) = Iν(χA) ∈ T (X), so there is a unique
ν̃(A) ∈ X such that

T (ν̃(A)) = ν(A).

The so-de�ned map ν̃ : Σ → X satis�es ν = T ◦ ν̃ and belongs to ca(Σ, X)

because T ∗(BY ∗) has the OT property and T ∗(y∗)◦ ν̃ = y∗ ◦T ◦ ν̃ = y∗ ◦ν ∈
ca(Σ) for all y∗ ∈ BY ∗ .

By [25, Lemma 3.27] we have N (ν) = N (ν̃), the inclusion L1(ν̃) ⊆ L1(ν)

and the equality Iν = T ◦ Iν̃ on L1(ν̃).
To prove the reverse inclusion L1(ν) ⊆ L1(ν̃), let f ∈ L1(ν). The fact

that Iν(L1(ν)) ⊆ T (X) enables us to de�ne a �nitely additive set function
η : Σ → X such that T (η(A)) = Iν(fχA) =

∫
A
f dν for every A ∈ Σ. Then

Proposition 3.5(ii) ensures that η is countably additive because T ∗(BY ∗) has
the OT property and the inde�nite integral A 7→

∫
A
f dν on Σ is countably

additive. Given n ∈ N, let An := |f |−1([0, n]) ∈ Σ and fn := fχAn . Fix



10 S. OKADA, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ

A ∈ Σ. Each fn is bounded and Σ-measurable, hence it is ν̃-integrable and,
moreover, it satis�es

(3.2)
∫
A

fn dν̃ = η(A ∩ An).

Indeed, let (s(n)k )k∈N be a sequence of Σ-simple functions which are uniformly
convergent to fn as k → ∞. Since ν = T ◦ ν̃, it follows that

T

(∫
A

fn dν̃

)
= T

(
lim
k→∞

∫
A

s
(n)
k dν̃

)
= lim

k→∞
T

(∫
A

s
(n)
k dν̃

)
= lim

k→∞

∫
A

s
(n)
k dν =

∫
A

fn dν =

∫
A∩An

f dν = T (η(A ∩ An)) .

This veri�es (3.2) as T is injective. Now (3.2) together with countable ad-
ditivity of η imply that limn→∞

∫
A
fn dν̃ = limn→∞ η(A ∩ An) = η(A) (as

(An)n∈N is increasing with union Ω). Since this holds for an arbitrarily �xed
A ∈ Σ and since limn→∞ fn = f pointwise on Ω, it follows from a result
by Lewis (see, e.g., [25, Theorem 3.5]) that f ∈ L1(ν̃). Therefore we have
proved L1(ν) ⊆ L1(ν̃) and hence (c) holds. The Closed Graph Theorem can
be used to show that both inclusions L1(ν) ⊆ L1(ν̃) and L1(ν̃) ⊆ L1(ν) are
continuous, so that the norms of L1(ν) and L1(ν̃) are equivalent. □

We �nish this subsection with two results showing that the study of
countable additivity of vector measures in arbitrary Banach spaces can be
reduced somehow to the ℓ∞-valued case.

Proposition 3.8. Let W ⊆ BX∗ and let iW : X → ℓ∞(W ) be the operator

de�ned by

iW (x) :=
(
x∗(x)

)
x∗∈W for all x ∈ X.

Let ν : Σ → X be a map de�ned on a σ-algebra Σ and de�ne ν̂W := iW ◦ ν.
Let us consider the following statements:

(i) ν ∈ ca(Σ, X).

(ii) ν̂W ∈ ca(Σ, ℓ∞(W )).

(iii) φ ◦ ν̂W ∈ ca(Σ) for every φ ∈ ℓ1(W ) ⊆ ℓ∞(W )∗.

(iv) x∗ ◦ ν ∈ ca(Σ) for every x∗ ∈ W .

Then (i)⇒(ii)⇒(iii)⇔(iv). Moreover:

(a) If W is w∗-compact, then (ii)⇔(iii)⇔(iv).

(b) If i∗∗W is injective, then (i)⇔(ii).

Proof. The implications (i)⇒(ii)⇒(iii) are immediate.
To prove (iii)⇔(iv), observe �rst that for each x∗ ∈ W we have x∗ ◦ ν =

ex∗ ◦ ν̂W , where ex∗ ∈ ℓ1(W ) is the vector de�ned by ex∗(z∗) = 0 for all
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z∗ ∈ W \ {x∗} and ex∗(x∗) = 1. Since ℓ1(W ) = span({ex∗ : x∗ ∈ W})
∥·∥

⊆
ℓ∞(W )∗, the equivalence (iii)⇔(iv) is a consequence of the Vitali-Hahn-
Saks-Nikodým theorem (see, e.g., [10, p. 24, Corollary 10]).

(a) If W is w∗-compact, then iW takes values in the subspace C(W ) ⊆
ℓ∞(W ) of all w∗-continuous real-valued functions on W . The set

Γ := {±ex∗|C(W ) : x
∗ ∈ W} ⊆ BC(W )∗

is a James boundary of C(W ) and so it has the OT property, as we already
mentioned in the Introduction. Finally, observe that (iv) is equivalent to
saying that γ ◦ ν̂W ∈ ca(Σ) for every γ ∈ Γ.

(b) This follows at once from Proposition 3.5(ii-iii). □

Observe that if W ⊆ BX∗ is norming, then the operator iW of Proposi-
tion 3.8 is an isomorphic embedding.

Proposition 3.9. Let W ⊆ BX∗ be a norming set and let ν : Σ → X

be a map de�ned on a σ-algebra Σ such that x∗ ◦ ν ∈ ca(Σ) for every

x∗ ∈ W . If ν ̸∈ ca(Σ, X), then there is a countable set W0 ⊆ W such that

ν̂W0 ̸∈ ca(Σ, ℓ∞(W0)), and we have a commutative diagram

ℓ∞(W )

PW0

��

Σ
ν //

ν̂W

66

ν̂W0 ((

X
iW0

##

iW

;;

ℓ∞(W0)

where PW0 is the operator de�ned by PW0(u) := u|W0 for all u ∈ ℓ∞(W ).

Proof. Observe that ν is �nitely additive. Since ν is not countably additive,
we can take a sequence (Ai)i∈N of pairwise disjoint elements of Σ such that
the sequence (ν(

⋃
i>nAi))n∈N does not converge to 0. Write Bn :=

⋃
i>nAi

for all n ∈ N. Since W is norming, there is a constant k > 0 such that
for each n ∈ N there is x∗

n ∈ W such that |x∗
n(ν(Bn))| ≥ k∥ν(Bn)∥X . Let

W0 := {x∗
n : n ∈ N}. Then

∥ν̂W0(Bn)∥ℓ∞(W0) ≥ |x∗
n(ν(Bn))| ≥ k∥ν(Bn)∥X for all n ∈ N,

hence the sequence (ν̂W0(Bn))n∈N does not converge to 0 in ℓ∞(W0). It fol-
lows that ν̂W0 ̸∈ ca(Σ, ℓ∞(W0)). The last statement is immediate. □
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3.2. The OT property in ℓ∞. As noted in the Introduction, the �nitely
additive map ν : P(N) → ℓ∞ de�ned by ν(A) := χA for A ⊆ N is not
countably additive while πn ◦ ν ∈ ca(P(N)) for each coordinate functional
πn ∈ ℓ∗∞. This example has been used to see that the set {πn : n ∈ N} ⊆ ℓ∗∞
fails to have the OT property. To provide further examples of the same
nature, we shall �rst determine the form of general ℓ∞-valued countably
additive measures in Proposition 3.12 below. The proof uses a couple of
results which shall also be needed later. The �rst one goes back to Bartle,
Dunford and Schwartz [4] (cf. [10, p. 14, Corollary 7]) while the second one
is folklore (see, e.g., [12, Proposition 3.107]).

Theorem 3.10 (Bartle-Dunford-Schwartz). Let Σ be a σ-algebra, let X be

a Banach space and let ν ∈ ca(Σ, X). Then the range of ν, that is, the set

R(ν) := {ν(A) : A ∈ Σ}

is relatively weakly compact in X.

Proposition 3.11. Let X be a separable Banach space. Then any weakly

compact subset of X∗ is norm-separable.

Proposition 3.12. Let ν : Σ → ℓ∞ be a map de�ned on a σ-algebra Σ such

that {πn ◦ ν : n ∈ N} ⊆ ca(Σ). The following conditions are equivalent:

(i) ν ∈ ca(Σ, ℓ∞).

(ii) {ν(A) : A ∈ Σ} is relatively weakly compact in ℓ∞.

(iii) {ν(A) : A ∈ Σ} is norm-separable in ℓ∞.

(iv) {πn ◦ ν : n ∈ N} is a uniformly countably additive subset of ca(Σ).

(v) {πn ◦ ν : n ∈ N} is relatively weakly compact in ca(Σ).

(vi) There exists a non-negative µ ∈ ca(Σ) such that {πn ◦ ν : n ∈ N} is

uniformly µ-continuous.

Proof. The implications (i)⇒(ii) and (ii)⇒(iii) follow from Theorem 3.10
and Proposition 3.11, respectively.

To prove (iii)⇒(i), note that (iii) implies that ν takes values in a sep-
arable subspace X of ℓ∞. Since X contains no subspace isomorphic to ℓ∞

and the set of restrictions {πn|X : n ∈ N} ⊆ X∗ is total (for X), the
Diestel-Faires Theorem 1.1(ii) implies that ν is countably additive.

Observe that

(3.3) sup
n∈N

|(πn ◦ ν)(A)| = ∥ν(A)∥ℓ∞ for every A ∈ Σ.
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The previous equality yields the equivalence (i)⇔(iv), because if (Ai)i∈N is
a sequence of pairwise disjoint elements of Σ, then

sup
n∈N

∣∣∣∣∣(πn ◦ ν)

(⋃
i>m

Ai

)∣∣∣∣∣ =
∥∥∥∥∥ν
(⋃

i>m

Ai

)∥∥∥∥∥
ℓ∞

for all m ∈ N.

Moreover, (3.3) and the Nikodým boundedness theorem (see, e.g., [10,
p. 14, Theorem 1]) apply to conclude that {πn ◦ ν : n ∈ N} is bounded
in ca(Σ). So, the equivalences (iv)⇔(v)⇔(vi) follow from a well known
characterization of relatively weakly compact subsets of ca(Σ) (see, e.g., [7,
p. 92, Theorem 13]). □

Motivated by condition (vi) in Proposition 3.12 above, we present the
following:

Example 3.13. Let λ be the Lebesgue measure on the Lebesgue σ-algebra
Σ of [0, 1]. Take a norm-bounded sequence (fn)n∈N in L1[0, 1]. Let ν : Σ →
ℓ∞ be the map de�ned by

ν(A) :=

(∫
A

fn dλ

)
n∈N

for all A ∈ Σ.

According to the proof of Proposition 3.12 and the Dunford-Pettis theorem
(see, e.g., [7, p. 93]), the map ν is countably additive if and only if (fn)n∈N
is uniformly λ-integrable, that is,

lim
λ(A)→0

sup
n∈N

∫
A

|fn| dλ = 0.

This holds when there is g ∈ L1[0, 1] such that |fn| ≤ g for all n ∈ N. For
further criteria for uniform integrability, see [8], for example.

It is easy to check that the norm-bounded sequence (nχ[0,1/n))n∈N in
L1[0, 1] is not uniformly λ-integrable. The same holds for the sequence
(fn)n∈N de�ned by fn(t) :=

∫ t

0
nχ[1−1/n,1)(s)/(1 − s)ds for t ∈ [0, 1] and

n ∈ N, [23, p. 295]. More generally, [3, Example 1] provides a norm-bounded
sequence in L1[0, 1] whose restriction to any A ∈ Σ \N (λ) is not uniformly
λ-integrable.

Exploiting the fact that the Banach spaces ℓ∞ and L∞[0, 1] are isomor-
phic (see, e.g., [1, Theorem 4.3.10]), let us see that L1[0, 1] considered as a
total subspace of L∞[0, 1]∗ fails to have the OT property.

Example 3.14. Let λ and Σ be as in Example 3.13. De�ne ν : Σ → L∞[0, 1]

by ν(A) = χA for all A ∈ Σ. Then ν ̸∈ ca(Σ, L∞[0, 1]) and for each φ ∈
L1[0, 1] we have φ ◦ ν ∈ ca(Σ), because (φ ◦ ν)(A) =

∫
A
φdλ for all A ∈ Σ.

So, L1[0, 1] ⊆ L∞[0, 1]∗ fails to have the OT property.
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It turns out that the existence of a norm-separable subset of X∗ having
the OT property prevents the Banach space X from containing subspaces
isomorphic to ℓ∞. This is asserted in Corollary 3.22 below, whose proof
requires our main result:

Theorem 3.15. Let W ⊆ ℓ∗∞ be a set not containing sets equivalent to the

canonical basis of ℓ1(c). Then W fails the OT property.

Given a Banach space X and a non-empty set I, a set {xi : i ∈ I} ⊆ X

is said to be equivalent to the canonical basis of ℓ1(I) if it is bounded and
there is a constant c > 0 such that∥∥∥∥∥∑

i∈I

aixi

∥∥∥∥∥ ≥ c
∑
i∈I

|ai|

for every (ai)i∈I ∈ ℓ1(I). In this case, span({xi : i ∈ I}) is isomorphic
to ℓ1(I).

The proof of Theorem 3.15 requires some known facts and uses the fol-
lowing result of Talagrand (see [31, Théorème 4]). Recall that the co�nality
(denoted by cf(κ)) of a cardinal κ is the smallest cardinal κ′ such that κ

is the union of κ′ many sets of cardinality < κ. Both cf(ω1) and cf(c) are
uncountable (see, e.g., [18, Corollary 5.12]).

Theorem 3.16 (Talagrand). Let I be a set such that |I| has uncountable

co�nality. Let X be a Banach space and let D ⊆ X be a set such that X =

span(D). If X contains a subspace isomorphic to ℓ1(I), then D contains a

set which is equivalent to the canonical basis of ℓ1(I).

The following result is an application of [28, Lemma 1.1]:

Lemma 3.17. Let X be the ℓ1-sum of a family of Banach spaces {Xi : i ∈ I}
and, for each i ∈ I, let πi : X → Xi be the canonical projection. Let W ⊆ X

be a subspace. If the set {i ∈ I : πi(W ) ̸= {0}} contains a set J such that |J |
has uncountable co�nality, then W contains a subspace isomorphic to ℓ1(J).

Proof. For each i ∈ J we �x xi ∈ BW and x∗
i ∈ BX∗

i
with x∗

i (πi(xi)) ̸= 0.
De�ne an operator T : X → ℓ1(J) by

T (x) :=
(
x∗
i (πi(x))

)
i∈J for all x ∈ X.

For each k ∈ N we de�ne Jk := {i ∈ J : |x∗
i (πi(xi))| > 1

k
}, so that J =⋃

k∈N Jk. Since |J | has uncountable co�nality, there is k ∈ N such that
|Jk| = |J |.
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For each i ∈ J , let ϕi ∈ ℓ1(J)
∗ be the ith-coordinate functional. Since Jk

is contained in the set

J ′ :=

{
i ∈ J :

∣∣ϕi(T (x))
∣∣ > 1

k
for some x ∈ BW

}
,

we have |J ′| = |J |. We can now apply [28, Lemma 1.1] to conclude that W
contains a subspace isomorphic to ℓ1(J). □

Another ingredient for proving Theorem 3.15 is Theorem 3.18 below.
It can be proved as [19, Proposition 4] (which can also be found in [1,
Theorem 2.5.4]), bearing in mind that there is an almost disjoint family A
of in�nite subsets of N with |A| = c (see, e.g., the proof of [1, Lemma 2.5.3]).

Theorem 3.18 (Kalton). Let T : ℓ∞ → ℓ∞(I) be an operator, where I is

a non-empty set with |I| < c. If T vanishes on c0, then there is an in�nite

set A ⊆ N such that T vanishes on the subspace

ZA :=
{
(xn)n∈N ∈ ℓ∞ : xn = 0 for all n ∈ N \ A

}
.

Let K be a compact Hausdor� topological space. By Riesz's representa-
tion theorem, the dual C(K)∗ is the Banach space of all real-valued regular
Borel measures on K with the variation norm. The subset of C(K)∗ con-
sisting of all regular Borel probability measures on K is denoted by P (K).
Given µ ∈ P (K), any ξ ∈ C(K)∗ can be written (in a unique way) as
ξ = f dµ + ξ′ for some f ∈ L1(µ) and some ξ′ ∈ C(K)∗ which is singular
with respect to µ; here f dµ ∈ C(K)∗ is given by (f dµ)(B) =

∫
B
f dµ for

every Borel set B ⊆ K and, as usual, we write f = dξ
dµ
.

The Banach spaces ℓ∞ and C(βN) are isometrically isomorphic, where
βN denotes the Stone-�ech compacti�cation of N with the discrete topology.
Recall that βN is the set of all ultra�lters on N, which is a compact Hausdor�
topological space such that the family Â := {U ∈ βN : A ∈ U}, for A ⊆ N,
forms a basis of clopen sets. Each n ∈ N is identi�ed with the ultra�lter
{A ⊆ N : n ∈ A} ∈ βN.

We are now ready to prove the main result of this section:

Proof of Theorem 3.15. Let R : C(βN) → ℓ∞ be the isometric isomorphism
satisfying R(χÂ) = χA for all A ⊆ N. Let µ0 ∈ P (βN) be the regular
Borel probability measure on βN satisfying µ0({n}) = 2−n for all n ∈ N.
Observe that for each f ∈ L1(µ0) the series of real numbers

∑
n∈N f(n)2

−n

is absolutely convergent and we have

(3.4)
∫
B̂

f dµ0 =
∑
n∈B

f(n)2−n for every B ⊆ N.
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Zorn's lemma ensures the existence of a set ∆ ⊆ P (βN) containing µ0 and
consisting of mutually singular elements of P (βN) such that ∆ is maximal
(with respect to the inclusion) among all subsets of P (βN) satisfying those
properties. Then for any ξ ∈ C(βN)∗ we have

(3.5) ξ =
∑
µ∈∆

dξ

dµ
dµ,

the series being absolutely convergent in C(βN)∗, and the space C(βN)∗ is
isometrically isomorphic to the ℓ1-sum Z of the family of Banach spaces
{L1(µ) : µ ∈ ∆} via the operator S : C(βN)∗ → Z de�ned by

S(ξ) :=

(
dξ

dµ

)
µ∈∆

for all ξ ∈ C(βN)∗

(see, e.g., the proof of [1, Proposition 4.3.8(iii)]).
By Theorem 3.16 we can assume without loss of generality that W is a

subspace of ℓ∗∞. The conclusion is obvious if W = {0}, so we assume that
W ̸= {0}. For each µ ∈ ∆, let πµ : Z → L1(µ) be the canonical projection.
Since W does not contain subspaces isomorphic to ℓ1(c), the same holds for
the subspace (S ◦R∗)(W ) ⊆ Z and so the set

∆0 :=
{
µ ∈ ∆ : πµ

(
(S ◦R∗)(W )

)
̸= {0}

}
is non-empty and has cardinality |∆0| < c (by Lemma 3.17).

Let T : ℓ∞ → ℓ∞(∆0) be the operator de�ned by

T (x)(µ) :=

{∫
βN R

−1(x) dµ if µ ̸= µ0

0 if µ = µ0

for every µ ∈ ∆0 and for every x ∈ ℓ∞. Every µ ∈ ∆ \ {µ0} is singular with
respect to µ0 and hence, µ(Â) = 0 for every �nite set A ⊆ N. Bearing in
mind that c0 = span({χA : A ⊆ N �nite}) ⊆ ℓ∞, we deduce that T (x) = 0

for every x ∈ c0. The fact that |∆0| < c allows us to apply Theorem 3.18 to
get an in�nite set A ⊆ N such that T vanishes on

ZA :=
{
(xn)n∈N ∈ ℓ∞ : xn = 0 for all n ∈ N \ A

}
,

that is,

(3.6)
∫
βN

R−1(x) dµ = 0 for every x ∈ ZA and for every µ ∈ ∆0 \ {µ0}.

De�ne a �nitely additive map ν : P(A) → ℓ∞ by ν(B) := χB for all
B ⊆ A. Note that ν is not countably additive, because A is in�nite and
∥ν({n})∥ = 1 for every n ∈ A. To �nish the proof we will show that W fails
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the OT property by checking that φ ◦ ν ∈ ca(P(A)) for arbitrarily φ ∈ W .
Observe �rst that

R∗(φ)
(3.5)
=
∑
µ∈∆

dR∗(φ)

dµ
dµ =

∑
µ∈∆0

dR∗(φ)

dµ
dµ,

the series being absolutely convergent in C(βN)∗. Moreover, for each B ⊆ A

we have χB ∈ ZA and so (3.6) yields µ(B̂) = 0 for all µ ∈ ∆0 \ {µ0}. Hence,

(φ◦ν)(B) = R∗(φ)(χB̂) =
∑
µ∈∆0

∫
B̂

dR∗(φ)

dµ
dµ =

{
0 if µ0 ̸∈ ∆0∫
B̂

dR∗(φ)
dµ0

dµ0 if µ0 ∈ ∆0.

Therefore, if µ0 ̸∈ ∆0, then φ◦ν is identically null and so countably additive.
If µ0 ∈ ∆0, then

(φ ◦ ν)(B) =

∫
B̂

dR∗(φ)

dµ0

dµ0
(3.4)
=
∑
n∈B

dR∗(φ)

dµ0

(n)2−n

for every B ⊆ A, where the series
∑

n∈A
dR∗(φ)
dµ0

(n)2−n is absolutely conver-
gent, hence φ ◦ ν is countably additive. The proof is �nished. □

The converse of Theorem 3.15 fails to hold, in general. An example fol-
lows:

Example 3.19. Let 2N − 1 (resp., 2N) be the set of all odd (resp., even)
natural numbers. With the notation of Theorem 3.18, let W ⊆ ℓ∗∞ be the
norm-closure of (Z2N−1)

⊥ + ℓ1. Then:

(i) W is total and contains a subspace isometric to ℓ1(2
c); and

(ii) W fails the OT property.

Indeed, W is total because it contains ℓ1. Let P : ℓ∞ → Z2N be the canon-
ical projection and de�ne Φ : Z∗

2N → (Z2N−1)
⊥ by Φ(ξ) := ξ ◦ P for all

ξ ∈ Z∗
2N. Then Φ is an isometric embedding and therefore W contains a

subspace isometric to Z∗
2N. Since Z2N is isometric to C(βN), its dual con-

tains a subspace isometric to ℓ1(|βN|), and the same holds for W . Now,
bear in mind that |βN| = 2c (see, e.g., [33, 19.13(d)]) to get (i). In or-
der to show that W fails the OT property, de�ne ν : P(N) → ℓ∞ by
ν(A) := χA∩(2N−1) = Q(χA) for all A ⊆ N, where Q : ℓ∞ → Z2N−1 is the
canonical projection. Clearly, ν is not countably additive. However, we claim
that φ ◦ ν ∈ ca(P(N)) for every φ ∈ W . Indeed, by the Vitali-Hahn-Saks-
Nikodým theorem (see, e.g., [10, p. 24, Corollary 10]), it su�ces to check it
whenever φ ∈ (Z2N−1)

⊥ ∪ {en : n ∈ N}, where {en : n ∈ N} is the canonical
basis of ℓ1. On the one hand, we have φ ◦ ν = 0 (hence it is countably
additive) whenever φ ∈ (Z2N−1)

⊥. On the other hand, for each n ∈ N the
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composition en ◦ν is countably additive, because (en ◦ν)(A) = χA∩(2N−1)(n)

for all A ⊆ N. This establishes the claim and hence,W fails the OT property.

Corollary 3.20. Let X be a Banach space such that there is a subset of X∗

having the OT property but not containing sets equivalent to the canonical

basis of ℓ1(c). Then X does not contain subspaces isomorphic to ℓ∞.

Proof. Let W ⊆ X∗ be a set having the OT property such that W does not
contain sets equivalent to the canonical basis of ℓ1(c). Given any subspace
Y ⊆ X, the set W |Y := {x∗|Y : x∗ ∈ W} ⊆ Y ∗ has the OT property
and does not contain sets equivalent to the canonical basis of ℓ1(c). By
Theorem 3.15, Y cannot be isomorphic to ℓ∞. □

Remark 3.21. The converse of the previous corollary is not true in general,
as witnessed by the space X = c0(c). Indeed, c0(c) contains no subspace
isomorphic to ℓ∞ (because any separable subspace of c0(c) is isomorphic
to a subspace of c0, while any separable Banach space is isomorphic to a
subspace of ℓ∞). The space c0(c) is weakly compactly generated, so its dual
c0(c)

∗ = ℓ1(c) satis�es dens(ℓ1(c), w∗) = dens(c0(c), ∥ · ∥) = c (see, e.g., [12,
Theorem 13.3]). Fix a total set W ⊆ ℓ1(c). Then W has the OT property

by the Diestel-Faires Theorem 1.1(ii). Since the subspace W0 := span(W )
∥·∥

is w∗-dense in ℓ1(c), we have dens(W0, ∥ · ∥) = c. Now, a classical result of
Köthe (see, e.g., [29, p. 29]) ensures that W0 contains a subspace isomorphic
to ℓ1(c). Finally, Theorem 3.16 applies to conclude that W contains a set
equivalent to the canonical basis of ℓ1(c).

Corollary 3.22. Let X be a Banach space. The following statements are

equivalent:

(i) X does not contain subspaces isomorphic to ℓ∞ and X∗ is w∗-separable.

(ii) There is a countable subset of X∗ having the OT property.

(iii) There is a norm-separable subset of X∗ having the OT property.

Proof. (i)⇒(ii) follows from the Diestel-Faires Theorem 1.1(ii), bearing in
mind that the w∗-separability of X∗ is equivalent to the existence of a
countable total subset of X∗. The implication (ii)⇒(i) is a consequence of
Corollary 3.20 and Proposition 3.1. The equivalence (ii)⇔(iii) follows from
Proposition 3.3. □
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4. L1 spaces of vector measures with separable range

Let Σ be a σ-algebra, let X be a Banach space and let ν ∈ ca(Σ, X). By
Theorem 3.10 and Proposition 3.11, the set

R(ν) = {ν(A) : A ∈ Σ} ⊆ X

(the range of ν) is separable when X = ℓ∞ and so, in this case, ν can
be seen as an element of ca(Σ, Y ) for some separable subspace Y ⊆ ℓ∞.
Conversely, if X is separable, then it is isometric to a subspace of ℓ∞ (see,
e.g., [1, Remark 1.4.2(b)]) and so ν can be seen as an element of ca(Σ, ℓ∞).
As a consequence, we get:

Proposition 4.1. Let E be a Banach function space over a �nite measure

space (Ω,Σ, µ). The following statements are equivalent:

(i) There is ν0 ∈ ca(Σ, ℓ∞) such that E is lattice-isomorphic to L1(ν0).

(ii) There exist a separable Banach space X and ν1 ∈ ca(Σ, X) such that

E is lattice-isomorphic to L1(ν1).

Moreover, both statements hold if E is order continuous and separable.

Proof. The equivalence (i)⇔(ii) has already been explained above. For the
�moreover� part, note that the order continuity of E implies that the map

ν : Σ → E, ν(E) := χE for all E ∈ Σ,

is countably additive and E = L1(ν) (see Subsection 2.3). □

In general, the separability ofR(ν) does not imply that the space L1(ν) is
separable, as witnessed by the space L1(λI) of the usual measure on {0, 1}I

for any uncountable set I (see Subsection 2.4).
The following example provides a vector measure ν such that R(ν) is

separable, span(R(ν)) is in�nite-dimensional and L1(ν) is neither separable
nor lattice-isomorphic to any AL-space.

Recall that a Banach lattice E is said to be an AL-space whenever its
norm is 1-additive, that is, ∥x + y∥E = ∥x∥E + ∥y∥E for all x, y ∈ E+

with x ∧ y = 0. It is known that a Banach lattice is an AL-space if and
only if it is lattice-isometric to the usual space L1(µ) of some non-negative
measure µ (possibly in�nite); see, e.g., [2, Theorem 4.27]. We refer the reader
to [6, Proposition 2] which determines exactly when the L1-spaces of vector
measures are lattice-isomorphic to an AL-space.

Example 4.2. Let G be any non-metrizable compact abelian group (e.g.,
the product {0, 1}I or TI for any uncountable set I). By µ we denote the
Haar probability measure on the Borel σ-algebra B(G). Fix g ∈ L1(µ) and
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de�ne ν : B(G) → L∞(µ) by ν(A) := χA ∗ g (the convolution) for all
A ∈ B(G). Then:

(i) ν ∈ ca(B(G), L∞(µ));
(ii) R(ν) is relatively norm-compact (hence separable);
(iii) L1(ν) is not separable; and
(iv) if, in addition, g ̸∈ L∞(µ), then span(R(ν)) is in�nite-dimensional

and L1(ν) is not lattice-isomorphic to any AL-space.

Indeed, (i) and (iii) follow from parts (I) and (II)(iv) of [24, Theorem 1]
(where ν is denoted by m

(∞)
g ). Statement (ii) was noticed in [24, Remark 2].

For statement (iv), suppose that g ̸∈ L∞(µ). Then ν has in�nite variation,
[24, Theorem 2], and so L1(ν) is not lattice-isomorphic to any AL-space,
[6, Proposition 2]. To prove that span(R(ν)) is in�nite-dimensional, assume
by way of contradiction that span(R(ν)) is �nite-dimensional. Then the
integration operator Iν : L1(ν) → L∞(µ) is absolutely 1-summing, because
its range is contained in span(R(ν)). Therefore, the restriction of Iν to
L∞(µ), which coincides with the convolution operator C

(∞)
g : L∞(µ) →

L∞(µ) (see part (II)(ii) of [24, Theorem 1]), is absolutely 1-summing as
well. This contradicts the fact that g ̸∈ L∞(µ), [24, Theorem 2].

This section is devoted to proving the following:

Theorem 4.3. Let Σ be a σ-algebra, let X be a separable Banach space and

let ν ∈ ca(Σ, X). If L1(ν)
∗ is order continuous, then L1(ν) is separable.

We will obtain Theorem 4.3 as a consequence of a more general approach
dealing with the concept of positively norming set introduced in [30]:

De�nition 4.4. Let E be a Banach lattice. A set B ⊆ BE∗ ∩ (E∗)+ is said
to be positively norming if there is a constant c > 0 such that

∥x∥E ≤ c sup
φ∈B

φ(|x|) for every x ∈ E.

Lemma 4.5. Let (Ω,Σ) be a measurable space, let X be a separable Ba-

nach space and let ν ∈ ca(Σ, X). Then L1(ν) admits a countable, positively

norming set.

Proof. Let µ be a Rybakov control measure of ν, so that L1(ν) is a Banach
function space over (Ω,Σ, µ). Since X is separable, BX∗ is w∗-separable
and so we can take a w∗-dense sequence (x∗

n)n∈N in BX∗ . For each n ∈ N,
the measure |x∗

n ◦ ν| is µ-continuous and we consider its Radon-Nikodým
derivative gn := d|x∗

n◦ν|
dµ

∈ (L1(ν))
′ and the associated functional φgn ∈
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BL1(ν)∗ ∩ (L1(ν)
∗)+ (see Subsections 2.2 and 2.3). Since (x∗

n)n∈N is w∗-dense
in BX∗ , for each f ∈ L1(ν) we can apply [27, Lemma 2.2] to get

∥f∥L1(ν) = sup
n∈N

∫
Ω

|f | d|x∗
n ◦ ν| = sup

n∈N
φgn(|f |),

that is, {φgn : n ∈ N} is positively norming. □

It is now clear that Theorem 4.3 will be an immediate consequence of
the following:

Theorem 4.6. Let E be a Banach lattice such that both E and E∗ are

order continuous. If E admits a countable, positively norming set, then E

is separable.

The proof of Theorem 4.6 requires some previous work. Proposition 4.10
below presents a special case when E is a Banach function space and will
be used to prove Theorem 4.6.

Lemma 4.7. Let E be a Banach function space over a �nite measure

space (Ω,Σ, µ).

(i) If E is separable, then L1(µ) is separable.

(ii) If L1(µ) is separable and E is order continuous, then E is separable.

Proof. (i) If E is separable, then so is S := span({χA : A ∈ Σ}) ⊆ E. Since
the inclusion map ι : E → L1(µ) is an operator, the set ι(S) is separable.
Since ι(S) is dense in L1(µ), we conclude that L1(µ) is separable.

(ii) Since E is order continuous, S is dense in E (see, e.g., [25, Re-
mark 2.6]). So, it su�ces to check that {χA : A ∈ Σ} is separable as a
subset of E. Now, since L1(µ) is separable, there is a sequence (An)n∈N in Σ

such that

inf
n∈N

µ(An△A) = 0 for every A ∈ Σ.

Therefore, the order continuity of E implies that the set {χAn : n ∈ N} is
dense in {χA : A ∈ Σ} as subsets of E (see, e.g., [25, Lemma 2.37(ii)]). □

Given a �nite measure space (Ω,Σ, µ) and A ∈ Σ \ N (µ), we de�ne

ΣA := {B ∈ Σ : B ⊆ A} and µA(B) := µ(A)−1µ(B) for every B ∈ ΣA,

so that µA is a probability measure on the measurable space (A,ΣA).

Lemma 4.8. Let (Ω,Σ, µ) be a �nite measure space such that L1(µ) is

not separable and let (gn)n∈N be a sequence in L1(µ). Then there exist A ∈
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Σ \ N (µ) and a sequence (Am)m∈N of pairwise disjoint sets of ΣA \ N (µ)

such that ∫
A

fgn dµA =

(∫
A

f dµA

)(∫
A

gn dµA

)
for every f ∈ span({χAm : m ∈ N}) and for every n ∈ N.

Proof. Since L1(µ) is not separable, Maharam's theorem (see, e.g., [14, Sec-
tion 3] or [20, �14]) ensures the existence of A ∈ Σ \ N (µ) such that the
measure algebra of µA is isomorphic to the measure algebra of the usual
measure λI on {0, 1}I , for some uncountable set I. Therefore, there is a
lattice isometry Φ : L1(µA) → L1(λI) satisfying

(4.1)
∫
A

v dµA =

∫
{0,1}I

Φ(v) dλI for every v ∈ L1(µA)

and
(4.2)
Φ(uv) = Φ(u)Φ(v) whenever u ∈ span({χB : B ∈ ΣA}) and v ∈ L1(µA)

(see Subsection 2.5).
We denote by

ρJ ′J : {0, 1}J ′ → {0, 1}J

the canonical projection for any J ⊆ J ′ ⊆ I.
For each n ∈ N we have Φ(gn|A) ∈ L1(λI) and so there exist a countable

set In ⊆ I and hn ∈ L1(λIn) such that Φ(gn|A) = hn ◦ ρIIn (see, e.g., [15,
254Q]). Then the set I ′ :=

⋃
n∈N In is countable and for each n ∈ N we have

(4.3) Φ(gn|A) = h̃n ◦ ρII′ ,

where h̃n := hn ◦ρI′In ∈ L1(λI′). Note that the set J := I \I ′ is uncountable
and, in particular, in�nite. So, we can �nd a sequence (Bm)m∈N of pairwise
disjoint elements of ΛJ \ N (λJ). De�ne

Cm := Bm × {0, 1}I′ ∈ ΛI for all m ∈ N,

so that the Cm's are pairwise disjoint with λI(Cm) = λJ(Bm).
Claim. For every h ∈ span({χCm : m ∈ N}) and for every n ∈ N we have

(4.4)
∫
{0,1}I

hΦ(gn|A) dλI =

(∫
{0,1}I

h dλI

)(∫
{0,1}I

Φ(gn|A) dλI

)
.
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Indeed, note that h = h̃ ◦ ρIJ for some h̃ ∈ span({χBm : m ∈ N}) and then
Fubini's theorem yields

(4.5)
∫
{0,1}I

hΦ(gn|A) dλI
(4.3)
=

∫
{0,1}I

(h̃ ◦ ρIJ) (h̃n ◦ ρII′) dλI

=

(∫
{0,1}J

h̃ dλJ

)(∫
{0,1}I′

h̃n dλI′

)
.

Since the function ρII′ is ΛI-to-ΛI′ measurable and λI′(A) = λI(ρ
−1
II′(A)) for

every A ∈ ΛI′ (see, e.g., [15, 254O]), we have

(4.6)
∫
{0,1}I

Φ(gn|A) dλI
(4.3)
=

∫
{0,1}I

h̃n ◦ ρII′ dλI =

∫
{0,1}I′

h̃n dλI′ .

Similarly, or by direct computation, we also have

(4.7)
∫
{0,1}I

h dλI =

∫
{0,1}J

h̃ dλJ .

By putting together (4.5), (4.6) and (4.7) we get (4.4), as claimed.
Finally, let (Am)m∈N be a sequence of pairwise disjoint elements of ΣA

such that Φ(χAm|A) = χCm for all m ∈ N. Then µ(Am) = µ(A)λI(Cm) > 0

for all m ∈ N. Given any f ∈ span({χAm : m ∈ N}), we have Φ(f |A) ∈
span({χCm : m ∈ N}) and for each n ∈ N we have∫

A

fgn dµA
(4.1)
=

∫
{0,1}I

Φ(f |A gn|A) dλI
(4.2)
=

∫
{0,1}I

Φ(f |A)Φ(gn|A) dλI

(4.4)
=

(∫
{0,1}I

Φ(f |A) dλI

)(∫
{0,1}I

Φ(gn|A) dλI

)
(4.1)
=

(∫
A

f dµA

)(∫
A

gn dµA

)
.

The proof is �nished. □

We shall make use of the following well known characterization of Banach
lattices with order continuous dual (see, e.g., [2, Theorem 4.69]):

Theorem 4.9. Let E be a Banach lattice. The following statements are

equivalent:

(i) E∗ is order continuous.

(ii) There is no disjoint sequence in E+ which is equivalent to the canon-

ical basis of ℓ1.

(iii) E does not contain sublattices which are lattice isomorphic to ℓ1.

(iv) E∗ does not contain subspaces isomorphic to ℓ∞.

Proposition 4.10. Let E be a Banach function space over a �nite measure

space (Ω,Σ, µ) such that both E and E∗ are order continuous. If E admits

a countable, positively norming set, then E is separable.
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Proof. Fix a sequence (ϕn)n∈N in BE∗ ∩ (E∗)+ and a constant c > 0 such
that

(4.8) ∥f∥E ≤ c sup
n∈N

ϕn(|f |) for every f ∈ E.

Since E is order continuous, we can identify E∗ with E ′, hence for each
n ∈ N we have ϕn = φgn for some gn ∈ E ′ (see Subsection 2.2). Then (4.8)
reads as

(4.9) ∥f∥E ≤ c sup
n∈N

∫
Ω

|f |gn dµ for every f ∈ E.

Suppose, by contradiction, that E is not separable. By Lemma 4.7(ii),
the space L1(µ) is not separable. Then we can apply Lemma 4.8 to (gn)n∈N

(as a sequence in L1(µ)) to �nd A ∈ Σ \ N (µ) and a sequence (Am)m∈N of
pairwise disjoint sets of ΣA \ N (µ) such that

(4.10)
∫
A

fgn dµA =

(∫
A

f dµA

)(∫
A

gn dµA

)
for every f ∈ span({χAm : m ∈ N}) and for every n ∈ N.

It follows that for each f ∈ span({χAm : m ∈ N}) we have

(cµ(A))−1∥f∥E
(4.9)

≤ sup
n∈N

∫
A

|f |gn dµA

(4.10)
= sup

n∈N

(∫
A

|f | dµA

)(∫
A

gn dµA

)
≤ µ(A)−2 ∥χA∥E ∥f∥L1(µ)

≤ µ(A)−2∥χA∥E ∥ι∥ ∥f∥E,

where ι : E → L1(µ) is the inclusion map.
Therefore, there exist constants α, β > 0 such that

(4.11)
α∥f∥L1(µ) ≤ ∥f∥E ≤ β∥f∥L1(µ) for every f ∈ span({χAm : m ∈ N}).

De�ne fm := µ(Am)
−1χAm ∈ E for all m ∈ N. We can use (4.11) to prove

that the disjoint sequence (fm)m∈N in E+ is equivalent to the canonical basis
of ℓ1. This contradicts the order continuity of E∗ (see Theorem 4.9). □

Recall that an unconditional Schauder decomposition of a Banach spaceX
is a family {Xi : i ∈ I} of subspaces of X such that each x ∈ X can be
written in a unique way as x =

∑
i∈I xi, where xi ∈ Xi for all i ∈ I, the

series being unconditionally convergent. In this case, for each i ∈ I one has
a projection Pi from X onto Xi in such a way that x =

∑
i∈I Pi(x) for all

x ∈ X.
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Lemma 4.11. Let X be a Banach space and let {Xi : i ∈ I} be an uncondi-

tional Schauder decomposition of X. For each i ∈ I, let Pi be the associated

projection from X onto Xi. If X
∗ contains no subspace isomorphic to ℓ∞,

then for every x∗ ∈ X∗ the set {i ∈ I : x∗ ◦ Pi ̸= 0} is countable.

Proof. For each J ⊆ I, let QJ be the projection from X onto span(
⋃

i∈J Xi)

de�ned by QJ(x) :=
∑

i∈J Pi(x) for all x ∈ X.
Fix x∗ ∈ X∗ and de�ne ν : P(I) → X∗ by

ν(J) := x∗ ◦QJ for all J ⊆ I.

We identify X as a subspace of X∗∗ in the canonical way. Note that x ◦ ν ∈
ca(P(I)) for every x ∈ X, because the series of real numbers

∑
i∈I x

∗(Pi(x))

is absolutely convergent and

(x ◦ ν)(J) = x∗(QJ(x)) =
∑
i∈J

x∗(Pi(x)) for all J ⊆ I.

Since X∗ contains no subspace isomorphic to ℓ∞ and X is a total subset
of X∗∗, we can apply the Diestel-Faires Theorem 1.1(ii) to conclude that
ν ∈ ca(P(I), X∗).

We claim that for every ε > 0 the set Iε := {i ∈ I : ∥x∗ ◦ Pi∥ ≥ ε}
is �nite. Indeed, if not, then there is a sequence (in)n∈N of distinct ele-
ments of Iε. However, the countable additivity of ν implies that the series∑

n∈N ν({in}) =
∑

n∈N x
∗ ◦ Pin is unconditionally convergent in X∗, which

is impossible because ∥x∗ ◦ Pin∥ ≥ ε for all n ∈ N. Therefore, the set
{i ∈ I : x∗ ◦ Pi ̸= 0} =

⋃
n∈N I1/n is countable. □

Lemma 4.12. Let E be a Banach lattice admitting a countable, positively

norming set. Then E admits a strictly positive functional, that is, there is

φ ∈ (E∗)+ such that φ(x) > 0 whenever x ∈ E+ \ {0}.

Proof. Take a sequence (φn)n∈N in BE∗ ∩ (E∗)+ and a constant c > 0 such
that ∥x∥E ≤ c supn∈N φn(|x|) for every x ∈ E. Now, it is clear that the
functional φ :=

∑
n∈N 2

−nφn satis�es the required property. □

We have gathered all the tools needed to prove the main result of this
section:

Proof of Theorem 4.6. Since E is order continuous, it admits an uncondi-
tional Schauder decomposition {Ei : i ∈ I} consisting of pairwise disjoint
bands, each having a weak order unit (see, e.g., [21, Proposition 1.a.9]). For
each i ∈ I, let Pi be the associated projection from E onto Ei.

Fix i ∈ I. Since Ei is order continuous and has a weak order unit, it
is lattice-isometric to a Banach function space over a �nite measure space
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(see, e.g., [21, Proposition 1.b.14]). Since E∗ is order continuous, so is E∗
i

(bear in mind the equivalence (i)⇔(iii) in Theorem 4.9). Moreover, Ei ad-
mits a countable, positively norming set (consider the restriction to Ei of a
countable, positively norming set for E). Then, Ei is separable by Proposi-
tion 4.10.

Fix φ ∈ (E∗)+ such that φ(x) > 0 whenever x ∈ E+\{0} (see Lemma 4.12).
For each i ∈ I we have Ei ̸= {0} and so φ◦Pi ̸= 0. Since E∗ is order contin-
uous, it contains no subspace isomorphic to ℓ∞ (see Theorem 4.9) and then
Lemma 4.11 implies that I is countable. From the separability of each Ei it
follows that E is separable. □

Example 4.13. The conclusion of Theorem 4.6 can fail if the order con-
tinuity of E is dropped. For instance, the non-separable Banach lattice ℓ∞

admits a countable, positively norming set (the coordinate functionals form
a norming set) and ℓ∗∞ is an AL-space, hence it is order continuous (see,
e.g., [2, p. 194 and Theorem 4.23]).

Any re�exive Banach lattice is order continuous (see, e.g., [2, Theo-
rem 4.9]), so we get:

Corollary 4.14. Let E be a re�exive Banach lattice. If E admits a count-

able, positively norming set, then E is separable.

The previous corollary and Lemma 4.5 yield:

Corollary 4.15. Let Σ be a σ-algebra, let X be a separable Banach space

and let ν ∈ ca(Σ, X). If L1(ν) is re�exive, then L1(ν) is separable.

Example 4.16. Let (Ω,Σ, µ) be a �nite measure space such that L1(µ) is
not separable and let 1 < p < ∞. Then

(i) Lp(µ) is a non-separable re�exive Banach function space over (Ω,Σ, µ).
(ii) Lp(µ) = L1(ν), where ν ∈ ca(Σ, Lp(µ)) is de�ned by ν(A) := χA for

all A ∈ Σ.
(iii) IfX is a separable Banach space, Σ0 is a σ-algebra and ν0 ∈ ca(Σ0, X),

then Lp(µ) is not isomorphic to L1(ν0) even as Banach spaces. To
see this, apply Corollary 4.15 and part (i) above.
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