Introduction Fréchet and Birkhoff views The Bourgain property Characterization of Birkhoff integrability A characterization of Banach spaces not containing ℓ^1

The Birkhoff integral and the property of Bourgain

B. Cascales and J. Rodríguez

Universidad de Murcia

9th November 2004

Introduction Fréchet and Birkhoff views The Bourgain property Characterization of Birkhoff integrability A characterization of Banach spaces not containing ℓ^1

Plan of the talk

- Fréchet's characterization of the Lebesgue integral and Birkhoff's definition.
- The Bourgain property of a family of real-valued functions.
- Characterization of Birkhoff integrability for a function $f: \Omega \longrightarrow X$ by means of the family

$$Z_f = \{x^* \circ f: \ x^* \in X^*, \ \|x^*\| \le 1\}.$$

• A new characterization of Banach spaces not containing ℓ^1 .

· 曰 › · · 同 › · · 글 › · · 글 ›

Introduction Fréchet and Birkhoff views The Bourgain property Characterization of Birkhoff integrability A characterization of Banach spaces not containing l^1

Fréchet (1915)

Let $f: \Omega \longrightarrow \mathbb{R}$ be a function.

Given a countable partition Γ = (A_n) of Ω in Σ, we say that f is summable with respect to Γ if f(A_n) is bounded whenever μ(A_n) > 0 and the series

$$J_*(f,\Gamma) = \sum_n \mu(A_n) \inf f(A_n), \quad J^*(f,\Gamma) = \sum_n \mu(A_n) \sup f(A_n),$$

are absolutely convergent.

• The intersection

 $\bigcap\{[J_*(f,\Gamma),J^*(f,\Gamma)]: f \text{ is summable with respect to } \Gamma\}$

is a single point x if and only if f is Lebesgue integrable and $x = \int_{\Omega} f \ d\mu$.

Introduction Fréchet and Birkhoff views The Bourgain property Characterization of Birkhoff integrability A characterization of Banach spaces not containing l^1

Birkhoff (1935)

Let $f: \Omega \longrightarrow X$ be a function.

Given a countable partition Γ = (A_n) of Ω in Σ, we say that f is summable with respect to Γ if f(A_n) is bounded whenever μ(A_n) > 0 and the set of sums

$$J(f,\Gamma) = \left\{ \sum_{n} \mu(A_n) f(t_n) : t_n \in A_n \right\}$$

is made up of *unconditionally* convergent series.

We say that f is Birkhoff integrable if for every ε > 0 there is a countable partition Γ of Ω in Σ for which f is summable and diam(J(f, Γ)) < ε. In this case, the Birkhoff integral of f is the only point in the intersection

 $\bigcap \{\overline{\operatorname{co}(J(f,\Gamma))}: \ f \text{ is summable with respect to } \Gamma \}.$

・ロト ・個ト ・ヨト ・ヨト

Definition

A family $\mathscr{H} \subset \mathbb{R}^{\Omega}$ has the **Bourgain property** if for every $\varepsilon > 0$ and every $A \in \Sigma$ with $\mu(A) > 0$ there are $A_1, \ldots, A_n \subset A$, $A_i \in \Sigma$ with $\mu(A_i) > 0$, such that for every $h \in \mathscr{H}$

 $\min_{1 \leq i \leq n} \operatorname{diam}(h(A_i)) < \varepsilon.$

In this case:

- ${\mathscr H}$ is made up of measurable functions.
- For each h∈ ℋ^{𝔅_p} there is a sequence (h_n) in ℋ converging to h almost everywhere (Bourgain).

(日) (同) (三) (三) (三)

Lemma 1

Let $\mathscr{H} \subset \mathbb{R}^{\Omega}$ be a family of functions. TFAE:

- (1) \mathscr{H} has the Bourgain property;
- (2) for every $\varepsilon > 0$ and every $\delta > 0$ there is a finite partition Γ of Ω in Σ such that for every $h \in \mathscr{H}$

$$\mu\left(\bigcup\{A\in\Gamma: \operatorname{diam}(h(A))>\varepsilon\}\right)<\delta.$$

Moreover, if \mathscr{H} is uniformly bounded, we can add

(3) for every $\varepsilon > 0$ there is a finite partition Γ of Ω in Σ such that for every $h \in \mathscr{H}$

$$\sum_{A \in \Gamma} \mu(A) \operatorname{ diam}(h(A)) < \varepsilon.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

The bounded case The general case

Theorem 2

Let $f: \Omega \rightarrow X$ be a *bounded* function. TFAE:

(1) f is Birkhoff integrable;

(2) the family $Z_f = \{x^* \circ f : x^* \in B_{X^*}\}$ has the Bourgain property;

(3) there is a norming set $B \subset B_{X^*}$ such that the family $Z_{f,B} = \{x^* \circ f : x^* \in B\}$ has the Bourgain property.

(日) (周) (王) (王)

Introduction Fréchet and Birkhoff views The Bourgain property Characterization of Birkhoff integrability A characterization of Banach spaces not containing t

The bounded case The general case

Lemma 3

Let B_1,\ldots,B_n be subsets of X such that for every $x^*\in B_{X^*}$

 $\min_{1 \le i \le n} \operatorname{diam}(x^*(B_i)) < 1.$

Then there is $1 \le j \le n$ such that B_j is bounded.

Lemma 4

Let $f: \Omega \longrightarrow X$ be a function such that $Z_f = \{x^* \circ f: x^* \in B_{X^*}\}$ has the Bourgain property. Then there is a countable partition (A_n) of Ω in Σ such that $f(A_n)$ is bounded whenever $\mu(A_n) > 0$.

The bounded case The general case

Theorem 5

- Let $f: \Omega \longrightarrow X$ be a function. TFAE:
- (1) f is Birkhoff integrable;
- (2) the family $Z_f = \{x^* \circ f : x^* \in B_{X^*}\}$ is a uniformly integrable subset of $\mathscr{L}^1(\mu)$ with the Bourgain property.

Corollary 6

Let $f: \Omega \longrightarrow X$ be a Birkhoff integrable function. Then $\{\int_A f \ d\mu : A \in \Sigma\}$ is *norm* relatively compact.

(日) (周) (王) (王)

Definition

A Banach space X has the **weak Radon-Nikodým property** (WRNP) if for every complete probability space (Ω, Σ, μ) and every μ -continuous countably additive vector measure $v : \Sigma \longrightarrow X$ of σ -finite variation, there is a Pettis integrable function $f : \Omega \longrightarrow X$ such that

$$v(E)=\int_E f \ d\mu$$
 for all $E\in \Sigma.$

Theorem 7

- Let X be a Banach space. TFAE:
- (1) X^* has the WRNP;
- (2) X does not contain an isomorphic copy of ℓ^1 ;
- (3) for every complete probability space (Ω, Σ, μ) and every μ -continuous countably additive vector measure $v : \Sigma \longrightarrow X^*$ of σ -finite variation, there is a *Birkhoff* integrable function $f : \Omega \longrightarrow X^*$ such that

$$v(E) = \int_E f \ d\mu$$
 for all $E \in \Sigma$.

イロト イポト イヨト イヨト

Introduction Fréchet and Birkhoff views The Bourgain property Characterization of Birkhoff integrability A characterization of Banach spaces not containing l¹

Lemma 8

Let $\mathscr{H} \subset \mathbb{R}^{\Omega}$ be a uniformly bounded family. TFAE:

(1) \mathscr{H} has the Bourgain property;

(2) for every a < b in \mathbb{R} and every $A \in \Sigma$ with $\mu(A) > 0$ there are $A_1, \ldots, A_n \subset A$, $A_i \in \Sigma$ with $\mu(A_i) > 0$, such that for every $h \in \mathscr{H}$ there is $1 \le i \le n$ such that

either
$$\inf h(A_i) \ge a$$
 or $\sup h(A_i) \le b$.

Lemma 9

Let \mathfrak{T} be a topology on Ω with $\mathfrak{T} \subset \Sigma$ for which μ is hereditarily supported. Let $\mathscr{H} \subset \mathbb{R}^{\Omega}$ be a uniformly bounded family of continuous functions that does not contain ℓ^1 -sequences (for the supremum norm). Then \mathscr{H} has the Bourgain property.

Introduction Fréchet and Birkhoff views The Bourgain property Characterization of Birkhoff integrability A characterization of Banach spaces not containing ℓ^1

References

G. Birkhoff, Integration of functions with values in a Banach space, Trans. Amer. Math. Soc. 38 (1935), no. 2.

D. van Dulst, Characterizations of Banach spaces not containing l¹, CWI Tract, vol. 59, 1989.

M. Fréchet, *Sur l'intégrale d'une fonctionnelle étendue à un ensemble abstrait*, Bull. Soc. Math. France **43** (1915).

D. H. Fremlin, *The McShane and Birkhoff integrals of vector-valued functions*, University of Essex Mathematics Department Research Report 92-10.

N. Ghoussoub, G. Godefroy, B. Maurey, and W. Schachermayer, *Some topological and geometrical structures in Banach spaces*, Mem. Amer. Math. Soc. **70** (1987), no. 378.

Introduction Fréchet and Birkhoff views The Bourgain property Characterization of Birkhoff integrability A characterization of Banach spaces not containing l¹

References

