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Plan of the talk

Fréchet’s characterization of the Lebesgue integral and
Birkhoff’s definition.

The Bourgain property of a family of real-valued functions.

Characterization of Birkhoff integrability for a function
f : Ω−→ X by means of the family

Zf = {x∗ ◦ f : x∗ ∈ X ∗, ‖x∗‖ ≤ 1}.

A new characterization of Banach spaces not containing `1.
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Fréchet (1915)

Let f : Ω−→ R be a function.

Given a countable partition Γ = (An) of Ω in Σ, we say that f
is summable with respect to Γ if f (An) is bounded whenever
µ(An) > 0 and the series

J∗(f ,Γ) = ∑
n

µ(An) inf f (An), J∗(f ,Γ) = ∑
n

µ(An)sup f (An),

are absolutely convergent.

The intersection⋂
{[J∗(f ,Γ),J∗(f ,Γ)] : f is summable with respect to Γ}

is a single point x if and only if f is Lebesgue integrable and
x =

∫
Ω f dµ.
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Birkhoff (1935)

Let f : Ω−→ X be a function.

Given a countable partition Γ = (An) of Ω in Σ, we say that f
is summable with respect to Γ if f (An) is bounded whenever
µ(An) > 0 and the set of sums

J(f ,Γ) =
{

∑
n

µ(An)f (tn) : tn ∈ An

}
is made up of unconditionally convergent series.

We say that f is Birkhoff integrable if for every ε > 0 there
is a countable partition Γ of Ω in Σ for which f is summable
and diam(J(f ,Γ)) < ε. In this case, the Birkhoff integral of
f is the only point in the intersection⋂

{co(J(f ,Γ)) : f is summable with respect to Γ}.
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Definition

A family H ⊂ RΩ has the Bourgain property if for every ε > 0
and every A ∈ Σ with µ(A) > 0 there are A1, . . . ,An ⊂ A, Ai ∈ Σ
with µ(Ai ) > 0, such that for every h ∈H

min
1≤i≤n

diam(h(Ai )) < ε.

In this case:

H is made up of measurable functions.

For each h ∈H
Tp

there is a sequence (hn) in H converging
to h almost everywhere (Bourgain).
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Lemma 1

Let H ⊂ RΩ be a family of functions. TFAE:

(1) H has the Bourgain property;

(2) for every ε > 0 and every δ > 0 there is a finite partition Γ
of Ω in Σ such that for every h ∈H

µ

(⋃
{A ∈ Γ : diam(h(A)) > ε}

)
< δ .

Moreover, if H is uniformly bounded, we can add

(3) for every ε > 0 there is a finite partition Γ of Ω in Σ such that
for every h ∈H

∑
A∈Γ

µ(A) diam(h(A)) < ε.
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The bounded case
The general case

Theorem 2

Let f : Ω→ X be a bounded function. TFAE:

(1) f is Birkhoff integrable;

(2) the family Zf = {x∗ ◦ f : x∗ ∈ BX ∗} has the Bourgain property;

(3) there is a norming set B ⊂ BX ∗ such that the family
Zf ,B = {x∗ ◦ f : x∗ ∈ B} has the Bourgain property.
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Lemma 3

Let B1, . . . ,Bn be subsets of X such that for every x∗ ∈ BX ∗

min
1≤i≤n

diam(x∗(Bi )) < 1.

Then there is 1≤ j ≤ n such that Bj is bounded.

Lemma 4

Let f : Ω−→ X be a function such that Zf = {x∗ ◦ f : x∗ ∈ BX ∗}
has the Bourgain property. Then there is a countable partition
(An) of Ω in Σ such that f (An) is bounded whenever µ(An) > 0.
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Theorem 5

Let f : Ω−→ X be a function. TFAE:

(1) f is Birkhoff integrable;

(2) the family Zf = {x∗ ◦ f : x∗ ∈ BX ∗} is a uniformly integrable
subset of L 1(µ) with the Bourgain property.

Corollary 6

Let f : Ω−→ X be a Birkhoff integrable function. Then
{
∫
A f dµ : A ∈ Σ} is norm relatively compact.
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Definition

A Banach space X has the weak Radon-Nikodým property
(WRNP) if for every complete probability space (Ω,Σ,µ) and
every µ-continuous countably additive vector measure ν : Σ−→ X
of σ -finite variation, there is a Pettis integrable function
f : Ω−→ X such that

ν(E ) =
∫
E

f dµ for all E ∈ Σ.
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Theorem 7

Let X be a Banach space. TFAE:

(1) X ∗ has the WRNP;

(2) X does not contain an isomorphic copy of `1;

(3) for every complete probability space (Ω,Σ,µ) and every
µ-continuous countably additive vector measure ν : Σ−→ X ∗

of σ -finite variation, there is a Birkhoff integrable function
f : Ω−→ X ∗ such that

ν(E ) =
∫
E

f dµ for all E ∈ Σ.

B. Cascales and J. Rodŕıguez The Birkhoff integral and the property of Bourgain



Introduction
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Lemma 8

Let H ⊂ RΩ be a uniformly bounded family. TFAE:

(1) H has the Bourgain property;

(2) for every a < b in R and every A ∈ Σ with µ(A) > 0 there are
A1, . . . ,An ⊂ A, Ai ∈ Σ with µ(Ai ) > 0, such that for every
h ∈H there is 1≤ i ≤ n such that

either inf h(Ai )≥ a or suph(Ai )≤ b.

Lemma 9

Let T be a topology on Ω with T⊂ Σ for which µ is hereditarily
supported. Let H ⊂ RΩ be a uniformly bounded family of
continuous functions that does not contain `1-sequences (for the
supremum norm). Then H has the Bourgain property.
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