Measurable selectors and set-valued Pettis integral in non-separable Banach spaces

B. Cascales – V. Kadets – J. Rodríguez

Univ. of Murcia - Kharkov National Univ. - Polytechnical Univ. of Valencia

Spring Conference on Banach Spaces
Paseky – April 2008

Integration of multi-functions $F: \Omega \to 2^X$,

Integration of multi-functions $F: \Omega \to 2^X$, where

Integration of multi-functions $F: \Omega \to 2^X$, where

ullet (Ω,Σ,μ) is a complete probability space,

Integration of **multi-functions** $F: \Omega \to 2^X$, where

- ullet (Ω, Σ, μ) is a complete probability space,
- X is a Banach space.

Integration of **multi-functions** $F: \Omega \to 2^X$, where

- ullet (Ω, Σ, μ) is a complete probability space,
- X is a Banach space.

Integration of **multi-functions** $F: \Omega \to 2^X$, where

- (Ω, Σ, μ) is a complete probability space,
- X is a Banach space.

Our multi-functions will take values in the family cwk(X) of all convex

Integration of **multi-functions** $F: \Omega \to 2^X$, where

- (Ω, Σ, μ) is a complete probability space,
- X is a Banach space.

Our multi-functions will take values in the family cwk(X) of all convex weakly compact

Integration of **multi-functions** $F: \Omega \to 2^X$, where

- (Ω, Σ, μ) is a complete probability space,
- X is a Banach space.

Our multi-functions will take values in the family cwk(X) of all $convex\ weakly\ compact$ (non-empty) subsets of X.

Integration of **multi-functions** $F: \Omega \to 2^X$, where

- (Ω, Σ, μ) is a complete probability space,
- X is a Banach space.

Our multi-functions will take values in the family cwk(X) of all convex weakly compact (non-empty) subsets of X.

Example: a multi-function $F:[0,1] \to cwk(\mathbb{R})$

Integration of **multi-functions** $F : \Omega \to 2^X$, where

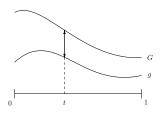
- (Ω, Σ, μ) is a complete probability space,
- X is a Banach space.

Our multi-functions will take values in the family cwk(X) of all convex weakly compact (non-empty) subsets of X.

Example: a multi-function $F:[0,1] \to \mathit{cwk}(\mathbb{R})$ can be written as

$$F(t) = [g(t), G(t)]$$

for some real-valued functions $g \leq G$.



AUMANN (1965):

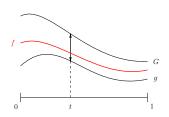
AUMANN (1965):

Study via integrable selectors,

AUMANN (1965):

Study via integrable selectors, with

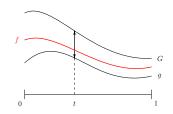
$$\int F \ d\mu = \left\{ \int f \ d\mu : \ f \ \text{integrable selector of } F \right\}.$$



AUMANN (1965):

Study via integrable selectors, with

$$\int F \ d\mu = \left\{ \int f \ d\mu : \ f \ \text{integrable selector of } F \right\}.$$

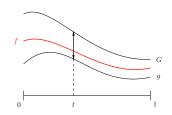


DEBREU (1967):

AUMANN (1965):

Study via integrable selectors, with

$$\int F \ d\mu = \left\{ \int f \ d\mu : \ f \ \text{integrable selector of } F \right\}.$$



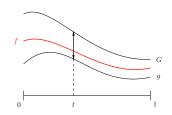
DEBREU (1967):

Reduction to the case of **single-valued** functions

AUMANN (1965):

Study via integrable selectors, with

$$\int F \ d\mu = \left\{ \int f \ d\mu : \ f \ \text{integrable selector of } F \right\}.$$



DEBREU (1967):

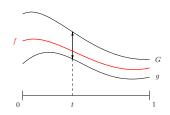
Reduction to the case of **single-valued** functions via an **embedding**

$$j: cwk(X) \rightarrow Y$$
,

AUMANN (1965):

Study via integrable selectors, with

$$\int F \ d\mu = \left\{ \int f \ d\mu : \ f \ \text{integrable selector of } F \right\}.$$



DEBREU (1967):

Reduction to the case of **single-valued** functions via an **embedding**

$$j: cwk(X) \rightarrow Y$$
,

where Y is another Banach space.



Definition

Definition

A function $f: \Omega \rightarrow X$ is **Pettis integrable** iff

(1) x^*f is integrable $\forall x^* \in X^*$;

Definition

- (1) x^*f is integrable $\forall x^* \in X^*$;
- (2) for each $A \in \Sigma$ there is $x_A \in X$ such that $x^*(x_A) = \int_A x^* f \, d\mu \, \forall x^* \in X^*.$

Definition

- (1) x^*f is integrable $\forall x^* \in X^*$;
- (2) for each $A \in \Sigma$ there is $x_A \in X$ such that $x^*(x_A) = \int_A x^* f \, d\mu \, \forall x^* \in X^*.$

Definition

- (1) x^*f is integrable $\forall x^* \in X^*$;
- (2) for each $A \in \Sigma$ there is $x_A \in X$ such that $x^*(x_A) = \int_A x^* f \, d\mu \, \forall x^* \in X^*.$
- ▶ For a function $f: \Omega \rightarrow X$ we have:

Definition

A function $f: \Omega \rightarrow X$ is **Pettis integrable** iff

- (1) x^*f is integrable $\forall x^* \in X^*$;
- (2) for each $A \in \Sigma$ there is $x_A \in X$ such that $x^*(x_A) = \int_A x^* f \, d\mu \, \forall x^* \in X^*$.
- ▶ For a function $f: \Omega \rightarrow X$ we have:

f Pettis integrable

Definition

- (1) x^*f is integrable $\forall x^* \in X^*$;
- (2) for each $A \in \Sigma$ there is $x_A \in X$ such that $x^*(x_A) = \int_A x^* f \, d\mu \, \forall x^* \in X^*$.
- ▶ For a function $f: \Omega \rightarrow X$ we have:

Definition

A function $f: \Omega \rightarrow X$ is **Pettis integrable** iff

- (1) x^*f is integrable $\forall x^* \in X^*$;
- (2) for each $A \in \Sigma$ there is $x_A \in X$ such that $x^*(x_A) = \int_A x^* f \, d\mu \, \forall x^* \in X^*$.
- ▶ For a function $f: \Omega \rightarrow X$ we have:

$$f \ \, \text{Pettis integrable} \\ \Downarrow \\ \{x^*f: x^* \in B_{X^*}\} \ \, \text{is uniformly integrable}$$

► X has the μ -Pettis Integral Property (μ -PIP) if the converse holds for any function $f: \Omega \to X$.

Definition

A function $f: \Omega \rightarrow X$ is **Pettis integrable** iff

- (1) x^*f is integrable $\forall x^* \in X^*$;
- (2) for each $A \in \Sigma$ there is $x_A \in X$ such that $x^*(x_A) = \int_A x^* f \, d\mu \, \forall x^* \in X^*$.
- ▶ For a function $f: \Omega \rightarrow X$ we have:

$$f \ \, \text{Pettis integrable} \\ \Downarrow \\ \{x^*f: x^* \in B_{X^*}\} \ \, \text{is uniformly integrable}$$

► X has the μ -Pettis Integral Property (μ -PIP) if the converse holds for any function $f: \Omega \to X$.

Examples

Definition

A function $f: \Omega \rightarrow X$ is **Pettis integrable** iff

- (1) x^*f is integrable $\forall x^* \in X^*$;
- (2) for each $A \in \Sigma$ there is $x_A \in X$ such that $x^*(x_A) = \int_A x^* f \, d\mu \, \forall x^* \in X^*$.
- ▶ For a function $f: \Omega \rightarrow X$ we have:

$$f \ \, \text{Pettis integrable} \\ \Downarrow \\ \{x^*f: x^* \in B_{X^*}\} \ \, \text{is uniformly integrable}$$

► X has the μ -Pettis Integral Property (μ -PIP) if the converse holds for any function $f: \Omega \to X$.

Examples

• Corson's property (C) $\Rightarrow \mu$ -PIP (for any μ) (Talagrand, 1984).

Definition

A function $f: \Omega \rightarrow X$ is **Pettis integrable** iff

- (1) x^*f is integrable $\forall x^* \in X^*$;
- (2) for each $A \in \Sigma$ there is $x_A \in X$ such that $x^*(x_A) = \int_A x^* f \, d\mu \, \forall x^* \in X^*$.
- ▶ For a function $f: \Omega \rightarrow X$ we have:

$$f \ \, \text{Pettis integrable} \\ \Downarrow \\ \{x^*f: x^* \in B_{X^*}\} \ \, \text{is uniformly integrable}$$

► X has the μ -Pettis Integral Property (μ -PIP) if the converse holds for any function $f: \Omega \to X$.

Examples

- Corson's property (C) $\Rightarrow \mu$ -PIP (for any μ) (Talagrand, 1984).
- (Under MA) ℓ^{∞} has Lebesgue-PIP (Fremlin-Talagrand, 1979).

Definition

A function $f: \Omega \rightarrow X$ is **Pettis integrable** iff

- (1) x^*f is integrable $\forall x^* \in X^*$;
- (2) for each $A \in \Sigma$ there is $x_A \in X$ such that $x^*(x_A) = \int_A x^* f \, d\mu \, \forall x^* \in X^*$.
- ▶ For a function $f: \Omega \rightarrow X$ we have:

$$f \ \, \text{Pettis integrable} \\ \Downarrow \\ \{x^*f: x^* \in B_{X^*}\} \ \, \text{is uniformly integrable}$$

► X has the μ -Pettis Integral Property (μ -PIP) if the converse holds for any function $f: \Omega \to X$.

Examples

- Corson's property (C) $\Rightarrow \mu$ -PIP (for any μ) (Talagrand, 1984).
- (Under MA) ℓ^{∞} has Lebesgue-PIP (Fremlin-Talagrand, 1979).

The Rådström embedding theorem

The Rådström embedding theorem

For $C \subset X$ bounded and $x^* \in X^*$, we write

$$\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{C}) := \sup\{\boldsymbol{x}^*(\boldsymbol{x}): \ \boldsymbol{x} \in \boldsymbol{C}\}.$$

The Rådström embedding theorem

For $C \subset X$ bounded and $x^* \in X^*$, we write

$$\delta^*(x^*, C) := \sup\{x^*(x) : x \in C\}.$$

Theorem (Rådström, 1952)

The map $j : cwk(X) \rightarrow \ell_{\infty}(B_{X^*})$ given by

$$j(C)(x^*) = \delta^*(x^*, C)$$

For $C \subset X$ bounded and $x^* \in X^*$, we write

$$\boldsymbol{\delta}^*(x^*, \boldsymbol{C}) := \sup\{x^*(x) : x \in \boldsymbol{C}\}.$$

Theorem (Rådström, 1952)

The map $j : cwk(X) \rightarrow \ell_{\infty}(B_{X^*})$ given by

$$j(C)(x^*) = \delta^*(x^*, C)$$

is positively homogeneous

For $C \subset X$ bounded and $x^* \in X^*$, we write

$$\boldsymbol{\delta}^*(x^*, \boldsymbol{C}) := \sup\{x^*(x) : x \in \boldsymbol{C}\}.$$

Theorem (Rådström, 1952)

The map $j: cwk(X) \rightarrow \ell_{\infty}(B_{X^*})$ given by

$$j(C)(x^*) = \delta^*(x^*, C)$$

is positively homogeneous and additive.

For $C \subset X$ bounded and $x^* \in X^*$, we write

$$\boldsymbol{\delta}^*(x^*, \boldsymbol{C}) := \sup\{x^*(x) : x \in \boldsymbol{C}\}.$$

Theorem (Rådström, 1952)

The map $j : cwk(X) \rightarrow \ell_{\infty}(B_{X^*})$ given by

$$j(C)(x^*) = \delta^*(x^*, C)$$

is positively homogeneous and additive.

Moreover,

For $C \subset X$ bounded and $x^* \in X^*$, we write

$$\delta^*(x^*, C) := \sup\{x^*(x) : x \in C\}.$$

Theorem (Rådström, 1952)

The map $j : cwk(X) \rightarrow \ell_{\infty}(B_{X^*})$ given by

$$j(C)(x^*) = \delta^*(x^*, C)$$

is positively homogeneous and additive.

Moreover, j is an **isometry** into $\ell_{\infty}(B_{X^*})$ when cwk(X) is equipped with the Hausdorff distance.

For a multi-function $F: \Omega \to cwk(X)$ and $x^* \in X^*$,

For a multi-function $F: \Omega \to cwk(X)$ and $x^* \in X^*$, we define

$$\delta^*(x^*, F) : \Omega \to \mathbb{R}, \quad \delta^*(x^*, F)(\omega) := \delta^*(x^*, F(\omega)).$$

For a multi-function $F: \Omega \to cwk(X)$ and $x^* \in X^*$, we define

$$\boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{\digamma}): \boldsymbol{\Omega} \to \mathbb{R}, \quad \boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{\digamma})(\boldsymbol{\omega}) := \boldsymbol{\delta}^*(\boldsymbol{x}^*,\boldsymbol{\digamma}(\boldsymbol{\omega})).$$

Definition (Castaing-Valadier, 1977)

Suppose *X* is **separable**.

For a multi-function $F: \Omega \to cwk(X)$ and $x^* \in X^*$, we define

$$\delta^*(x^*, F) : \Omega \to \mathbb{R}, \quad \delta^*(x^*, F)(\omega) := \delta^*(x^*, F(\omega)).$$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F: \Omega \to cwk(X)$ is called **Pettis integrable** iff

For a multi-function $F: \Omega \to cwk(X)$ and $x^* \in X^*$, we define

$$\delta^*(x^*, F) : \Omega \to \mathbb{R}, \quad \delta^*(x^*, F)(\omega) := \delta^*(x^*, F(\omega)).$$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F: \Omega \to cwk(X)$ is called **Pettis integrable** iff

• $\delta^*(x^*, F)$ is integrable for every $x^* \in X^*$;

For a multi-function $F: \Omega \to cwk(X)$ and $x^* \in X^*$, we define

$$\delta^*(x^*, F) : \Omega \to \mathbb{R}, \quad \delta^*(x^*, F)(\omega) := \delta^*(x^*, F(\omega)).$$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F: \Omega \to cwk(X)$ is called **Pettis integrable** iff

- $\delta^*(x^*, F)$ is integrable for every $x^* \in X^*$;
- for each $A \in \Sigma$, there is $\int_A F \ d\mu \in cwk(X)$

For a multi-function $F: \Omega \to cwk(X)$ and $x^* \in X^*$, we define

$$\delta^*(x^*, F) : \Omega \to \mathbb{R}, \quad \delta^*(x^*, F)(\omega) := \delta^*(x^*, F(\omega)).$$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F: \Omega \to cwk(X)$ is called **Pettis integrable** iff

- $\delta^*(x^*, F)$ is integrable for every $x^* \in X^*$;
- for each $A \in \Sigma$, there is $\int_A F d\mu \in cwk(X)$ such that

$$\left| \delta^* \left(x^*, \int_A F \ d\mu \right) = \int_A \delta^* (x^*, F) \ d\mu \right| \quad \forall x^* \in X^*.$$

For a multi-function $F: \Omega \to cwk(X)$ and $x^* \in X^*$, we define

$$\delta^*(x^*, F) : \Omega \to \mathbb{R}, \quad \delta^*(x^*, F)(\omega) := \delta^*(x^*, F(\omega)).$$

Definition (Castaing-Valadier, 1977)

Suppose X is **separable**. A multi-function $F: \Omega \to cwk(X)$ is called **Pettis integrable** iff

- $\delta^*(x^*, F)$ is integrable for every $x^* \in X^*$;
- for each $A \in \Sigma$, there is $\int_A F d\mu \in cwk(X)$ such that

$$\left| \delta^* \left(x^*, \int_A F \ d\mu \right) = \int_A \delta^* (x^*, F) \ d\mu \, \right| \quad \forall x^* \in X^*.$$

Studied by: Castaing-Valadier (1977), Di Piazza-Musial (2005-06), El Amri-Hess (2000), Ziat (1997-2000), etc.

Main reason

Separability allows to find measurable selectors !!

Main reason

Separability allows to find measurable selectors !!

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let M be a separable complete metric space.

Main reason

Separability allows to find measurable selectors !!

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let M be a separable complete metric space.

Let $F:\Omega\to 2^M$ be an **Effros measurable** multi-function having closed non-empty values,

Main reason

Separability allows to find measurable selectors !!

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let M be a separable complete metric space.

Let $F:\Omega \to 2^M$ be an **Effros measurable** multi-function having closed non-empty values, that is

$$\{\omega \in \Omega: F(\omega) \cap U \neq \emptyset\} \in \Sigma \quad \forall \text{ open } U \subset M.$$

Main reason

Separability allows to find measurable selectors !!

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let M be a separable complete metric space.

Let $F:\Omega\to 2^M$ be an **Effros measurable** multi-function having closed non-empty values, that is

$$\{\omega \in \Omega: F(\omega) \cap U \neq \emptyset\} \in \Sigma \quad \forall \text{ open } U \subset M.$$

Then F admits **Borel measurable selectors**.

Definition

A multi-function $F: \Omega \rightarrow cwk(X)$ is called **scalarly measurable**

Definition

A multi-function $F:\Omega \to cwk(X)$ is called **scalarly measurable** iff $\delta^*(x^*,F)$ is measurable for every $x^*\in X^*$.

Definition

A multi-function $F:\Omega \to cwk(X)$ is called **scalarly measurable** iff $\delta^*(x^*,F)$ is measurable for every $x^*\in X^*$.

Theorem (Castaing-Valadier, 1977)

Suppose X is separable.

Definition

A multi-function $F:\Omega \to cwk(X)$ is called **scalarly measurable** iff $\delta^*(x^*,F)$ is measurable for every $x^*\in X^*$.

Theorem (Castaing-Valadier, 1977)

Suppose X is separable. Then a multi-function $F:\Omega \to cwk(X)$ is scalarly measurable if and only if it is Effros measurable.

Definition

A multi-function $F:\Omega \to cwk(X)$ is called **scalarly measurable** iff $\delta^*(x^*,F)$ is measurable for every $x^*\in X^*$.

Theorem (Castaing-Valadier, 1977)

Suppose X is separable. Then a multi-function $F: \Omega \to cwk(X)$ is scalarly measurable if and only if it is Effros measurable.

Corollary

Suppose X is separable.

Definition

A multi-function $F: \Omega \to cwk(X)$ is called **scalarly measurable** iff $\delta^*(x^*,F)$ is measurable for every $x^* \in X^*$.

Theorem (Castaing-Valadier, 1977)

Suppose X is separable. Then a multi-function $F: \Omega \to cwk(X)$ is scalarly measurable if and only if it is Effros measurable.

Corollary

Suppose *X* is separable.

Then every scalarly measurable multi-function $F: \Omega \to cwk(X)$ admits **strongly measurable selectors**.

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat) Suppose X is separable.

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let $F:\Omega \to cwk(X)$ be a multi-function. TFAE:

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let $F:\Omega \to cwk(X)$ be a multi-function. TFAE:

(1) F is **Pettis integrable**.

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let $F:\Omega \to cwk(X)$ be a multi-function. TFAE:

- (1) F is **Pettis integrable**.
- (2) $\{\delta^*(x^*,F): x^* \in B_{X^*}\}$ is uniformly integrable.

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let $F: \Omega \to cwk(X)$ be a multi-function. TFAE:

- (1) F is **Pettis integrable**.
- (2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.
- (3) *F* is scalarly measurable and **every** strongly measurable selector of *F* is Pettis integrable.

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let $F: \Omega \to cwk(X)$ be a multi-function. TFAE:

- (1) F is **Pettis integrable**.
- (2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.
- (3) *F* is scalarly measurable and **every** strongly measurable selector of *F* is Pettis integrable.

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let $F:\Omega \to cwk(X)$ be a multi-function. TFAE:

- (1) F is **Pettis integrable**.
- (2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.
- (3) *F* is scalarly measurable and **every** strongly measurable selector of *F* is Pettis integrable.

In this case:

$$\int_{A} F \ d\mu = \left\{ \int_{A} f \ d\mu : f \text{ Pettis integrable selector of } F \right\}$$

for all $A \in \Sigma$.

Our aim

Our aim

Our main goal

To study the set-valued Pettis integral for **arbitrary** Banach spaces.

Our aim

Our main goal

To study the set-valued Pettis integral for **arbitrary** Banach spaces.

The price

To find **scalarly measurable selectors** for scalarly measurable multi-functions without the separability assumption.

Our aim

Our main goal

To study the set-valued Pettis integral for arbitrary Banach spaces.

The price

To find **scalarly measurable selectors** for scalarly measurable multi-functions without the separability assumption.

Definition

A multi-function $F: \Omega \to cwk(X)$ is called **Pettis integrable** iff

- $\delta^*(x^*, F)$ is integrable for each $x^* \in X^*$;
- for each $A \in \Sigma$, there is $\int_A F \ d\mu \in cwk(X)$ such that

$$\boxed{ \delta^* \Big(x^*, \int_A F \ d\mu \Big) = \int_A \delta^* (x^*, F) \ d\mu } \quad \forall \, x^* \in X^*.$$

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a Pettis integrable multi-function.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a Pettis integrable multi-function. Then:

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a Pettis integrable multi-function. Then:

• F admits scalarly measurable selectors.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a Pettis integrable multi-function. Then:

- F admits scalarly measurable selectors.
- Every scalarly measurable selector of *F* is Pettis integrable.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a Pettis integrable multi-function. Then:

- F admits scalarly measurable selectors.
- Every scalarly measurable selector of *F* is Pettis integrable.
- The formula

$$\int_{A} F \ d\mu = \left\{ \int_{A} f \ d\mu : f \text{ Pettis integrable selector of } F \right\}$$

holds for all $A \in \Sigma$.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a Pettis integrable multi-function. Then:

- F admits scalarly measurable selectors.
- Every scalarly measurable selector of *F* is Pettis integrable.
- The formula

$$\int_{A} F \ d\mu = \left\{ \int_{A} f \ d\mu : f \text{ Pettis integrable selector of } F \right\}$$

holds for all $A \in \Sigma$.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a Pettis integrable multi-function. Then:

- F admits scalarly measurable selectors.
- Every scalarly measurable selector of F is Pettis integrable.
- The formula

$$\int_{A} F \ d\mu = \left\{ \int_{A} f \ d\mu : f \text{ Pettis integrable selector of } F \right\}$$

holds for all $A \in \Sigma$.

Remark

The "closure" can be removed if X^* is w^* -separable.

Definition

X has the μ -Scalarly Measurable Selector Property (μ -SMSP)

Definition

X has the μ -Scalarly Measurable Selector Property (μ -SMSP) iff every scalarly measurable multi-function $F:\Omega \to cwk(X)$ admits a scalarly measurable selector.

Definition

X has the μ -Scalarly Measurable Selector Property (μ -SMSP) iff every scalarly measurable multi-function $F:\Omega \to cwk(X)$ admits a scalarly measurable selector.

Definition

X has the μ -Scalarly Measurable Selector Property (μ -SMSP) iff every scalarly measurable multi-function $F:\Omega \to cwk(X)$ admits a scalarly measurable selector.

X has the μ -SMSP in each of the following cases . . .

• X is separable.

Definition

X has the μ -Scalarly Measurable Selector Property (μ -SMSP) iff every scalarly measurable multi-function $F:\Omega \to cwk(X)$ admits a scalarly measurable selector.

- X is separable.
- X^* is w^* -separable (Valadier, 1971).

Definition

X has the μ -Scalarly Measurable Selector Property (μ -SMSP) iff every scalarly measurable multi-function $F:\Omega \to cwk(X)$ admits a scalarly measurable selector.

- X is separable.
- X^* is w^* -separable (Valadier, 1971).
- *X* is **reflexive** (Cascales, Kadets, R.).

Definition

X has the μ -Scalarly Measurable Selector Property (μ -SMSP) iff every scalarly measurable multi-function $F:\Omega \to cwk(X)$ admits a scalarly measurable selector.

- X is separable.
- X^* is w^* -separable (Valadier, 1971).
- X is reflexive (Cascales, Kadets, R.).
- (X^*, w^*) is **angelic** and has density character $\leq \omega_1$ (Cascales, Kadets, R.).

Definition

X has the μ -Scalarly Measurable Selector Property (μ -SMSP) iff every scalarly measurable multi-function $F:\Omega \to cwk(X)$ admits a scalarly measurable selector.

- X is separable.
- X^* is w^* -separable (Valadier, 1971).
- X is reflexive (Cascales, Kadets, R.).
- (X^*, w^*) is **angelic** and has density character $\leq \omega_1$ (Cascales, Kadets, R.).

Definition

X has the μ -Scalarly Measurable Selector Property (μ -SMSP) iff every scalarly measurable multi-function $F:\Omega \to cwk(X)$ admits a scalarly measurable selector.

- X is separable.
- X^* is w^* -separable (Valadier, 1971).
- X is reflexive (Cascales, Kadets, R.).
- (X^*, w^*) is **angelic** and has density character $\leq \omega_1$ (Cascales, Kadets, R.).
- ► We **do not know** an example of a scalarly measurable multi-function <u>without</u> scalarly measurable selectors !!

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a multi-function.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a multi-function. Consider the following statements:

Theorem (Cascales, Kadets, R.)

Let $F:\Omega \to cwk(X)$ be a multi-function. Consider the following statements:

(1) F is **Pettis integrable**.

Theorem (Cascales, Kadets, R.)

Let $F:\Omega \to cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is **Pettis integrable**.
- (2) $\{\delta^*(x^*,F): x^* \in B_{X^*}\}$ is uniformly integrable.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is **Pettis integrable**.
- (2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.
- (3) *F* is scalarly measurable and every scalarly measurable selector of *F* is Pettis integrable.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is **Pettis integrable**.
- (2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.
- (3) F is scalarly measurable and every scalarly measurable selector of F is Pettis integrable.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is **Pettis integrable**.
- (2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.
- (3) F is scalarly measurable and every scalarly measurable selector of F is Pettis integrable.

Theorem (Cascales, Kadets, R.)

Let $F:\Omega \to cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is **Pettis integrable**.
- (2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.
- (3) *F* is scalarly measurable and every scalarly measurable selector of *F* is Pettis integrable.

•
$$(1) \Longrightarrow (2) + (3)$$
.

Theorem (Cascales, Kadets, R.)

Let $F:\Omega \to cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is **Pettis integrable**.
- (2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.
- (3) *F* is scalarly measurable and every scalarly measurable selector of *F* is Pettis integrable.

- $(1) \Longrightarrow (2) + (3)$.
- (3) \Longrightarrow (1) if X has the μ -SMSP.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is **Pettis integrable**.
- (2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.
- (3) F is scalarly measurable and every scalarly measurable selector of F is Pettis integrable.

- $(1) \Longrightarrow (2) + (3)$.
- (3) \Longrightarrow (1) if X has the μ -SMSP.
- (1) \iff (2) \iff (3) if X has the μ -SMSP and the μ -PIP.

Theorem (Cascales, Kadets, R.)

Let $F: \Omega \to cwk(X)$ be a multi-function. Consider the following statements:

- (1) F is **Pettis integrable**.
- (2) $\{\delta^*(x^*, F): x^* \in B_{X^*}\}$ is uniformly integrable.
- (3) F is scalarly measurable and every scalarly measurable selector of F is Pettis integrable.

- $(1) \Longrightarrow (2) + (3)$.
- (3) \Longrightarrow (1) if X has the μ -SMSP.
- (1) \iff (2) \iff (3) if X has the μ -SMSP and the μ -PIP.

Theorem (Cascales, Kadets, R.)
Suppose (X^*, w^*) is angelic.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

(1) F is Pettis integrable.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

- (1) F is Pettis integrable.
- (2) $\{\delta^*(x^*,F): x^* \in B_{X^*}\}$ is uniformly integrable.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

- (1) F is Pettis integrable.
- (2) $\{\delta^*(x^*,F): x^* \in B_{X^*}\}$ is uniformly integrable.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

- (1) F is Pettis integrable.
- (2) $\{\delta^*(x^*,F): x^* \in B_{X^*}\}$ is uniformly integrable.

In this case, $\int_A F \ d\mu$ is norm compact for all $A \in \Sigma$.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

- (1) F is Pettis integrable.
- (2) $\{\delta^*(x^*,F): x^* \in B_{X^*}\}$ is uniformly integrable.

In this case, $\int_A F \ d\mu$ is norm compact for all $A \in \Sigma$.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

- (1) F is Pettis integrable.
- (2) $\{\delta^*(x^*,F): x^* \in B_{X^*}\}$ is uniformly integrable.

In this case, $\int_A F \ d\mu$ is norm compact for all $A \in \Sigma$.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. Then:

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

- (1) F is Pettis integrable.
- (2) $\{\delta^*(x^*,F): x^* \in B_{X^*}\}$ is uniformly integrable.

In this case, $\int_A F \ d\mu$ is norm compact for all $A \in \Sigma$.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. Then:

F scalarly measurable

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. TFAE:

- (1) F is Pettis integrable.
- (2) $\{\delta^*(x^*,F): x^* \in B_{X^*}\}$ is uniformly integrable.

In this case, $\int_A F \ d\mu$ is norm compact for all $A \in \Sigma$.

Theorem (Cascales, Kadets, R.)

Suppose (X^*, w^*) is angelic. Let $F : \Omega \to cwk(X)$ be a multi-function having norm compact values. Then:

F scalarly measurable

F admits scalarly measurable selectors.

THANKS FOR YOUR ATTENTION!!

http://personales.upv.es/jorodrui