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Multi-functions

Integration of multi-functions F : Ω→ 2X , where

(Ω,Σ,µ) is a complete probability space,

X is a Banach space.

Our multi-functions will take values in the family cwk(X ) of all
convex weakly compact (non-empty) subsets of X .

Example: a multi-function F : [0,1]→ cwk(R) can
be written as

F (t) = [g(t),G (t)]

for some real-valued functions g ≤ G .
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Origins of set-valued integration

AUMANN (1965):

Study via integrable selectors, with∫
F dµ =

{∫
f dµ : f integrable selector of F

}
. g

G
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f

DEBREU (1967):

Reduction to the case of single-valued functions
via an embedding

j : cwk(X )→ Y ,

where Y is another Banach space.

Ω

cwk(X )

F

?

- Y
j ◦F

�
�

�
�

��>

j



Origins of set-valued integration

AUMANN (1965):

Study via integrable selectors, with∫
F dµ =

{∫
f dµ : f integrable selector of F

}
. g

G

t0 1

?

6
f

DEBREU (1967):

Reduction to the case of single-valued functions
via an embedding

j : cwk(X )→ Y ,

where Y is another Banach space.

Ω

cwk(X )

F

?

- Y
j ◦F

�
�

�
�

��>

j



Origins of set-valued integration

AUMANN (1965):

Study via integrable selectors,

with∫
F dµ =

{∫
f dµ : f integrable selector of F

}
. g

G

t0 1

?

6
f

DEBREU (1967):

Reduction to the case of single-valued functions
via an embedding

j : cwk(X )→ Y ,

where Y is another Banach space.

Ω

cwk(X )

F

?

- Y
j ◦F

�
�

�
�

��>

j



Origins of set-valued integration

AUMANN (1965):

Study via integrable selectors, with∫
F dµ =

{∫
f dµ : f integrable selector of F

}
. g

G

t0 1

?

6
f

DEBREU (1967):

Reduction to the case of single-valued functions
via an embedding

j : cwk(X )→ Y ,

where Y is another Banach space.

Ω

cwk(X )

F

?

- Y
j ◦F

�
�

�
�

��>

j



Origins of set-valued integration

AUMANN (1965):

Study via integrable selectors, with∫
F dµ =

{∫
f dµ : f integrable selector of F

}
. g

G

t0 1

?

6
f

DEBREU (1967):

Reduction to the case of single-valued functions
via an embedding

j : cwk(X )→ Y ,

where Y is another Banach space.

Ω

cwk(X )

F

?

- Y
j ◦F

�
�

�
�

��>

j



Origins of set-valued integration

AUMANN (1965):

Study via integrable selectors, with∫
F dµ =

{∫
f dµ : f integrable selector of F

}
. g

G

t0 1

?

6
f

DEBREU (1967):

Reduction to the case of single-valued functions

via an embedding

j : cwk(X )→ Y ,

where Y is another Banach space.

Ω

cwk(X )

F

?

- Y
j ◦F

�
�

�
�

��>

j



Origins of set-valued integration

AUMANN (1965):

Study via integrable selectors, with∫
F dµ =

{∫
f dµ : f integrable selector of F

}
. g

G

t0 1

?

6
f

DEBREU (1967):

Reduction to the case of single-valued functions
via an embedding

j : cwk(X )→ Y ,

where Y is another Banach space.

Ω

cwk(X )

F

?

- Y
j ◦F

�
�

�
�

��>

j



Origins of set-valued integration

AUMANN (1965):

Study via integrable selectors, with∫
F dµ =

{∫
f dµ : f integrable selector of F

}
. g

G

t0 1

?

6
f

DEBREU (1967):

Reduction to the case of single-valued functions
via an embedding

j : cwk(X )→ Y ,

where Y is another Banach space.

Ω

cwk(X )

F

?

- Y
j ◦F

�
�

�
�

��>

j



Single-valued Pettis integral

Definition

A function f : Ω→ X is Pettis integrable iff

(1) x∗f is integrable ∀x∗ ∈ X ∗;

(2) for each A ∈ Σ there is xA ∈ X such that

x∗(xA) =
∫
A x∗f dµ ∀x∗ ∈ X ∗.

I For a function f : Ω→ X we have:

f Pettis integrable
⇓

{x∗f : x∗ ∈ BX ∗} is uniformly integrable

I X has the µ-Pettis Integral Property (µ-PIP) if the converse holds
for any function f : Ω→ X .

Examples

Corson’s property (C) ⇒ µ-PIP (for any µ) (Talagrand, 1984).

(Under MA) `∞ has Lebesgue-PIP (Fremlin-Talagrand, 1979).
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The Rådström embedding theorem

For C ⊂ X bounded and x∗ ∈ X ∗, we write

δ
∗(x∗,C ) := sup{x∗(x) : x ∈ C}.

Theorem (Rådström, 1952)

The map j : cwk(X )→ `∞(BX ∗) given by

j(C )(x∗) = δ
∗(x∗,C )

is positively homogeneous and additive.

Moreover, j is an isometry into `∞(BX ∗)
when cwk(X ) is equipped with the Hausdorff distance.
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Set-valued Pettis integral

For a multi-function F : Ω→ cwk(X ) and x∗ ∈ X ∗, we define

δ
∗(x∗,F ) : Ω→ R, δ

∗(x∗,F )(ω) := δ
∗(x∗,F (ω)).

Definition (Castaing-Valadier, 1977)

Suppose X is separable. A multi-function F : Ω→ cwk(X ) is
called Pettis integrable iff

δ ∗(x∗,F ) is integrable for every x∗ ∈ X ∗;

for each A ∈ Σ, there is
∫
A F dµ ∈ cwk(X ) such that

δ
∗
(
x∗,

∫
A

F dµ

)
=

∫
A

δ
∗(x∗,F ) dµ ∀x∗ ∈ X ∗.

Studied by: Castaing-Valadier (1977), Di Piazza-Musial (2005-06), El
Amri-Hess (2000), Ziat (1997-2000), etc.
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The role of separability I

Main reason

Separability allows to find measurable selectors !!

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let M be a separable complete metric space.
Let F : Ω→ 2M be an Effros measurable multi-function having
closed non-empty values, that is

{ω ∈Ω : F (ω)∩U 6= /0} ∈ Σ ∀ open U ⊂M.

Then F admits Borel measurable selectors.
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The role of separability II

Definition

A multi-function F : Ω→ cwk(X ) is called scalarly measurable iff
δ ∗(x∗,F ) is measurable for every x∗ ∈ X ∗.

Theorem (Castaing-Valadier, 1977)

Suppose X is separable. Then a multi-function F : Ω→ cwk(X ) is
scalarly measurable if and only if it is Effros measurable.

Corollary

Suppose X is separable.
Then every scalarly measurable multi-function F : Ω→ cwk(X )
admits strongly measurable selectors.
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Characterization of set-valued Pettis integrability

Characterization Theorem (Castaing-Valadier, El Amri-Hess, Ziat)

Suppose X is separable. Let F : Ω→ cwk(X ) be a multi-function.
TFAE:

(1) F is Pettis integrable.

(2) {δ ∗(x∗,F ) : x∗ ∈ BX ∗} is uniformly integrable.

(3) F is scalarly measurable and every strongly measurable
selector of F is Pettis integrable.

In this case:∫
A

F dµ =
{∫

A
f dµ : f Pettis integrable selector of F

}
for all A ∈ Σ.
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Our aim

Our main goal

To study the set-valued Pettis integral for arbitrary Banach spaces.

The price

To find scalarly measurable selectors for scalarly measurable
multi-functions without the separability assumption.

Definition

A multi-function F : Ω→ cwk(X ) is called Pettis integrable iff

δ ∗(x∗,F ) is integrable for each x∗ ∈ X ∗;

for each A ∈ Σ, there is
∫
A F dµ ∈ cwk(X ) such that
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Set-valued Pettis integral and selectors

Theorem (Cascales, Kadets, R.)

Let F : Ω→ cwk(X ) be a Pettis integrable multi-function. Then:

F admits scalarly measurable selectors.

Every scalarly measurable selector of F is Pettis integrable.

The formula∫
A

F dµ =
{∫

A
f dµ : f Pettis integrable selector of F

}
holds for all A ∈ Σ.

Remark

The “closure” can be removed if X ∗ is w∗-separable.
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Scalarly measurable selectors

Definition

X has the µ-Scalarly Measurable Selector Property (µ-SMSP)
iff every scalarly measurable multi-function F : Ω→ cwk(X )
admits a scalarly measurable selector.

X has the µ-SMSP in each of the following cases . . .

X is separable.

X ∗ is w∗-separable (Valadier, 1971).

X is reflexive (Cascales, Kadets, R.).

(X ∗,w∗) is angelic and has density character ≤ ω1

(Cascales, Kadets, R.).

I We do not know an example of a scalarly measurable
multi-function without scalarly measurable selectors !!
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Characterization of set-valued Pettis integrability

Theorem (Cascales, Kadets, R.)
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statements:
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(2) {δ ∗(x∗,F ) : x∗ ∈ BX ∗} is uniformly integrable.
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Then:

(1) =⇒ (2) + (3).

(3) =⇒ (1) if X has the µ-SMSP.

(1) ⇐⇒ (2) ⇐⇒ (3) if X has the µ-SMSP and the µ-PIP.
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The case of norm compact values

Theorem (Cascales, Kadets, R.)

Suppose (X ∗,w∗) is angelic. Let F : Ω→ cwk(X ) be a
multi-function having norm compact values. TFAE:

(1) F is Pettis integrable.

(2) {δ ∗(x∗,F ) : x∗ ∈ BX ∗} is uniformly integrable.

In this case,
∫
A F dµ is norm compact for all A ∈ Σ.

Theorem (Cascales, Kadets, R.)

Suppose (X ∗,w∗) is angelic. Let F : Ω→ cwk(X ) be a
multi-function having norm compact values. Then:

F scalarly measurable
⇓

F admits scalarly measurable selectors.
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