On vector measures with separable range

José Rodríguez

Universidad de Murcia

(To appear in Arch. Math.)

Second Meeting on Vector Measures and Integration Sevilla, November 2006

(日) (문) (문) (문) (문)

 $X, Y \equiv$ Banach spaces

 $X, Y \equiv$ Banach spaces

Theorem (Bartle-Dunford-Schwartz, 1955)

The range of any vector measure is relatively weakly compact.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

 $X, Y \equiv$ Banach spaces

Theorem (Bartle-Dunford-Schwartz, 1955)

The range of any vector measure is relatively weakly compact.

In general, the range is ...

neither relatively norm compact

 $X, Y \equiv$ Banach spaces

Theorem (Bartle-Dunford-Schwartz, 1955)

The range of any vector measure is relatively weakly compact.

In general, the range is ...

neither relatively norm compact nor separable,

 $X, Y \equiv$ Banach spaces

Theorem (Bartle-Dunford-Schwartz, 1955)

The range of any vector measure is relatively weakly compact.

In general, the range is

neither relatively **norm** compact nor **separable**, even for indefinite Pettis integrals (Fremlin-Talagrand, 1979).

Let (Ω,Σ,μ) be a complete probability space.

```
• \langle y^*, f \rangle is integrable \forall y^* \in Y^*,
```

- $\langle y^*, f
 angle$ is integrable $orall y^* \in Y^*$,
- for each $E \in \Sigma$ there is $v_f(E) \in Y$

- $\langle y^*, f
 angle$ is integrable $orall y^* \in Y^*$,
- for each $E \in \Sigma$ there is $v_f(E) \in Y$ such that

$$\int_{E} \langle y^*, f \rangle \, d\mu = \langle y^*, v_f(E) \rangle \quad \forall y^* \in Y^*$$

Let (Ω, Σ, μ) be a complete probability space. A function $f : \Omega \to Y$ is **Pettis integrable** if

•
$$\langle y^*, f
angle$$
 is integrable $orall y^* \in Y^*$,

• for each $E \in \Sigma$ there is $v_f(E) \in Y$ such that

$$\int_{E} \langle y^*, f \rangle \, d\mu = \langle y^*, v_f(E) \rangle \quad \forall y^* \in Y^*$$

In this case . . .

the mapping $v_f : \Sigma \to Y$ (the **indefinite integral** of f)

Let (Ω, Σ, μ) be a complete probability space. A function $f : \Omega \to Y$ is **Pettis integrable** if

•
$$\langle y^*, f
angle$$
 is integrable $orall y^* \in Y^*$,

• for each $E \in \Sigma$ there is $v_f(E) \in Y$ such that

$$\int_{E} \langle y^*, f
angle \, \, d\mu = \langle y^*, v_f(E)
angle \quad orall y^* \in Y^*$$

In this case . . .

the mapping $v_f : \Sigma \to Y$ (the **indefinite integral** of f) is a vector measure (Pettis, 1938)

Let (Ω, Σ, μ) be a complete probability space. A function $f : \Omega \to Y$ is **Pettis integrable** if

•
$$\langle y^*, f
angle$$
 is integrable $orall y^* \in Y^*$,

• for each $E \in \Sigma$ there is $v_f(E) \in Y$ such that

$$\int_{E} \langle y^*, f \rangle \, d\mu = \langle y^*, v_f(E) \rangle \quad \forall y^* \in Y^*$$

In this case . . .

the mapping $v_f: \Sigma \to Y$ (the **indefinite integral** of f) is a vector measure (Pettis, 1938) with σ -finite variation (Rybakov, 1968).

Let (Ω, Σ, μ) be a complete probability space and $f : \Omega \to Y$ a function. TFAE:

Let (Ω, Σ, μ) be a complete probability space and $f : \Omega \to Y$ a function. TFAE:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

(i) f is Pettis integrable and v_f has **separable** range.

Let (Ω, Σ, μ) be a complete probability space and $f : \Omega \to Y$ a function. TFAE:

(i) f is Pettis integrable and v_f has **separable** range.

(ii) There is a sequence $f_n: \Omega \to Y$ of **simple** functions such that

Let (Ω, Σ, μ) be a complete probability space and $f : \Omega \to Y$ a function. TFAE:

(i) f is Pettis integrable and v_f has **separable** range.

(ii) There is a sequence $f_n: \Omega \to Y$ of **simple** functions such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

• for each $y^* \in Y^*$, we have $\langle y^*, f_n \rangle \rightarrow \langle y^*, f \rangle$ a.e.,

Let (Ω, Σ, μ) be a complete probability space and $f : \Omega \to Y$ a function. TFAE:

(i) f is Pettis integrable and v_f has **separable** range.

(ii) There is a sequence $f_n: \Omega \to Y$ of **simple** functions such that

- for each $y^* \in Y^*$, we have $\langle y^*, f_n \rangle \rightarrow \langle y^*, f \rangle$ a.e.,
- the family $\{\langle y^*, f_n \rangle: y^* \in B_{Y^*}, n \in \mathbb{N}\}$ is uniformly integrable.

Let (Ω, Σ, μ) be a complete probability space and $f : \Omega \to Y$ a function. TFAE:

(i) f is Pettis integrable and v_f has **separable** range.

(ii) There is a sequence $f_n: \Omega \to Y$ of **simple** functions such that

- for each $y^* \in Y^*$, we have $\langle y^*, f_n \rangle \rightarrow \langle y^*, f \rangle$ a.e.,
- the family $\{\langle y^*, f_n \rangle : y^* \in B_{Y^*}, n \in \mathbb{N}\}$ is uniformly integrable.

Let (Ω, Σ, μ) be a complete probability space and $f : \Omega \to Y$ a function. TFAE:

(i) f is Pettis integrable and v_f has **separable** range.

- (ii) There is a sequence $f_n: \Omega \to Y$ of **simple** functions such that
 - for each $y^* \in Y^*$, we have $\langle y^*, f_n \rangle \rightarrow \langle y^*, f \rangle$ a.e.,
 - the family $\{\langle y^*, f_n \rangle: y^* \in B_{Y^*}, n \in \mathbb{N}\}$ is uniformly integrable.

Definition (Musial, 1991)

Y has the Pettis Separability Property

Let (Ω, Σ, μ) be a complete probability space and $f : \Omega \to Y$ a function. TFAE:

(i) f is Pettis integrable and v_f has **separable** range.

- (ii) There is a sequence $f_n: \Omega \to Y$ of **simple** functions such that
 - for each $y^* \in Y^*$, we have $\langle y^*, f_n \rangle \rightarrow \langle y^*, f \rangle$ a.e.,
 - the family $\{\langle y^*, f_n \rangle: y^* \in B_{Y^*}, n \in \mathbb{N}\}$ is uniformly integrable.

Definition (Musial, 1991)

Y has the **Pettis Separability Property** if the indefinite integral of any *Y*-valued Pettis integrable function has **separable** range.

Let (Ω, Σ, μ) be a complete probability space and $f : \Omega \to Y$ a function. TFAE:

(i) f is Pettis integrable and v_f has **separable** range.

- (ii) There is a sequence $f_n: \Omega \to Y$ of **simple** functions such that
 - for each $y^* \in Y^*$, we have $\langle y^*, f_n \rangle \rightarrow \langle y^*, f \rangle$ a.e.,
 - the family $\{\langle y^*, f_n \rangle: y^* \in B_{Y^*}, n \in \mathbb{N}\}$ is uniformly integrable.

Definition (Musial, 1991)

Y has the **Pettis Separability Property** if the indefinite integral of any *Y*-valued Pettis integrable function has **separable** range.

Question (Musial, 1991)

Which Banach spaces have the Pettis Separability Property?

◆□> <個> <=> <=> <=> <=> <</p>

Spaces s.t. every weakly compact subset is **separable**

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つくぐ

Spaces s.t. every weakly compact subset is separable

• $L^{\infty}(\mu)$ for any probability measure μ (Rosenthal, 1970).

Spaces s.t. every weakly compact subset is separable

- $L^{\infty}(\mu)$ for any probability measure μ (Rosenthal, 1970).
- Spaces with w*-separable dual (Amir-Lindenstrauss, 1968),

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

Spaces s.t. every weakly compact subset is separable

- $L^{\infty}(\mu)$ for any probability measure μ (Rosenthal, 1970).
- Spaces with w^* -separable dual (Amir-Lindenstrauss, 1968), like $\ell^{\infty}(\mathbb{N})$ and its subspaces.

Spaces s.t. every weakly compact subset is separable

- $L^{\infty}(\mu)$ for any probability measure μ (Rosenthal, 1970).
- Spaces with w^* -separable dual (Amir-Lindenstrauss, 1968), like $\ell^{\infty}(\mathbb{N})$ and its subspaces.

Spaces s.t. all indefinite integrals have relatively norm compact range

Spaces s.t. every weakly compact subset is separable

- $L^{\infty}(\mu)$ for any probability measure μ (Rosenthal, 1970).
- Spaces with w^* -separable dual (Amir-Lindenstrauss, 1968), like $\ell^{\infty}(\mathbb{N})$ and its subspaces.

Spaces s.t. all indefinite integrals have relatively norm compact range

• Spaces not containing $\ell^1(\omega_1)$ (Talagrand, 1984),

Spaces s.t. every weakly compact subset is separable

- $L^{\infty}(\mu)$ for any probability measure μ (Rosenthal, 1970).
- Spaces with w^* -separable dual (Amir-Lindenstrauss, 1968), like $\ell^{\infty}(\mathbb{N})$ and its subspaces.

Spaces s.t. all indefinite integrals have relatively norm compact range

• Spaces not containing $\ell^1(\omega_1)$ (Talagrand, 1984), like the weakly compactly generated ones.

Spaces s.t. every weakly compact subset is separable

- $L^{\infty}(\mu)$ for any probability measure μ (Rosenthal, 1970).
- Spaces with w^* -separable dual (Amir-Lindenstrauss, 1968), like $\ell^{\infty}(\mathbb{N})$ and its subspaces.

Spaces s.t. all indefinite integrals have relatively norm compact range

- Spaces not containing $\ell^1(\omega_1)$ (Talagrand, 1984), like the weakly compactly generated ones.
- Duals of spaces not containing $\ell^1(\mathbb{N})$ (Rybakov, 1977).

Spaces s.t. every weakly compact subset is separable

- $L^{\infty}(\mu)$ for any probability measure μ (Rosenthal, 1970).
- Spaces with w^* -separable dual (Amir-Lindenstrauss, 1968), like $\ell^{\infty}(\mathbb{N})$ and its subspaces.

Spaces s.t. all indefinite integrals have relatively norm compact range

• Spaces not containing $\ell^1(\omega_1)$ (Talagrand, 1984), like the weakly compactly generated ones.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

• Duals of spaces not containing $\ell^1(\mathbb{N})$ (Rybakov, 1977).

Spaces s.t. every weakly compact subset is separable

- $L^{\infty}(\mu)$ for any probability measure μ (Rosenthal, 1970).
- Spaces with w^* -separable dual (Amir-Lindenstrauss, 1968), like $\ell^{\infty}(\mathbb{N})$ and its subspaces.

Spaces s.t. all indefinite integrals have relatively norm compact range

- Spaces not containing $\ell^1(\omega_1)$ (Talagrand, 1984), like the weakly compactly generated ones.
- Duals of spaces not containing $\ell^1(\mathbb{N})$ (Rybakov, 1977).

And also . . .
Banach spaces having the Pettis Separability Property ...

Spaces s.t. every weakly compact subset is separable

- $L^{\infty}(\mu)$ for any probability measure μ (Rosenthal, 1970).
- Spaces with w^* -separable dual (Amir-Lindenstrauss, 1968), like $\ell^{\infty}(\mathbb{N})$ and its subspaces.

Spaces s.t. all indefinite integrals have relatively norm compact range

- Spaces not containing $\ell^1(\omega_1)$ (Talagrand, 1984), like the weakly compactly generated ones.
- Duals of spaces not containing $\ell^1(\mathbb{N})$ (Rybakov, 1977).

And also . . .

• C(K) spaces where K is compact Hausdorff and every sequentially continuous function $f: K \to \mathbb{R}$ is continuous (Plebanek, 1993).

Banach spaces having the Pettis Separability Property ...

Spaces s.t. every weakly compact subset is separable

- $L^{\infty}(\mu)$ for any probability measure μ (Rosenthal, 1970).
- Spaces with w^* -separable dual (Amir-Lindenstrauss, 1968), like $\ell^{\infty}(\mathbb{N})$ and its subspaces.

Spaces s.t. all indefinite integrals have relatively norm compact range

- Spaces not containing $\ell^1(\omega_1)$ (Talagrand, 1984), like the weakly compactly generated ones.
- Duals of spaces not containing $\ell^1(\mathbb{N})$ (Rybakov, 1977).

And also . . .

• C(K) spaces where K is compact Hausdorff and every sequentially continuous function $f: K \to \mathbb{R}$ is continuous (Plebanek, 1993).

We study the norm separability of the range of

<u>X*-valued</u> vector measures with σ -finite variation,

We study the norm separability of the range of

<u>X*-valued</u> vector measures with σ -finite variation,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

when X is weakly Lindelöf determined.

We study the norm separability of the range of

<u>X*-valued</u> vector measures with σ -finite variation,

when X is weakly Lindelöf determined.

Definition

X is weakly Lindelöf determined if (B_{X^*}, w^*) embeds into

 $\Sigma(\Gamma) = \{(x_{\gamma}) \in [-1,1]^{\Gamma}: \ x_{\gamma} = 0 \text{ for all but countably many } \gamma \in \Gamma\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

endowed with the product topology (for some set Γ).

We study the norm separability of the range of

<u>X*-valued</u> vector measures with σ -finite variation,

when X is weakly Lindelöf determined.

Definition

X is weakly Lindelöf determined if (B_{X^*}, w^*) embeds into

 $\Sigma(\Gamma) = \{(x_{\gamma}) \in [-1,1]^{\Gamma}: \ x_{\gamma} = 0 \text{ for all but countably many } \gamma \in \Gamma\}$

endowed with the product topology (for some set Γ).

weakly compactly generated \implies weakly Lindelöf determined

(Amir-Lindenstrauss, 1968)

Suppose X is weakly Lindelöf determined. TFAE:

◆□> <圖> < E> < E> E のQの

Suppose X is weakly Lindelöf determined. TFAE:

(i) Every X^* -valued vector measure with σ -finite variation has **norm separable** range.

(日) (문) (문) (문) (문)

Suppose X is weakly Lindelöf determined. TFAE:

(i) Every X^* -valued vector measure with σ -finite variation has **norm separable** range.

(ii) (B_{X^*}, w^*) has property (M),

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X*-valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X*-valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

• X weakly compactly generated $\implies (B_{X^*}, w^*)$ has property (M) (Amir-Lindenstrauss, 1968) and (Rosenthal, 1970).

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X*-valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

• X weakly compactly generated $\implies (B_{X^*}, w^*)$ has property (M) (Amir-Lindenstrauss, 1968) and (Rosenthal, 1970).

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X*-valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

- X weakly compactly generated $\implies (B_{X^*}, w^*)$ has property (M) (Amir-Lindenstrauss, 1968) and (Rosenthal, 1970).
- Under CH, there is a weakly Lindelöf determined X such that (B_{X^*}, w^*) fails property (M) (Kalenda-Plebanek, 2002).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X*-valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

- X weakly compactly generated $\implies (B_{X^*}, w^*)$ has property (M) (Amir-Lindenstrauss, 1968) and (Rosenthal, 1970).
- Under CH, there is a weakly Lindelöf determined X such that (B_{X^*}, w^*) fails property (M) (Kalenda-Plebanek, 2002).
- Under MA+¬CH, (B_{X*}, w*) has property (M) for every weakly Lindelöf determined X (Argyros-Mercourakis-Negrepontis, 1982).

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X*-valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

- X weakly compactly generated $\implies (B_{X^*}, w^*)$ has property (M) (Amir-Lindenstrauss, 1968) and (Rosenthal, 1970).
- Under CH, there is a weakly Lindelöf determined X such that (B_{X^*}, w^*) fails property (M) (Kalenda-Plebanek, 2002).
- Under MA+¬CH, (B_{X*}, w*) has property (M) for every weakly Lindelöf determined X (Argyros-Mercourakis-Negrepontis, 1982).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Corollary (a partial answer to Musial's question)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Suppose X is weakly Lindelöf determined.

Corollary (a partial answer to Musial's question)

Suppose X is weakly Lindelöf determined. Then:

$$(B_{X^*}, w^*)$$
 has property (M)
 \Downarrow
 X^* has the Pettis Separability Property.

Corollary (a partial answer to Musial's question)

Suppose X is weakly Lindelöf determined. Then:

$$(B_{X^*},w^*)$$
 has property (M)
 \Downarrow
K * has the Pettis Separability Property.

In particular, the dual of every weakly compactly generated space has the Pettis Separability Property.

Corollary (a partial answer to Musial's question)

Suppose X is weakly Lindelöf determined. Then:

$$(B_{X^*},w^*)$$
 has property (M)
 \Downarrow
K * has the Pettis Separability Property.

In particular, the dual of every weakly compactly generated space has the Pettis Separability Property.

Corollary

Suppose X is weakly Lindelöf determined.

Corollary (a partial answer to Musial's question)

Suppose X is weakly Lindelöf determined. Then:

In particular, the dual of every weakly compactly generated space has the Pettis Separability Property.

Corollary

Suppose X is weakly Lindelöf determined. Then:

$$X
ot\supset \ell^1(\mathbb{N}) \implies (B_{X^*},w^*)$$
 has property (M).

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X*-valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X*-valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

◆□▶ ◆□▶ ◆□▶ ◆□▶ · □ · ○Q○

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X^* -valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

Some ideas used in the proof of (ii) \Rightarrow (i):

• GOAL: reduction to "X separable" ($\Rightarrow X^{**}$ is w*-separable).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X^* -valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

- GOAL: reduction to "X separable" (\Rightarrow X^{**} is w^{*}-separable).
- Discuss the problem for indefinite **Gelfand** integrals of "good" *X**-valued functions.

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X^* -valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

- GOAL: reduction to "X separable" ($\Rightarrow X^{**}$ is w*-separable).
- Discuss the problem for indefinite **Gelfand** integrals of "good" *X**-valued functions.
- Look at the first step of the construction of **PRI**s in non-separable weakly Lindelöf determined spaces.

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X^* -valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

- GOAL: reduction to "X separable" (\Rightarrow X^{**} is w^{*}-separable).
- Discuss the problem for indefinite **Gelfand** integrals of "good" *X**-valued functions.
- Look at the first step of the construction of **PRI**s in non-separable weakly Lindelöf determined spaces.

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X^* -valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

Some ideas used in the proof of (ii) \Rightarrow (i):

- GOAL: reduction to "X separable" (\Rightarrow X^{**} is w^{*}-separable).
- Discuss the problem for indefinite **Gelfand** integrals of "good" *X**-valued functions.
- Look at the first step of the construction of **PRI**s in non-separable weakly Lindelöf determined spaces.

Idea used in the proof of (i) \Rightarrow (ii):

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X^* -valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

Some ideas used in the proof of (ii) \Rightarrow (i):

- GOAL: reduction to "X separable" ($\Rightarrow X^{**}$ is w*-separable).
- Discuss the problem for indefinite **Gelfand** integrals of "good" *X**-valued functions.
- Look at the first step of the construction of **PRI**s in non-separable weakly Lindelöf determined spaces.

Idea used in the proof of (i) \Rightarrow (ii):

• For each Radon probability μ on (B_{X^*}, w^*) ,

Suppose X is weakly Lindelöf determined. TFAE:

- (i) Every X^* -valued vector measure with σ -finite variation has **norm separable** range.
- (ii) (B_{X^*}, w^*) has **property (M)**, i.e. every Radon probability measure on (B_{X^*}, w^*) has w^* -separable support.

Some ideas used in the proof of (ii) \Rightarrow (i):

- GOAL: reduction to "X separable" (\Rightarrow X^{**} is w^{*}-separable).
- Discuss the problem for indefinite **Gelfand** integrals of "good" *X**-valued functions.
- Look at the first step of the construction of **PRI**s in non-separable weakly Lindelöf determined spaces.

Idea used in the proof of (i) \Rightarrow (ii):

For each Radon probability µ on (B_{X*}, w*), the indefinite Gelfand integral of the "identity" I: B_{X*} → X* has norm separable range.

◆□> <圖> <圖> <圖> <圖> <■> <</p>

There is an $\ell^{\infty}(\omega_1)$ -valued vector measure with finite variation whose range is **not** norm separable.

There is an $\ell^{\infty}(\omega_1)$ -valued vector measure with finite variation whose range is **not** norm separable.

Using the "lifting property" for vector measures of Musial and Ryll-Nardzewski (1978), we get ...

There is an $\ell^{\infty}(\omega_1)$ -valued vector measure with finite variation whose range is **not** norm separable.

Using the "lifting property" for vector measures of Musial and Ryll-Nardzewski (1978), we get ...

Corollary

Suppose the following statement holds:

Every X^* -valued vector measure with σ -finite variation has norm separable range.

There is an $\ell^{\infty}(\omega_1)$ -valued vector measure with finite variation whose range is **not** norm separable.

Using the "lifting property" for vector measures of Musial and Ryll-Nardzewski (1978), we get ...

Corollary

Suppose the following statement holds:

Every X^* -valued vector measure with σ -finite variation has norm separable range.

Then $X \not\supseteq \ell^1(\omega_1)$.

http://www.um.es/docencia/joserr/

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで