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Vector measure = countably additive and defined on a o-algebra
X,Y = Banach spaces

Theorem (Bartle-Dunford-Schwartz, 1955)

The range of any vector measure is relatively weakly compact.

In general, the range is . ..

neither relatively norm compact nor separable, even for indefinite
Pettis integrals (Fremlin-Talagrand, 1979).
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Definition (Pettis, 1938)

Let (Q,%, 1) be a complete probability space.
A function f : Q — Y is Pettis integrable if

@ (y*, f) is integrable Vy* € Y*,
o for each E € X there is v¢(E) € Y such that

L) du= 7 vi(E)) vyt e v,

the mapping vf : X — Y (the indefinite integral of f) is a vector
measure (Pettis, 1938) with o-finite variation (Rybakov, 1968).
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(i) There is a sequence f,: Q — Y of simple functions such that

o for each y* € Y*, we have (y*,f,) — (y".f) a.e.,
o the family {(y*,f,) : y* € By, n € N} is uniformly integrable. )

Definition (Musial, 1991)

Y has the Pettis Separability Property if the indefinite integral
of any Y-valued Pettis integrable function has separable range.

Question (Musial, 1991)
Which Banach spaces have the Pettis Separability Property?
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Corollary (a partial answer to Musial's question)

Suppose X is weakly Lindelof determined. Then:

(Bx+,w*) has property (M)
4
X* has the Pettis Separability Property.

In particular, the dual of every weakly compactly generated space
has the Pettis Separability Property.

Suppose X is weakly Lindelof determined. Then:

X 20 (N) = (Bx-,w") has property (M).
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@ Discuss the problem for indefinite Gelfand integrals of “good”
X*-valued functions.

@ Look at the first step of the construction of PRIs in non-separable
weakly Lindelof determined spaces.

Idea used in the proof of (i)=(ii):

@ For each Radon probability £ on (Bx+,w*), the indefinite Gelfand
integral of the “identity” /: Bx+ — X" has norm separable range.
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