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Vector measure ≡ countably additive and defined on a σ -algebra

X ,Y ≡ Banach spaces

Theorem (Bartle-Dunford-Schwartz, 1955)

The range of any vector measure is relatively weakly compact.

In general, the range is . . .

neither relatively norm compact nor separable, even for indefinite
Pettis integrals (Fremlin-Talagrand, 1979).
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Definition (Pettis, 1938)

Let (Ω,Σ,µ) be a complete probability space.
A function f : Ω→ Y is Pettis integrable if

〈y∗, f 〉 is integrable ∀y∗ ∈ Y ∗,

for each E ∈ Σ there is νf (E ) ∈ Y such that∫
E
〈y∗, f 〉 dµ = 〈y∗,νf (E )〉 ∀y∗ ∈ Y ∗.

In this case . . .

the mapping νf : Σ→ Y (the indefinite integral of f ) is a vector
measure (Pettis, 1938) with σ -finite variation (Rybakov, 1968).
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Theorem (Musial, 1985, and Talagrand, 1984)

Let (Ω,Σ,µ) be a complete probability space and f : Ω→ Y a
function. TFAE:

(i) f is Pettis integrable and νf has separable range.

(ii) There is a sequence fn : Ω→ Y of simple functions such that

for each y∗ ∈ Y ∗, we have 〈y∗, fn〉 → 〈y∗, f 〉 a.e.,
the family {〈y∗, fn〉 : y∗ ∈ BY ∗ , n ∈ N} is uniformly integrable.

Definition (Musial, 1991)

Y has the Pettis Separability Property if the indefinite integral
of any Y -valued Pettis integrable function has separable range.

Question (Musial, 1991)

Which Banach spaces have the Pettis Separability Property?
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Banach spaces having the Pettis Separability Property . . .

Spaces s.t. every weakly compact subset is separable

L∞(µ) for any probability measure µ (Rosenthal, 1970).

Spaces with w∗-separable dual (Amir-Lindenstrauss, 1968), like
`∞(N) and its subspaces.

Spaces s.t. all indefinite integrals have relatively norm compact range

Spaces not containing `1(ω1) (Talagrand, 1984), like the weakly
compactly generated ones.

Duals of spaces not containing `1(N) (Rybakov, 1977).

And also . . .

C (K ) spaces where K is compact Hausdorff and every sequentially
continuous function f : K → R is continuous (Plebanek, 1993).
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Our aim

We study the norm separability of the range of

X ∗-valued vector measures with σ -finite variation,

when X is weakly Lindelöf determined.

Definition

X is weakly Lindelöf determined if (BX ∗ ,w∗) embeds into

Σ(Γ) = {(xγ) ∈ [−1,1]Γ : xγ = 0 for all but countably many γ ∈ Γ}

endowed with the product topology (for some set Γ).

weakly compactly generated =⇒ weakly Lindelöf determined

(Amir-Lindenstrauss, 1968)
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X is weakly Lindelöf determined if (BX ∗ ,w∗) embeds into

Σ(Γ) = {(xγ) ∈ [−1,1]Γ : xγ = 0 for all but countably many γ ∈ Γ}

endowed with the product topology (for some set Γ).

weakly compactly generated =⇒ weakly Lindelöf determined
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Main Theorem

Suppose X is weakly Lindelöf determined. TFAE:

(i) Every X ∗-valued vector measure with σ -finite variation has
norm separable range.

(ii) (BX ∗ ,w∗) has property (M),

i.e. every Radon probability
measure on (BX ∗ ,w∗) has w∗-separable support.

X weakly compactly generated =⇒ (BX ∗ ,w∗) has property (M)
(Amir-Lindenstrauss, 1968) and (Rosenthal, 1970).

Under CH, there is a weakly Lindelöf determined X such that
(BX ∗ ,w∗) fails property (M) (Kalenda-Plebanek, 2002).

Under MA+¬CH, (BX ∗ ,w∗) has property (M) for every weakly
Lindelöf determined X (Argyros-Mercourakis-Negrepontis, 1982).
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(BX ∗ ,w∗) fails property (M) (Kalenda-Plebanek, 2002).

Under MA+¬CH, (BX ∗ ,w∗) has property (M) for every weakly
Lindelöf determined X (Argyros-Mercourakis-Negrepontis, 1982).



Main Theorem

Suppose X is weakly Lindelöf determined. TFAE:
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(BX ∗ ,w∗) fails property (M) (Kalenda-Plebanek, 2002).

Under MA+¬CH, (BX ∗ ,w∗) has property (M) for every weakly
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Then:

(BX ∗ ,w∗) has property (M)
⇓

X ∗ has the Pettis Separability Property.

In particular, the dual of every weakly compactly generated space
has the Pettis Separability Property.

Corollary

Suppose X is weakly Lindelöf determined. Then:
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(i) Every X ∗-valued vector measure with σ -finite variation has
norm separable range.

(ii) (BX ∗ ,w∗) has property (M), i.e. every Radon probability
measure on (BX ∗ ,w∗) has w∗-separable support.

Some ideas used in the proof of (ii)⇒(i):

GOAL: reduction to “X separable” (⇒ X ∗∗ is w∗-separable).

Discuss the problem for indefinite Gelfand integrals of “good”
X ∗-valued functions.

Look at the first step of the construction of PRIs in non-separable
weakly Lindelöf determined spaces.

Idea used in the proof of (i)⇒(ii):

For each Radon probability µ on (BX ∗ ,w∗), the indefinite Gelfand
integral of the “identity” I : BX ∗ → X ∗ has norm separable range.
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Example

There is an `∞(ω1)-valued vector measure with finite variation
whose range is not norm separable.

Using the “lifting property” for vector measures of Musial and
Ryll-Nardzewski (1978), we get . . .

Corollary

Suppose the following statement holds:

Every X ∗-valued vector measure with σ -finite variation
has norm separable range.

Then X 6⊃ `1(ω1).
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