Limits of Birkhoff integrable vector-valued functions

José Rodríguez

Instituto Universitario de Matemática Pura y Aplicada Universidad Politécnica de Valencia

VII Iberoamerican Conference on Topology and its Applications Valencia, June 25th, 2008

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Summary of the talk

2 The Core

- Counterexamples
- A Positive Result
- New Approach to Convergence Theorems

(日) (문) (문) (문) (문)

- (Ω,Σ,μ) is a (complete) probability space,
- X is a Banach space.

- (Ω,Σ,μ) is a (complete) probability space,
- X is a Banach space.

Definition (Birkhoff, 1935)

A function $f: \Omega \to X$ is **Birkhoff integrable**, with integral $x \in X$, iff for each $\varepsilon > 0$ there is a countable partition (A_n) of Ω in Σ such that

$$\left\|\sum_{n} \mu(A_{n})f(t_{n})-x\right\|<\varepsilon$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

for any choice $t_n \in A_n$,

- (Ω,Σ,μ) is a (complete) probability space,
- X is a Banach space.

Definition (Birkhoff, 1935)

A function $f: \Omega \to X$ is **Birkhoff integrable**, with integral $x \in X$, iff for each $\varepsilon > 0$ there is a countable partition (A_n) of Ω in Σ such that

$$\left\|\sum_{n} \mu(A_{n})f(t_{n})-x\right\|<\varepsilon$$

for any choice $t_n \in A_n$, the series being unconditionally convergent.

◆□▶ ◆□▶ ◆目▶ ◆日▶ ◆□ ◆ ⊙∧⊙

- (Ω,Σ,μ) is a (complete) probability space,
- X is a Banach space.

Definition (Birkhoff, 1935)

A function $f: \Omega \to X$ is **Birkhoff integrable**, with integral $x \in X$, iff for each $\varepsilon > 0$ there is a countable partition (A_n) of Ω in Σ such that

$$\left\|\sum_{n} \mu(A_{n})f(t_{n})-x\right\|<\varepsilon$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

for any choice $t_n \in A_n$, the series being unconditionally convergent.

We always have

 $\mathsf{Bochner} \Longrightarrow \mathsf{Birkhoff} \Longrightarrow \mathsf{Pettis}$

- (Ω,Σ,μ) is a (complete) probability space,
- X is a Banach space.

Definition (Birkhoff, 1935)

A function $f : \Omega \to X$ is **Birkhoff integrable**, with integral $x \in X$, iff for each $\varepsilon > 0$ there is a countable partition (A_n) of Ω in Σ such that

$$\left\|\sum_{n} \mu(A_{n})f(t_{n})-x\right\|<\varepsilon$$

for any choice $t_n \in A_n$, the series being unconditionally convergent.

We always have

 \checkmark No one of these arrows can be reversed in general.

 $\mathsf{Bochner} \Longrightarrow \mathsf{Birkhoff} \Longrightarrow \mathsf{Pettis}$

- (Ω,Σ,μ) is a (complete) probability space,
- X is a Banach space.

Definition (Birkhoff, 1935)

A function $f : \Omega \to X$ is **Birkhoff integrable**, with integral $x \in X$, iff for each $\varepsilon > 0$ there is a countable partition (A_n) of Ω in Σ such that

$$\left\|\sum_{n} \mu(A_{n})f(t_{n})-x\right\|<\varepsilon$$

for any choice $t_n \in A_n$, the series being unconditionally convergent.

We always have

 $\mathsf{Bochner} \Longrightarrow \mathsf{Birkhoff} \Longrightarrow \mathsf{Pettis}$

 \checkmark No one of these arrows can be reversed in general.

$$\checkmark X$$
 separable \implies Birkhoff \equiv Pettis.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◇ へ⊙

The General Problem

The General Problem

Problem

When do the classical convergence theorems of Lebesgue's integration theory hold true for the Birkhoff integral ??

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへ⊙

The General Problem

Problem

When do the classical convergence theorems of Lebesgue's integration theory hold true for the Birkhoff integral ??

Let $f_n : \Omega \to X$ be a sequence of Birkhoff integrable functions converging μ -a.e. to a function $f : \Omega \to X$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem

When do the classical convergence theorems of Lebesgue's integration theory hold true for the Birkhoff integral ??

Let $f_n : \Omega \to X$ be a sequence of Birkhoff integrable functions converging μ -a.e. to a function $f : \Omega \to X$.

(i) When is f Birkhoff integrable ??

Problem

When do the classical convergence theorems of Lebesgue's integration theory hold true for the Birkhoff integral ??

Let $f_n: \Omega \to X$ be a sequence of Birkhoff integrable functions converging μ -a.e. to a function $f: \Omega \to X$.

(i) When is f Birkhoff integrable ?? (ii) $\int f_n d\mu \rightarrow \int f d\mu$??

(□) (□) (□) (E) (E) (E) (0,0)

Problem

When do the classical convergence theorems of Lebesgue's integration theory hold true for the Birkhoff integral ??

Let $f_n: \Omega \to X$ be a sequence of Birkhoff integrable functions converging μ -a.e. to a function $f: \Omega \to X$.

(i) When is f Birkhoff integrable ?? (ii) $\int f_n d\mu \rightarrow \int f d\mu$??

Problem

When do the classical convergence theorems of Lebesgue's integration theory hold true for the Birkhoff integral ??

Let $f_n: \Omega \to X$ be a sequence of Birkhoff integrable functions converging μ -a.e. to a function $f: \Omega \to X$.

(i) When is f Birkhoff integrable ??

(ii)
$$\int f_n d\mu \rightarrow \int f d\mu$$
 ??

▶ We consider on X either the **norm** or the **weak** topology.

Counterexamples A Positive Result New Approach to Convergence Theorems

Lebesgue's Dominated Convergence Theorem Fails

Counterexamples A Positive Result New Approach to Convergence Theorems

Lebesgue's Dominated Convergence Theorem Fails

Example

There is a **uniformly bounded** sequence of Birkhoff integrable functions $f_n : [0,1] \rightarrow c_0(\mathfrak{c})$ converging pointwise to a function $f : [0,1] \rightarrow c_0(\mathfrak{c})$ which is **not** Birkhoff integrable.

Counterexamples A Positive Result New Approach to Convergence Theorems

(日) (문) (문) (문) (문)

Lebesgue's Dominated Convergence Theorem Fails

Example

There is a uniformly bounded sequence of Birkhoff integrable functions $f_n: [0,1] \rightarrow c_0(\mathfrak{c})$ converging pointwise to a function $f: [0,1] \rightarrow c_0(\mathfrak{c})$ which is **not** Birkhoff integrable.

Counterexamples A Positive Result New Approach to Convergence Theorems

Lebesgue's Dominated Convergence Theorem Fails

Example

There is a uniformly bounded sequence of Birkhoff integrable functions $f_n: [0,1] \to c_0(\mathfrak{c})$ converging pointwise to a function $f: [0,1] \to c_0(\mathfrak{c})$ which is **not** Birkhoff integrable.

Sketch: $(\mathfrak{c} \equiv \text{cardinality of } \mathbb{R})$

• $\{\Gamma_{\alpha}\}_{\alpha < \mathfrak{c}} \equiv$ all countable partitions of [0,1] by Borel sets.

Counterexamples A Positive Result New Approach to Convergence Theorems

Lebesgue's Dominated Convergence Theorem Fails

Example

There is a **uniformly bounded** sequence of Birkhoff integrable functions $f_n: [0,1] \rightarrow c_0(\mathfrak{c})$ converging pointwise to a function $f: [0,1] \rightarrow c_0(\mathfrak{c})$ which is **not** Birkhoff integrable.

- $\{\Gamma_{\alpha}\}_{\alpha < \mathfrak{c}} \equiv$ all countable partitions of [0,1] by Borel sets.
- $\{A_{\alpha}\}_{\alpha < \mathfrak{c}} \cup \{B_{\alpha}\}_{\alpha < \mathfrak{c}}$ disjoint countable subsets of [0, 1] such that $A_{\alpha} \cap E \neq \emptyset$ and $B_{\alpha} \cap E \neq \emptyset$ $\forall E \in \Gamma_{\alpha}$ with positive measure.

Counterexamples A Positive Result New Approach to Convergence Theorems

Lebesgue's Dominated Convergence Theorem Fails

Example

There is a **uniformly bounded** sequence of Birkhoff integrable functions $f_n: [0,1] \rightarrow c_0(\mathfrak{c})$ converging pointwise to a function $f: [0,1] \rightarrow c_0(\mathfrak{c})$ which is **not** Birkhoff integrable.

- $\{\Gamma_{\alpha}\}_{\alpha < \mathfrak{c}} \equiv$ all countable partitions of [0,1] by Borel sets.
- $\{A_{\alpha}\}_{\alpha < \mathfrak{c}} \cup \{B_{\alpha}\}_{\alpha < \mathfrak{c}}$ disjoint countable subsets of [0,1] such that $A_{\alpha} \cap E \neq \emptyset$ and $B_{\alpha} \cap E \neq \emptyset$ $\forall E \in \Gamma_{\alpha}$ with positive measure.
- $\varphi, \psi: \mathfrak{c} \to \mathfrak{c}$ one-to-one mappings such that $\varphi(\mathfrak{c}) \cap \psi(\mathfrak{c}) = \emptyset$. Set $f(t) := e_{\varphi(\alpha)}$ if $t \in A_{\alpha}$, set $f(t) := e_{\psi(\alpha)}$ if $t \in B_{\alpha}$, and f(t) := 0 otherwise.

Counterexamples A Positive Result New Approach to Convergence Theorems

Lebesgue's Dominated Convergence Theorem Fails

Example

There is a **uniformly bounded** sequence of Birkhoff integrable functions $f_n: [0,1] \rightarrow c_0(\mathfrak{c})$ converging pointwise to a function $f: [0,1] \rightarrow c_0(\mathfrak{c})$ which is **not** Birkhoff integrable.

- $\{\Gamma_{\alpha}\}_{\alpha < \mathfrak{c}} \equiv$ all countable partitions of [0,1] by Borel sets.
- $\{A_{\alpha}\}_{\alpha < \mathfrak{c}} \cup \{B_{\alpha}\}_{\alpha < \mathfrak{c}}$ disjoint countable subsets of [0,1] such that $A_{\alpha} \cap E \neq \emptyset$ and $B_{\alpha} \cap E \neq \emptyset$ $\forall E \in \Gamma_{\alpha}$ with positive measure.
- $\varphi, \psi: \mathfrak{c} \to \mathfrak{c}$ one-to-one mappings such that $\varphi(\mathfrak{c}) \cap \psi(\mathfrak{c}) = \emptyset$. Set $f(t) := e_{\varphi(\alpha)}$ if $t \in A_{\alpha}$, set $f(t) := e_{\psi(\alpha)}$ if $t \in B_{\alpha}$, and f(t) := 0 otherwise.
- Write $A_{\alpha} = \{a_{\alpha 1}, a_{\alpha 2}, ...\}$ and $B_{\alpha} = \{b_{\alpha 1}, b_{\alpha 2}, ...\}$. For $n \in \mathbb{N}$, set $f_n(t) := f(t)$ if $t \in \{a_{\alpha 1}, ..., a_{\alpha n}\} \cup \{b_{\alpha 1}, ..., b_{\alpha n}\}$, and $f_n(t) := 0$ otherwise.

Counterexamples A Positive Result New Approach to Convergence Theorems

More Counterexamples

Theorem

Suppose X admits a **uniformly convex** equivalent norm and has density character $\geq \mathfrak{c}$ (for instance, $X = \ell^p(\mathfrak{c}), 1).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Counterexamples A Positive Result New Approach to Convergence Theorems

More Counterexamples

Theorem

Suppose X admits a **uniformly convex** equivalent norm and has density character $\geq c$ (for instance, $X = \ell^{p}(c), 1).$ Then there is a uniformly bounded sequence of Birkhoff integrable $functions <math>f_{n}: [0,1] \rightarrow X$ converging pointwise to a function $f: [0,1] \rightarrow X$ which is **not** Birkhoff integrable.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 の�?

A Positive Result New Approach to Convergence Theorems

A "Vitali-type" Positive Result

Theorem

Suppose X is isomorphic to a subspace of ℓ^{∞} .

A "Vitali-type" Positive Result

Theorem

Suppose X is isomorphic to a subspace of ℓ^{∞} .

Let $f_n : \Omega \to X$ be a sequence of Birkhoff integrable functions and $f : \Omega \to X$ be a function such that:

A "Vitali-type" Positive Result

Theorem

Suppose X is isomorphic to a subspace of ℓ^{∞} .

Let $f_n : \Omega \to X$ be a sequence of Birkhoff integrable functions and $f : \Omega \to X$ be a function such that:

• $f_n(t) \rightarrow f(t)$ weakly (resp. in norm) for every $t \in \Omega$.

A "Vitali-type" Positive Result

Theorem

Suppose X is isomorphic to a subspace of ℓ^{∞} .

Let $f_n : \Omega \to X$ be a sequence of Birkhoff integrable functions and $f : \Omega \to X$ be a function such that:

- $f_n(t) \rightarrow f(t)$ weakly (resp. in norm) for every $t \in \Omega$.
- The family of real-valued functions {x^{*} f_n}_{x^{*}∈B_{X^{*}}, n∈ℕ} is uniformly integrable.

A "Vitali-type" Positive Result

Theorem

Suppose X is isomorphic to a subspace of ℓ^{∞} .

Let $f_n : \Omega \to X$ be a sequence of Birkhoff integrable functions and $f : \Omega \to X$ be a function such that:

- $f_n(t) \rightarrow f(t)$ weakly (resp. in norm) for every $t \in \Omega$.
- The family of real-valued functions {x^{*} ∘ f_n}_{x^{*}∈B_{X^{*}}, n∈ℕ} is uniformly integrable.

A "Vitali-type" Positive Result

Theorem

Suppose X is isomorphic to a subspace of ℓ^{∞} .

Let $f_n : \Omega \to X$ be a sequence of Birkhoff integrable functions and $f : \Omega \to X$ be a function such that:

- $f_n(t) \rightarrow f(t)$ weakly (resp. in norm) for every $t \in \Omega$.
- The family of real-valued functions {x^{*} ∘ f_n}_{x^{*}∈B_{X^{*}}, n∈ℕ} is uniformly integrable.

Then f is Birkhoff integrable and

 $\int f_n d\mu \rightarrow \int f d\mu$ weakly (resp. in norm).

Counterexamples A Positive Result New Approach to Convergence Theorems

(日) (四) (E) (E) (E)

Equi-Birkhoff Integrability

Definition (Balcerzak-Potyrała)

A sequence (f_n) of Birkhoff integrable functions is **equi-Birkhoff integrable** iff for every $\varepsilon > 0$ there is a countable partition (A_i) of Ω in Σ such that, for any choice of points $t_i \in A_i$, one has

Definition (Balcerzak-Potyrała)

A sequence (f_n) of Birkhoff integrable functions is **equi-Birkhoff integrable** iff for every $\varepsilon > 0$ there is a countable partition (A_i) of Ω in Σ such that, for any choice of points $t_i \in A_i$, one has

• $\forall \ \delta > 0 \ \exists \ k \in \mathbb{N}$ such that $\sup_{n \in \mathbb{N}} \|\sum_{i \in I} \mu(A_i) f_n(t_i)\| < \delta$ for every finite set $I \subset \mathbb{N} \setminus \{1, \dots, k\}$.

Definition (Balcerzak-Potyrała)

A sequence (f_n) of Birkhoff integrable functions is **equi-Birkhoff integrable** iff for every $\varepsilon > 0$ there is a countable partition (A_i) of Ω in Σ such that, for any choice of points $t_i \in A_i$, one has

- $\forall \ \delta > 0 \ \exists \ k \in \mathbb{N}$ such that $\sup_{n \in \mathbb{N}} \|\sum_{i \in I} \mu(A_i) f_n(t_i)\| < \delta$ for every finite set $I \subset \mathbb{N} \setminus \{1, \dots, k\}$.
- $\sup_{n\in\mathbb{N}} \|\sum_i \mu(A_i) f_n(t_i) \int f_n d\mu\| < \varepsilon.$

Definition (Balcerzak-Potyrała)

A sequence (f_n) of Birkhoff integrable functions is **equi-Birkhoff integrable** iff for every $\varepsilon > 0$ there is a countable partition (A_i) of Ω in Σ such that, for any choice of points $t_i \in A_i$, one has

- $\forall \ \delta > 0 \ \exists \ k \in \mathbb{N}$ such that $\sup_{n \in \mathbb{N}} \|\sum_{i \in I} \mu(A_i) f_n(t_i)\| < \delta$ for every finite set $I \subset \mathbb{N} \setminus \{1, \dots, k\}$.
- $\sup_{n\in\mathbb{N}} \|\sum_i \mu(A_i) f_n(t_i) \int f_n d\mu \| < \varepsilon.$

 $X_c = (X \oplus X \oplus ...)_c \equiv$ Banach space of all **norm convergent sequences** in *X*, with the supremum norm.

Definition (Balcerzak-Potyrała)

A sequence (f_n) of Birkhoff integrable functions is **equi-Birkhoff integrable** iff for every $\varepsilon > 0$ there is a countable partition (A_i) of Ω in Σ such that, for any choice of points $t_i \in A_i$, one has

- $\forall \ \delta > 0 \ \exists \ k \in \mathbb{N}$ such that $\sup_{n \in \mathbb{N}} \|\sum_{i \in I} \mu(A_i) f_n(t_i)\| < \delta$ for every finite set $I \subset \mathbb{N} \setminus \{1, \dots, k\}$.
- $\sup_{n\in\mathbb{N}} \|\sum_i \mu(A_i) f_n(t_i) \int f_n d\mu\| < \varepsilon.$

 $X_c = (X \oplus X \oplus ...)_c \equiv$ Banach space of all **norm convergent sequences** in *X*, with the supremum norm.

Proposition

Let $f_n: \Omega \to X$ be a sequence of functions converging pointwise *in norm* to $f: \Omega \to X$. Then (f_n) is equi-Birkhoff integrable if and only if the function $F: \Omega \to X_c$ given by $F(t) := (f_n(t))$ is Birkhoff integrable.

Definition (Balcerzak-Potyrała)

A sequence (f_n) of Birkhoff integrable functions is **equi-Birkhoff integrable** iff for every $\varepsilon > 0$ there is a countable partition (A_i) of Ω in Σ such that, for any choice of points $t_i \in A_i$, one has

- $\forall \ \delta > 0 \ \exists \ k \in \mathbb{N}$ such that $\sup_{n \in \mathbb{N}} \|\sum_{i \in I} \mu(A_i) f_n(t_i)\| < \delta$ for every finite set $I \subset \mathbb{N} \setminus \{1, \dots, k\}$.
- $\sup_{n\in\mathbb{N}} \|\sum_i \mu(A_i) f_n(t_i) \int f_n d\mu\| < \varepsilon.$

 $X_c = (X \oplus X \oplus ...)_c \equiv$ Banach space of all **norm convergent sequences** in *X*, with the supremum norm.

Proposition

Let $f_n: \Omega \to X$ be a sequence of functions converging pointwise *in norm* to $f: \Omega \to X$. Then (f_n) is equi-Birkhoff integrable if and only if the function $F: \Omega \to X_c$ given by $F(t) := (f_n(t))$ is Birkhoff integrable.

▶ In this case, f is Birkhoff integrable and $\int f_n \ d\mu \rightarrow \int f \ d\mu$ in norm.

Let $f_n: \Omega \to X$ be a sequence of Birkhoff integrable functions converging pointwise *in norm* to $f: \Omega \to X$.

Equi-Birkhoff Integrability versus Uniform Integrability

Let $f_n: \Omega \to X$ be a sequence of Birkhoff integrable functions converging pointwise *in norm* to $f: \Omega \to X$.

 (f_n) equi-Birkhoff int. $\Longrightarrow \{x^* \circ f_n\}_{x^* \in B_{X^*}, n \in \mathbb{N}}$ uniformly int.

Equi-Birkhoff Integrability versus Uniform Integrability

Let $f_n: \Omega \to X$ be a sequence of Birkhoff integrable functions converging pointwise *in norm* to $f: \Omega \to X$.

 (f_n) equi-Birkhoff int. $\Longrightarrow \{x^* \circ f_n\}_{x^* \in B_{X^*}, n \in \mathbb{N}}$ uniformly int.

✓ The converse fails in general.

Let $f_n: \Omega \to X$ be a sequence of Birkhoff integrable functions converging pointwise *in norm* to $f: \Omega \to X$.

 (f_n) equi-Birkhoff int. $\Longrightarrow \{x^* \circ f_n\}_{x^* \in B_{X^*}, n \in \mathbb{N}}$ uniformly int.

✓ The converse fails in general.

✓ The equivalence holds if X is isomorphic to a subspace of ℓ^{∞} .

Let $f_n: \Omega \to X$ be a sequence of Birkhoff integrable functions converging pointwise *in norm* to $f: \Omega \to X$.

 (f_n) equi-Birkhoff int. $\Longrightarrow \{x^* \circ f_n\}_{x^* \in B_{X^*}, n \in \mathbb{N}}$ uniformly int.

✓ The converse fails in general.

✓ The equivalence holds if X is isomorphic to a subspace of ℓ^{∞} .

When norm convergence is replaced by weak convergence

Let $f_n: \Omega \to X$ be a sequence of Birkhoff integrable functions converging pointwise *in norm* to $f: \Omega \to X$.

 (f_n) equi-Birkhoff int. $\Longrightarrow \{x^* \circ f_n\}_{x^* \in B_{X^*}, n \in \mathbb{N}}$ uniformly int.

✓ The converse fails in general.

✓ The equivalence holds if X is isomorphic to a subspace of ℓ^{∞} .

When norm convergence is replaced by weak convergence

• equi-Birkhoff integrability \implies uniform integrability

Let $f_n: \Omega \to X$ be a sequence of Birkhoff integrable functions converging pointwise *in norm* to $f: \Omega \to X$.

 (f_n) equi-Birkhoff int. $\Longrightarrow \{x^* \circ f_n\}_{x^* \in B_{X^*}, n \in \mathbb{N}}$ uniformly int.

✓ The converse fails in general.

✓ The equivalence holds if X is isomorphic to a subspace of ℓ^{∞} .

When norm convergence is replaced by weak convergence

- equi-Birkhoff integrability \implies uniform integrability
- But

equi-Birkhoff int. \equiv uniform int. (\forall sequences) \Downarrow X has the **Schur property**

Convergence Theorems for the Pettis Integral

Weak Convergence Theorem (Musiał)

Let $f_n: \Omega \to X$ be a sequence of **Pettis integrable** functions and $f: \Omega \to X$ a function such that:

•
$$\forall x^* \in X^*$$
, $x^* \circ f_n \to x^* \circ f \mu$ -a.e.

•
$$\{x^* \circ f_n\}_{x^* \in B_{X^*}, n \in \mathbb{N}}$$
 is uniformly integrable.

Convergence Theorems for the Pettis Integral

Weak Convergence Theorem (Musiał)

Let $f_n: \Omega \to X$ be a sequence of **Pettis integrable** functions and $f: \Omega \to X$ a function such that:

•
$$\forall x^* \in X^*$$
, $x^* \circ f_n \to x^* \circ f$ μ -a.e.

• $\{x^* \circ f_n\}_{x^* \in B_{X^*}, n \in \mathbb{N}}$ is uniformly integrable.

Then f is **Pettis integrable** and $\int f_n d\mu \rightarrow \int f d\mu$ weakly.

Convergence Theorems for the Pettis Integral

Weak Convergence Theorem (Musiał)

Let $f_n: \Omega \to X$ be a sequence of **Pettis integrable** functions and $f: \Omega \to X$ a function such that:

•
$$\forall x^* \in X^*$$
, $x^* \circ f_n \to x^* \circ f$ μ -a.e.

• $\{x^* \circ f_n\}_{x^* \in B_{X^*}, n \in \mathbb{N}}$ is uniformly integrable.

Then f is **Pettis integrable** and $\int f_n d\mu \rightarrow \int f d\mu$ weakly.

Norm Convergence Theorem

Let $f_n: \Omega \to X$ be a sequence of Pettis integrable functions converging pointwise *in norm* to a function $f: \Omega \to X$.

Convergence Theorems for the Pettis Integral

Weak Convergence Theorem (Musiał)

Let $f_n: \Omega \to X$ be a sequence of **Pettis integrable** functions and $f: \Omega \to X$ a function such that:

•
$$\forall x^* \in X^*$$
, $x^* \circ f_n \to x^* \circ f$ μ -a.e.

• $\{x^* \circ f_n\}_{x^* \in B_{X^*}, n \in \mathbb{N}}$ is uniformly integrable.

Then f is **Pettis integrable** and $\int f_n d\mu \rightarrow \int f d\mu$ weakly.

Norm Convergence Theorem

Let $f_n : \Omega \to X$ be a sequence of Pettis integrable functions converging pointwise *in norm* to a function $f : \Omega \to X$. TFAE:

(i)
$$\{x^* \circ f_n\}_{x^* \in B_{\mathbf{Y}^*}, n \in \mathbb{N}}$$
 is uniformly integrable.

(ii) f is Pettis integrable and $\int_A f_n \ d\mu \to \int_A f \ d\mu \ in \ norm \ \forall \ A \in \Sigma$.

THANKS FOR YOUR ATTENTION !!

http://personales.upv.es/jorodrui

- J. Rodríguez, On the existence of Pettis integrable functions which are not Birkhoff integrable, Proc. AMS (2005).
- J. Rodríguez, *Convergence theorems for the Birkhoff integral*, Houston J. Math., to appear.
- J. Rodríguez, *Pointwise limits of Birkhoff integrable functions*, Proc. AMS, to appear.