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The Core

Integration of functions f : Ω→ X where

(Ω,Σ,µ) is a (complete) probability space,

X is a Banach space.

Definition (Birkhoff, 1935)

A function f : Ω→ X is Birkhoff integrable, with integral x ∈ X , iff for
each ε > 0 there is a countable partition (An) of Ω in Σ such that∥∥∥∑

n

µ(An)f (tn)−x
∥∥∥ < ε

for any choice tn ∈ An, the series being unconditionally convergent.

We always have

Bochner =⇒ Birkhoff =⇒ Pettis

X No one of these arrows can be
reversed in general.

X X separable =⇒ Birkhoff ≡ Pettis.
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The General Problem

Problem

When do the classical convergence theorems of Lebesgue’s
integration theory hold true for the Birkhoff integral ??

Let fn : Ω→ X be a sequence of Birkhoff integrable functions
converging µ-a.e. to a function f : Ω→ X .

(i) When is f Birkhoff integrable ??

(ii)
∫

fn dµ →
∫

f dµ ??

I We consider on X either the norm or the weak topology.
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Counterexamples
A Positive Result
New Approach to Convergence Theorems

Lebesgue’s Dominated Convergence Theorem Fails

Example

There is a uniformly bounded sequence of Birkhoff integrable functions
fn : [0,1]→ c0(c) converging pointwise to a function f : [0,1]→ c0(c)
which is not Birkhoff integrable.

Sketch: (c≡ cardinality of R)

{Γα}α<c ≡ all countable partitions of [0,1] by Borel sets.

{Aα}α<c∪{Bα}α<c disjoint countable subsets of [0,1] such that

Aα ∩E 6= /0 and Bα ∩E 6= /0 ∀ E ∈ Γα with positive measure.

ϕ,ψ : c→ c one-to-one mappings such that ϕ(c)∩ψ(c) = /0.

Set f (t) := eϕ(α) if t ∈ Aα ,

set f (t) := eψ(α) if t ∈ Bα , and f (t) := 0 otherwise.

Write Aα = {aα1,aα2, . . .} and Bα = {bα1,bα2, . . .}.

For n ∈ N, set fn(t) := f (t) if t ∈ {aα1, . . . ,aαn}∪{bα1, . . . ,bαn},

and fn(t) := 0 otherwise.
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More Counterexamples

Theorem

Suppose X admits a uniformly convex equivalent norm
and has density character ≥ c (for instance, X = `p(c), 1 < p < ∞).

Then there is a uniformly bounded sequence of Birkhoff integrable
functions fn : [0,1]→ X converging pointwise to a function
f : [0,1]→ X which is not Birkhoff integrable.
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Counterexamples
A Positive Result
New Approach to Convergence Theorems

A “Vitali-type” Positive Result

Theorem

Suppose X is isomorphic to a subspace of `∞.

Let fn : Ω→ X be a sequence of Birkhoff integrable functions and
f : Ω→ X be a function such that:

fn(t)→ f (t) weakly (resp. in norm) for every t ∈Ω.

The family of real-valued functions
{
x∗ ◦ fn

}
x∗∈BX∗ ,n∈N

is uniformly integrable.

Then f is Birkhoff integrable and∫
fn dµ →

∫
f dµ weakly (resp. in norm).
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A Positive Result
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Equi-Birkhoff Integrability

Definition (Balcerzak-Potyra la)

A sequence (fn) of Birkhoff integrable functions is equi-Birkhoff
integrable iff for every ε > 0 there is a countable partition (Ai ) of Ω in Σ
such that, for any choice of points ti ∈ Ai , one has

∀ δ > 0 ∃ k ∈ N such that supn∈N ‖∑i∈I µ(Ai )fn(ti )‖< δ for every
finite set I ⊂ N\{1, . . . ,k}.

supn∈N ‖∑i µ(Ai )fn(ti )−
∫

fn dµ‖< ε.

Xc = (X ⊕X ⊕ . . .)c ≡ Banach space of all norm convergent sequences
in X , with the supremum norm.

Proposition

Let fn : Ω→ X be a sequence of functions converging pointwise in norm
to f : Ω→ X . Then (fn) is equi-Birkhoff integrable if and only if the
function F : Ω→ Xc given by F (t) := (fn(t)) is Birkhoff integrable.

I In this case, f is Birkhoff integrable and
∫

fn dµ →
∫

f dµ in norm.
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A sequence (fn) of Birkhoff integrable functions is equi-Birkhoff
integrable iff for every ε > 0 there is a countable partition (Ai ) of Ω in Σ
such that, for any choice of points ti ∈ Ai , one has

∀ δ > 0 ∃ k ∈ N such that supn∈N ‖∑i∈I µ(Ai )fn(ti )‖< δ for every
finite set I ⊂ N\{1, . . . ,k}.

supn∈N ‖∑i µ(Ai )fn(ti )−
∫

fn dµ‖< ε.

Xc = (X ⊕X ⊕ . . .)c ≡ Banach space of all norm convergent sequences
in X , with the supremum norm.

Proposition

Let fn : Ω→ X be a sequence of functions converging pointwise in norm
to f : Ω→ X . Then (fn) is equi-Birkhoff integrable if and only if the
function F : Ω→ Xc given by F (t) := (fn(t)) is Birkhoff integrable.

I In this case, f is Birkhoff integrable and
∫

fn dµ →
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Equi-Birkhoff Integrability versus Uniform Integrability

Let fn : Ω→ X be a sequence of Birkhoff integrable functions
converging pointwise in norm to f : Ω→ X .

(fn) equi-Birkhoff int. =⇒
{
x∗ ◦ fn

}
x∗∈BX∗ ,n∈N uniformly int.

X The converse fails in general.

X The equivalence holds if X is isomorphic to a subspace of `∞.

When norm convergence is replaced by weak convergence . . .

equi-Birkhoff integrability =⇒ uniform integrability

But

equi-Birkhoff int. ≡ uniform int. (∀ sequences)
⇓

X has the Schur property
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Convergence Theorems for the Pettis Integral

Weak Convergence Theorem (Musia l)

Let fn : Ω→ X be a sequence of Pettis integrable functions and
f : Ω→ X a function such that:

∀ x∗ ∈ X ∗, x∗ ◦ fn → x∗ ◦ f µ-a.e.{
x∗ ◦ fn

}
x∗∈BX∗ ,n∈N is uniformly integrable.

Then f is Pettis integrable and
∫

fn dµ →
∫

f dµ weakly.

Norm Convergence Theorem

Let fn : Ω→ X be a sequence of Pettis integrable functions converging
pointwise in norm to a function f : Ω→ X . TFAE:

(i)
{
x∗ ◦ fn

}
x∗∈BX∗ ,n∈N is uniformly integrable.

(ii) f is Pettis integrable and
∫
A fn dµ →

∫
A f dµ in norm ∀ A ∈ Σ.
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THANKS FOR YOUR ATTENTION !!

http://personales.upv.es/jorodrui
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