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Domination theorems for bilinear maps

Let (Ω,Σ,µ) and (∆,S ,ν) be finite measure spaces.

Let X (µ) and Y (ν) be Banach function spaces.

Let Z be a Banach space.

Consider a bilinear map B : X (µ)×Y (ν)→ Z .

We provide a general scheme
of what a domination theorem for B is.
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Banach function spaces

Let (Ω,Σ,µ) be a finite measure space and L0(µ) be the space of all
measurable real functions on Ω.

Definition

A Banach function space is a Banach space X (µ)⊂ L0(µ) with norm ‖ ·‖X (µ)
satisfying that:

1 If f ∈ L0(µ) and g ∈ X (µ) with |f | ≤ |g | µ-a.e.

then f ∈ X (µ) and ‖f ‖X (µ) ≤ ‖g‖X (µ).

2 For every A ∈Σ, the characteristic function χA belongs to X (µ).

I A Banach function space is called order continuous if order bounded
increasing sequences are convergent in norm.
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p-convexity and p-concavity

Definition

A Banach lattice E is p-convex if there is a constant K > 0 such
that for each x1, ...,xn ∈ E ,

‖(
n

∑
i=1

|xi |p)1/p‖ ≤ K (
n

∑
i=1

‖xi‖p)1/p.

The best constant in the inequalities is denoted by M(p)(E ).

Definition

An operator T : E → F (where E and F are Banach lattices) is
p-concave if there is a constant K such that for each x1, ...,xn ∈ E ,

(
n

∑
i=1

‖T (xi )‖p)1/p ≤ K‖(
n

∑
i=1

|xi |p)1/p‖.
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Homogeneicity

We call a set U homogeneous whenever it carries a
multiplication with positive scalars:

U× [0,∞)→ U, (x ,λ )→ λx .

If there is a homogeneous set U, a quasi Köthe function
space X and a homogeneous mapping ϕ : U → X ,
then we say that ϕ represents U in X homogeneously.

For two homogeneous sets U1,U2 a form u : U1×U2→K is
said to be homogeneous if

u(λx ,y) = u(x ,λy) = λu(x ,y) for all λ ≥ 0.



Theorem (Defant)

For ` = 1,2, let 0 < r` < ∞ and 1/t = 1/r1 + 1/r2.
Let u : U1×U2→K a homogeneous form on homogeneous sets
such that U` via ϕ` can be represented homogeneously in an
quasi-Banach function space X`(µ`).
If u satisfies( n

∑
i=1

|u(xi ,yi )|t
) 1

t ≤ K
∥∥∥( n

∑
i=1

|ϕ1(xi )|r1
) 1

r1

∥∥∥
X1

∥∥∥( n

∑
i=1

|ϕ2(yi )|r2
) 1

r2

∥∥∥
X2

.

for all x1, ...,xn ∈ U1 and y1, ...,yn ∈ U2,
then there are two positive linear functionals Φ` : X[r`](µ`)→ R
such that for all x ∈ U1, y ∈ U2,

|u(x ,y)| ≤ Φ1(|ϕ1(x)|r1)
1
r1 Φ2(|ϕ2(y)|r2)

1
r2 .

If X`(µ`) is order continuous, then Φ` can be chosen to be a
function in the Köthe dual of (X`)[r`].



Examples

I Domination Theorem for p-summing operators and
(p,q)-dominated operators.

I Maurey-Rosenthal Theorem for p-convex spaces.



Notation

(Ω,Σ) is a measurable space

X is a Banach space

m : Σ→ X is a (countably additive) vector measure

I p
m : Lp(m)→ X is the integration operator defined by

I p
m(f ) :=

∫
Ω

f dm (where 1≤ p < ∞).

µ is a Rybakov control measure of m

If E and F are Banach function spaces, we write

E ↪→ F

whenever the ‘identity’ mapping from E to F is a well-defined
one-to-one operator.
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Our domination theorem

Theorem

Let r ≥ 1 and p,q > 1 be such that 1/r = 1/p + 1/q. TFAE:

(a) There is a constant K > 0 such that( n

∑
i=1

∥∥∥∫ fi gi dm
∥∥∥r) 1

r ≤ K
∥∥∥( n

∑
i=1

|fi |p
) 1

p
∥∥∥

Lp(m)

∥∥∥( n

∑
i=1

|gi |q
) 1

q
∥∥∥

Lq(m)

for every f1, . . . , fn ∈ Lp(m) and g1, . . . ,gn ∈ Lq(m), n ∈ N.

(b) There exist a constant K > 0 and u,v ∈ B+
L1(m)′

such that

∥∥∥∫ fg dm
∥∥∥≤ K

(∫
|f |pu dµ

) 1
p
(∫
|g |qv dµ

) 1
q

for every f ∈ Lp(m) and g ∈ Lq(m).

(c) There is a control measure ν of m such that

Lr (m) ↪→ Lr (ν) ↪→ L1(m).

(d) The integration operator I r
m : Lr (m)→ X is r -concave.
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Proof of (b)⇒(c), I

We want to prove . . .

∥∥∫ fg dm
∥∥≤ K

(∫
|f |pudµ

)1/p(∫ |g |qv dµ
)1/q ∀f ∈ Lp(m), ∀g ∈ Lq(m) (*) =⇒ Lr (m) ↪→ Lr (ν) ↪→ L1(m)

(1) u dµ and v dµ are control measures of m. Indeed:

I Take A ∈Σ with (u dµ)(A) = 0, that is,
∫

χAu dµ = 0.

I For each B ⊂ A with B ∈Σ, we apply (*) to f = χB and g = 1 to get
m(B) = 0. Hence ‖m‖(A) = 0.

(2) The bilinear map P : Lp(u dµ)×Lq(v dµ)→ L1(m) given by (f ,g) fg
is well-defined and continuous. Indeed:

I If f and g are simple functions, then fg ∈ L1(m) and (*) yields

‖fg‖L1(m) = sup
h∈BL∞(µ)

∥∥∥∫ fgh dm
∥∥∥≤ K ‖f ‖Lp(udµ) ‖g‖Lq(v dµ).

So the restriction of P to simple functions is well-defined and continuous.

I Now we apply a “density argument”.
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Proof of (b)⇒(c), II

We want to prove . . .

There is a control measure ν of m such that Lr (m) ↪→ Lr (ν) ↪→ L1(m) .
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(1) udµ and v dµ are control measures of m.

(2) The bilinear map P : Lp(udµ)×Lq(v dµ)→ L1(m) given by (f ,g) fg is well-defined and continuous.

(3) The function h0 := ur/pv r/q belongs to B+
L1(m)′

. Indeed:

I By Young’s inequality we have h0 ≤ r
p u + r

q v.

(4) We have Lr (h0 dµ) ↪→ L1(m). Indeed:

I Fix h ∈ Lr (h0 dµ). Then h = fg where

f := sign(h)|h|
r
p
( v

u

) r
pq ∈ Lp(udµ) and g := |h|

r
q
( u

v

) r
pq ∈ Lq(v dµ).

I By (2) we have h = fg ∈ L1(m) and

‖h‖
L1(m)

≤ ‖P‖‖f ‖Lp (udµ) ‖g‖Lq (v dµ) = ‖P‖
(∫
|h|r h0 dµ

)1/p (∫ |h|r h0 dµ
)1/q

= ‖P‖‖h‖Lr (h0 dµ).

(5) ν := h0 dµ is a control measure of m and Lr (m) ↪→ Lr (h0 dµ).
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Our domination theorem (again)

Theorem

Let r ≥ 1 and p,q > 1 be such that 1/r = 1/p + 1/q. TFAE:

(a) There is a constant K > 0 such that( n

∑
i=1

∥∥∥∫ fi gi dm
∥∥∥r) 1

r ≤ K
∥∥∥( n

∑
i=1

|fi |p
) 1

p
∥∥∥

Lp(m)

∥∥∥( n

∑
i=1

|gi |q
) 1

q
∥∥∥

Lq(m)

for every f1, . . . , fn ∈ Lp(m) and g1, . . . ,gn ∈ Lq(m), n ∈ N.

(b) There exist a constant K > 0 and u,v ∈ B+
L1(m)′

such that

∥∥∥∫ fg dm
∥∥∥≤ K

(∫
|f |pu dµ

) 1
p
(∫
|g |qv dµ

) 1
q

for every f ∈ Lp(m) and g ∈ Lq(m).

(c) There is a control measure ν of m such that

Lr (m) ↪→ Lr (ν) ↪→ L1(m).

(d) The integration operator I r
m : Lr (m)→ X is r -concave.



p-concavity and L1 of a scalar measure

Definition

A B.f.s. E is p-concave (resp. p-convex), where 1≤ p < ∞, if there is a
constant K > 0 such that( n

∑
i=1

‖zi‖p
) 1

p ≤ K
∥∥∥( n

∑
i=1

|zi |p
) 1

p
∥∥∥ (resp. the reverse one)

for every z1, . . . ,zn ∈ E , n ∈ N.

Corollary

TFAE:

(a) Lp(m) is p-concave for some/every 1≤ p < ∞.

(b) The integration operator I 1
m : L1(m)→ X is 1-concave.

(c) L1(m) is order isomorphic to L1(ν) for some control measure ν of m.

Theorem (Maurey-Rosenthal)

A B.f.s. E is order isomorphic to the Lp space of a non-negative scalar measure
(where 1≤ p < ∞) if and only if it is p-concave and p-convex.
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z ′∈BE ′
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) 1
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for every z1, . . . ,zn ∈ E +.

Absolutely p-summing =⇒ positive p-summing =⇒ p-concave.

No one of these arrows can be reversed in general.

Theorem

Let E be an order continuous B.f.s. having weak order unit. TFAE:

(a) For some/every vector measure m representing E and some/every
1≤ p < ∞, the integration operator I 1

m is positive p-summing.

(b) For some vector measure m representing E and some 1≤ p < ∞, the
integration operator I 1

m is absolutely p-summing.

(c) E is order isomorphic to the L1 space of a non-negative scalar measure.
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Proof of (a)⇒(c), I

We want to prove . . .

I 1
m : L1(m)→ X is positive p-summing (for some 1≤ p < ∞) =⇒ Lp(m) is p-concave

(1) If p = 1 then I 1
m is 1-concave and L1(m) is 1-concave.

(2) Now suppose p > 1 and let 1/p + 1/q = 1. Fix f1, . . . , fn ∈ Lp(m). Then:( n

∑
i=1

∥∥∥∫ fi gi dm
∥∥∥p) 1

p ≤ K
∥∥∥( n

∑
i=1

|fi |p
) 1

p
∥∥∥

Lp(m)
for all g1, . . . ,gn ∈ BLq(m).

Indeed:

I Since I1
m is positive p-summing we have:

( n

∑
i=1

∥∥∥∫ fi gi dm
∥∥∥p)1/p

≤K sup
h∈B

L1(m)′

( n

∑
i=1

(∫
|fi gi ||h|dµ

)p)1/p
.

I By Hölder’s inequality:

∫
|fi gi ||h|dµ ≤

(∫
|fi |p |h|dµ

)1/p(∫
|gi |q |h|dµ

)1/q
≤
(∫
|fi |p |h|dµ

)1/p
for all h ∈ B

L1(m)′ .
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Proof of (a)⇒(c), II
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p-summability and L1 of a scalar measure (again)

Theorem

Let E be an order continuous B.f.s. having weak order unit. TFAE:

(a) For some/every vector measure m representing E and some/every
1≤ p < ∞, the integration operator I 1

m is positive p-summing.

(b) For some vector measure m representing E and some 1≤ p < ∞, the
integration operator I 1

m is absolutely p-summing.

(c) E is order isomorphic to the L1 space of a non-negative scalar measure.

In general, the previous statements are not equivalent to . . .

(b’) For every vector measure m representing E there is some 1≤ p < ∞ such
that I 1

m is absolutely p-summing.
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