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Domination theorems for bilinear maps

Let (2,X,u) and (A,.#,V) be finite measure spaces.
Let X(u) and Y(v) be Banach function spaces.

Let Z be a Banach space.

Consider a bilinear map B: X(u) x Y(v) — Z.
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Let (2,X,u) and (A,.#,V) be finite measure spaces.
Let X(u) and Y(v) be Banach function spaces.

Let Z be a Banach space.

Consider a bilinear map B: X(u) x Y(v) — Z.

We provide a general scheme
of what a domination theorem for B is.
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» A Banach function space is called order continuous if order bounded
increasing sequences are convergent in norm.
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p-convexity and p-concavity

A Banach lattice E is p-convex if there is a constant K > 0 such
that for each xi,...,x, € E,

ICY bilP)MPIE < KCY IllP) VP
i=1

i=1

The best constant in the inequalities is denoted by M(P)(E).

Definition

An operator T : E — F (where E and F are Banach lattices) is
p-concave if there is a constant K such that for each xy,...,x, € E,

(L ITeIP)MP < KII( ZIXIP )P
i=1 i=1

The best constant in these inequalities is denoted by M,)(T).




o We call a set U homogeneous whenever it carries a
multiplication with positive scalars:

Ux[0,00) = U, (x,A)— Ax.

o If there is a homogeneous set U, a quasi Kéthe function
space X and a homogeneous mapping ¢ : U — X,
then we say that ¢ represents U in X homogeneously.

@ For two homogeneous sets U, Uy a form u: Uy x U — K is
said to be homogeneous if

u(Ax,y) =u(x,Ay) =Au(x,y) forall L >0.



Theorem (Defant)

Fort=1,2,let0<r<eand 1l/t=1/n+1/r.

Let u: U; x U — K a homogeneous form on homogeneous sets
such that Uy via ¢y can be represented homogeneously in an
quasi-Banach function space Xy(t).

If u satisfies

(g\U(thi)!> <KH Z“Pl )| rl),l

for all x1,...,x, € Uy and y1,...,y, € Us,
then there are two positive linear functionals ®; : X,;(u/) — R
such that for all x € Uy, y € U>,

1
r2)r2

Xo

L
o

[u(x, )] < P1(|@r(x)|) T D (|@2y) ).

If X¢(1) is order continuous, then ®; can be chosen to be a
function in the Kéthe dual of (X;)[,-




» Domination Theorem for p-summing operators and
(p, q)-dominated operators.

» Maurey-Rosenthal Theorem for p-convex spaces.
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(©,X) is a measurable space

°
@ X is a Banach space

@ m: ¥ — X is a (countably additive) vector measure
°

I5 - LP(m) — X is the integration operator defined by

1P(f) ::/ fdm (where 1 < p < o).
Q

U is a Rybakov control measure of m

If E and F are Banach function spaces, we write
E—F

whenever the ‘identity’ mapping from E to F is a well-defined
one-to-one operator.
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(b) There exist a constant K >0 and u,v € Bzrl( , such that
m)

| eml| < ([ 1ru) [ leven)*

for every f € LP(m) and g € L9(m).

(c) There is a control measure v of m such that
L"(m) < L"(v) < L}(m).

(d) The integration operator I, : L"(m) — X is r-concave.
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is well-defined and continuous. Indeed:
» If f and g are simple functions, then fg € L1(m) and (*) yields

1l = sup || [ fih dm]| < K I1Fluo(uay) I to(uan
heBi=w)

So the restriction of & to simple functions is well-defined and continuous.
» Now we apply a “density argument”.
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We want to prove ...

There is a control measure v of m such that ‘ L"(m) — L"(v) — LY(m) ‘

We already know ...

udp and vdu are control measures of m.

The bilinear map 2 : LP(udu) x L9(vdu) — L(m) given by (f,g) ~ fg is well-defined and continuous.

The function hg := uPyr/a belongs to Bzrl(m),. Indeed:
» By Young's inequality we have hy < éu«# gv.
We have L"(hgdu) < L'(m). Indeed:

» Fix he L"(hgdp). Then h= fg where
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We want to prove ...

There is a control measure v of m such that ‘ L"(m) — L"(v) — LY(m) ‘

We already know ...

(1) wudp and vdu are control measures of m.
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» Fix he L"(hgdp). Then h= fg where
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: )P e : . ,
» By (2) we have h= fg € L'(m) and
2 P [ 1 1
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(5) v:=hodu is a control measure of m and L"(m) — L"(hodp). O
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p-concavity and L! of a scalar measure

Definition
A B.fis. E is p-concave (resp. p-convex), where 1 < p < oo, if there is a
constant K > 0 such that

(£ 1)’ < ()

for every z1,...,z, € E, n€N.

(resp. the reverse one)

Corollary
TFAE:

(a) LP(m) is p-concave for some/every 1 < p < oo.
(b) The integration operator I} : LY(m) — X is 1-concave.

(c) LY(m) is order isomorphic to L1(Vv) for some control measure v of m.

Theorem (Maurey-Rosenthal)

A B.fs. E is order isomorphic to the LP space of a non-negative scalar measure
(where 1 < p < <o) if and only if it is p-concave and p-convex.

v




p-summability and L of a scalar measure



p-summability and L of a scalar measure

An operator T from a B.f.s. E to X is positive p-summing (where 1 < p < )
if there is a constant K > 0 such that

(Z||Tz,||P) <K sup (Z| z,,z)|p)%

ZGEI,

for every zy,...,z, € ET.




p-summability and L of a scalar measure

An operator T from a B.f.s. E to X is positive p-summing (where 1 < p < )
if there is a constant K > 0 such that

(Z||Tz,||P) <K sup (Z| z,,z)|p)%

ZGEI,

for every zy,...,z, € ET.

@ Absolutely p-summing = positive p-summing = p-concave.




p-summability and L of a scalar measure

An operator T from a B.f.s. E to X is positive p-summing (where 1 < p < )
if there is a constant K > 0 such that

(Z||Tz,||”) <K sup (Z| z,,z)|p)%

ZGEI,

for every zy,...,z, € ET.

@ Absolutely p-summing = positive p-summing = p-concave.
@ No one of these arrows can be reversed in general.




p-summability and L of a scalar measure

An operator T from a B.f.s. E to X is positive p-summing (where 1 < p < )
if there is a constant K > 0 such that

(Z||Tz,||”) <K sup (Z| z,,z)|p)%

ZGEI,

for every zy,...,z, € ET.

A\

@ Absolutely p-summing = positive p-summing = p-concave.
@ No one of these arrows can be reversed in general.

Theorem

Let E be an order continuous B.f.s. having weak order unit. TFAE:




p-summability and L of a scalar measure

An operator T from a B.f.s. E to X is positive p-summing (where 1 < p < )
if there is a constant K > 0 such that

(Z||Tz,||”) <K sup (Z| z,,z)|p)%

ZGEI,

for every zy,...,z, € ET.

A\

@ Absolutely p-summing = positive p-summing = p-concave.
@ No one of these arrows can be reversed in general.

Theorem

Let E be an order continuous B.f.s. having weak order unit. TFAE:

(a) For some/every vector measure m representing E and some/every
1 < p < oo, the integration operator I,L is positive p-summing.




p-summability and L of a scalar measure

An operator T from a B.f.s. E to X is positive p-summing (where 1 < p < )
if there is a constant K > 0 such that

(Z||Tz,||”) <K sup (Z| z,,z)|p)%

ZGEI,

for every zy,...,z, € ET.

A\

@ Absolutely p-summing = positive p-summing = p-concave.
@ No one of these arrows can be reversed in general.

Theorem

Let E be an order continuous B.f.s. having weak order unit. TFAE:

(a) For some/every vector measure m representing E and some/every
1 < p < oo, the integration operator I,L is positive p-summing.

(b) For some vector measure m representing E and some 1 < p < oo, the
integration operator /,1, is absolutely p-summing.




p-summability and L! of a scalar measure

An operator T from a B.f.s. E to X is positive p-summing (where 1 < p < )
if there is a constant K > 0 such that

(Z||Tz,||”) <K sup (Z| (zi,2

ZGEI,

\_/
o=

for every zy,...,z, € ET.

@ Absolutely p-summing = positive p-summing = p-concave.
@ No one of these arrows can be reversed in general.

Theorem

Let E be an order continuous B.f.s. having weak order unit. TFAE:

(a) For some/every vector measure m representing E and some/every
1 < p < oo, the integration operator I,}, is positive p-summing.

(b) For some vector measure m representing E and some 1 < p < oo, the
integration operator /,1, is absolutely p-summing.

(c) E is order isomorphic to the L! space of a non-negative scalar measure.
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1} : LY(m) — X is positive p-summing (for some 1 < p < ) = LP(m) is p-concave

(1) If p=1 then I} is 1-concave and L1(m) is 1-concave.

(2) Now suppose p>1andlet1/p+1/g=1. Fix fi,...,fn € LP(m). Then:
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m

Indeed:

» Since 1,17 is positive p-summing we have:

(é“/ﬁgfdmup)l/g,( sup )": (/ rlibian)”) Ve,

heB L1 (my : 1
» By Holder's inequality:
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1
. p) P
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We already known (for p>1and 1/p+1/q=1) ...

(2) Given fi,...,f, € LP(m), we have:

(B sy <kl(B10)H |y o
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(3) Since
Ifillo(my = sup H/ﬁgde
g€Ba(m)

we infer:
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p-summability and L' of a scalar measure (again)

Let E be an order continuous B.f.s. having weak order unit. TFAE:

(a) For some/every vector measure m representing E and some/every
1 < p < oo, the integration operator I,%, is positive p-summing.

(b) For some vector measure m representing E and some 1 < p < oo, the
integration operator /1 is absolutely p-summing.

(c) E is order isomorphic to the L space of a non-negative scalar measure.

v




p-summability and L' of a scalar measure (again)

Let E be an order continuous B.f.s. having weak order unit. TFAE:

(a) For some/every vector measure m representing E and some/every
1 < p < oo, the integration operator I,%, is positive p-summing.

(b) For some vector measure m representing E and some 1 < p < oo, the
integration operator /1 is absolutely p-summing.

(c) E is order isomorphic to the L space of a non-negative scalar measure.

v

In general, the previous statements are not equivalent to ...

(b") For every vector measure m representing E there is some 1 < p < oo such
that 1,1, is absolutely p-summing.
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