# On the structure of $L^1$ of a vector measure via its integration operator

J.M. Calabuig, J. Rodríguez, E.A. Sánchez-Pérez

Integr. Equ. Oper. Theory 64 (2009), 21-33

IUMPA – October 22nd, 2009

• Let  $(\Omega, \Sigma, \mu)$  and  $(\Delta, \mathscr{S}, \nu)$  be finite measure spaces.

- Let  $X(\mu)$  and  $Y(\nu)$  be Banach function spaces.
- Let Z be a Banach space.
- Consider a bilinear map  $B: X(\mu) \times Y(\nu) \rightarrow Z$ .

- Let  $(\Omega, \Sigma, \mu)$  and  $(\Delta, \mathscr{S}, \nu)$  be finite measure spaces.
- Let  $X(\mu)$  and  $Y(\nu)$  be Banach function spaces.
- Let Z be a Banach space.
- Consider a bilinear map  $B: X(\mu) \times Y(\nu) \rightarrow Z$ .

We provide a general scheme of what a domination theorem for B is.

Let  $(\Omega, \Sigma, \mu)$  be a finite measure space and  $L^0(\mu)$  be the space of all measurable real functions on  $\Omega$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Let  $(\Omega, \Sigma, \mu)$  be a finite measure space and  $L^0(\mu)$  be the space of all measurable real functions on  $\Omega$ .

#### Definition

A Banach function space is a Banach space  $X(\mu) \subset L^0(\mu)$  with norm  $\|\cdot\|_{X(\mu)}$  satisfying that:

• If  $f \in L^{0}(\mu)$  and  $g \in X(\mu)$  with  $|f| \le |g| \mu$ -a.e. then  $f \in X(\mu)$  and  $||f||_{X(\mu)} \le ||g||_{X(\mu)}$ .

**2** For every  $A \in \Sigma$ , the characteristic function  $\chi_A$  belongs to  $X(\mu)$ .

Let  $(\Omega, \Sigma, \mu)$  be a finite measure space and  $L^0(\mu)$  be the space of all measurable real functions on  $\Omega$ .

#### Definition

A Banach function space is a Banach space  $X(\mu) \subset L^0(\mu)$  with norm  $\|\cdot\|_{X(\mu)}$  satisfying that:

• If  $f \in L^{0}(\mu)$  and  $g \in X(\mu)$  with  $|f| \le |g| \mu$ -a.e. then  $f \in X(\mu)$  and  $||f||_{X(\mu)} \le ||g||_{X(\mu)}$ .

**2** For every  $A \in \Sigma$ , the characteristic function  $\chi_A$  belongs to  $X(\mu)$ .

► A Banach function space is called **order continuous** if order bounded increasing sequences are convergent in norm.

# *p*-convexity and *p*-concavity

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

### *p*-convexity and *p*-concavity

### Definition

A Banach lattice *E* is *p*-convex if there is a constant K > 0 such that for each  $x_1, ..., x_n \in E$ ,

$$\|(\sum_{i=1}^n |x_i|^p)^{1/p}\| \le K(\sum_{i=1}^n \|x_i\|^p)^{1/p}.$$

The best constant in the inequalities is denoted by  $M^{(p)}(E)$ .

### *p*-convexity and *p*-concavity

### Definition

A Banach lattice *E* is *p*-convex if there is a constant K > 0 such that for each  $x_1, ..., x_n \in E$ ,

$$\|(\sum_{i=1}^n |x_i|^p)^{1/p}\| \le K(\sum_{i=1}^n \|x_i\|^p)^{1/p}.$$

The best constant in the inequalities is denoted by  $M^{(p)}(E)$ .

### Definition

An operator  $T : E \to F$  (where E and F are Banach lattices) is *p*-concave if there is a constant K such that for each  $x_1, ..., x_n \in E$ ,

$$(\sum_{i=1}^{n} \|T(x_i)\|^p)^{1/p} \leq K \|(\sum_{i=1}^{n} |x_i|^p)^{1/p}\|.$$

The best constant in these inequalities is denoted by  $M_{(p)}(T)$ .

• We call a set *U* homogeneous whenever it carries a multiplication with positive scalars:

$$U imes [0,\infty) o U, \quad (x,\lambda) o \lambda x.$$

- If there is a homogeneous set U, a quasi Köthe function space X and a homogeneous mapping φ : U → X, then we say that φ represents U in X homogeneously.
- For two homogeneous sets  $U_1, U_2$  a form  $u: U_1 \times U_2 \to \mathbb{K}$  is said to be **homogeneous** if

$$u(\lambda x, y) = u(x, \lambda y) = \lambda u(x, y)$$
 for all  $\lambda \ge 0$ .

### Theorem (Defant)

For  $\ell = 1, 2$ , let  $0 < r_{\ell} < \infty$  and  $1/t = 1/r_1 + 1/r_2$ . Let  $u : U_1 \times U_2 \to \mathbb{K}$  a homogeneous form on homogeneous sets such that  $U_{\ell}$  via  $\varphi_{\ell}$  can be represented homogeneously in an quasi-Banach function space  $X_{\ell}(\mu_{\ell})$ . If u satisfies

$$\Big(\sum_{i=1}^{n}|u(x_{i},y_{i})|^{t}\Big)^{\frac{1}{t}} \leq K \Big\| \Big(\sum_{i=1}^{n}|\varphi_{1}(x_{i})|^{r_{1}}\Big)^{\frac{1}{r_{1}}}\Big\|_{X_{1}} \Big\| \Big(\sum_{i=1}^{n}|\varphi_{2}(y_{i})|^{r_{2}}\Big)^{\frac{1}{r_{2}}}\Big\|_{X_{2}}.$$

for all  $x_1, ..., x_n \in U_1$  and  $y_1, ..., y_n \in U_2$ , **then** there are two positive linear functionals  $\Phi_{\ell} : X_{[r_{\ell}]}(\mu_{\ell}) \to \mathbb{R}$ such that for all  $x \in U_1$ ,  $y \in U_2$ ,

$$|u(x,y)| \leq \Phi_1(|\varphi_1(x)|^{r_1})^{\frac{1}{r_1}} \Phi_2(|\varphi_2(y)|^{r_2})^{\frac{1}{r_2}}.$$

If  $X_{\ell}(\mu_{\ell})$  is order continuous, then  $\Phi_{\ell}$  can be chosen to be a function in the Köthe dual of  $(X_{\ell})_{[r_{\ell}]}$ .

 $) \land \bigcirc$ 

▶ Domination Theorem for *p*-summing operators and (p,q)-dominated operators.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

▶ Maurey-Rosenthal Theorem for *p*-convex spaces.

- $(\Omega, \Sigma)$  is a measurable space
- X is a Banach space
- $m: \Sigma \rightarrow X$  is a (countably additive) vector measure

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

- $(\Omega, \Sigma)$  is a measurable space
- X is a Banach space
- $m: \Sigma \rightarrow X$  is a (countably additive) vector measure
- $I_m^p: L^p(m) \to X$  is the **integration operator** defined by

$$I^p_m(f) := \int_{\Omega} f \, dm$$
 (where  $1 \le p < \infty$ ).

(ロ) (回) (三) (三) (三) (三) (○)

- $(\Omega, \Sigma)$  is a measurable space
- X is a Banach space
- $m: \Sigma \rightarrow X$  is a (countably additive) vector measure
- $I_m^p: L^p(m) \to X$  is the **integration operator** defined by

$$I^p_m(f) := \int_{\Omega} f \, dm$$

(where 
$$1 \le p < \infty$$
).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

•  $\mu$  is a Rybakov control measure of m

- $(\Omega, \Sigma)$  is a measurable space
- X is a Banach space
- $m: \Sigma \rightarrow X$  is a (countably additive) vector measure
- $I_m^p: L^p(m) \to X$  is the **integration operator** defined by

$$I^p_m(f) := \int_{\Omega} f \, dm$$
 (wher

(where 
$$1 \le p < \infty$$
).

- $\mu$  is a Rybakov control measure of m
- If E and F are Banach function spaces, we write

$$E \hookrightarrow F$$

whenever the 'identity' mapping from E to F is a well-defined one-to-one operator.

### Theorem

Let  $r \ge 1$  and p, q > 1 be such that 1/r = 1/p + 1/q. TFAE:

#### Theorem

Let  $r \ge 1$  and p, q > 1 be such that 1/r = 1/p + 1/q. TFAE:

(a) There is a constant K > 0 such that

$$\Big(\sum_{i=1}^{n} \left\| \int f_{i}g_{i} \, dm \right\|^{r} \Big)^{\frac{1}{r}} \leq K \left\| \Big( \sum_{i=1}^{n} |f_{i}|^{p} \Big)^{\frac{1}{p}} \right\|_{L^{p}(m)} \left\| \Big( \sum_{i=1}^{n} |g_{i}|^{q} \Big)^{\frac{1}{q}} \right\|_{L^{q}(m)}$$

for every  $f_1,\ldots,f_n\in L^p(m)$  and  $g_1,\ldots,g_n\in L^q(m),\ n\in\mathbb{N}.$ 

#### Theorem

Let  $r \geq 1$  and p, q > 1 be such that 1/r = 1/p + 1/q. TFAE:

(a) There is a constant K > 0 such that

$$\Big(\sum_{i=1}^{n} \left\| \int f_{i}g_{i} \, dm \right\|^{r} \Big)^{\frac{1}{r}} \leq K \Big\| \Big(\sum_{i=1}^{n} |f_{i}|^{p} \Big)^{\frac{1}{p}} \Big\|_{L^{p}(m)} \Big\| \Big(\sum_{i=1}^{n} |g_{i}|^{q} \Big)^{\frac{1}{q}} \Big\|_{L^{q}(m)}$$

for every  $f_1, \ldots, f_n \in L^p(m)$  and  $g_1, \ldots, g_n \in L^q(m)$ ,  $n \in \mathbb{N}$ . (b) There exist a constant K > 0 and  $u, v \in B^+_{L^1(m)'}$  such that

$$\left\|\int fg \, dm\right\| \leq K \left(\int |f|^p u \, d\mu\right)^{\frac{1}{p}} \left(\int |g|^q v \, d\mu\right)^{\frac{1}{q}}$$

for every  $f \in L^p(m)$  and  $g \in L^q(m)$ .

#### Theorem

Let  $r \geq 1$  and p, q > 1 be such that 1/r = 1/p + 1/q. TFAE:

(a) There is a constant K > 0 such that

$$\Big(\sum_{i=1}^{n} \left\| \int f_{i}g_{i} \, dm \right\|^{r} \Big)^{\frac{1}{r}} \leq K \left\| \Big(\sum_{i=1}^{n} |f_{i}|^{p} \Big)^{\frac{1}{p}} \right\|_{L^{p}(m)} \left\| \Big(\sum_{i=1}^{n} |g_{i}|^{q} \Big)^{\frac{1}{q}} \right\|_{L^{q}(m)}$$

for every  $f_1, \ldots, f_n \in L^p(m)$  and  $g_1, \ldots, g_n \in L^q(m)$ ,  $n \in \mathbb{N}$ . (b) There exist a constant K > 0 and  $u, v \in B^+_{L^1(m)'}$  such that

$$\left\|\int fg \, dm\right\| \leq K \left(\int |f|^p u \, d\mu\right)^{\frac{1}{p}} \left(\int |g|^q v \, d\mu\right)^{\frac{1}{q}}$$

for every  $f \in L^p(m)$  and  $g \in L^q(m)$ .

(c) There is a control measure v of m such that

 $L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m).$ 

### Theorem

Let  $r \geq 1$  and p, q > 1 be such that 1/r = 1/p + 1/q. TFAE:

(a) There is a constant K > 0 such that

$$\Big(\sum_{i=1}^{n} \left\| \int f_{i}g_{i} \, dm \right\|^{r} \Big)^{\frac{1}{r}} \leq K \Big\| \Big(\sum_{i=1}^{n} |f_{i}|^{p} \Big)^{\frac{1}{p}} \Big\|_{L^{p}(m)} \Big\| \Big(\sum_{i=1}^{n} |g_{i}|^{q} \Big)^{\frac{1}{q}} \Big\|_{L^{q}(m)}$$

for every  $f_1, \ldots, f_n \in L^p(m)$  and  $g_1, \ldots, g_n \in L^q(m)$ ,  $n \in \mathbb{N}$ . (b) There exist a constant K > 0 and  $u, v \in B^+_{L^1(m)'}$  such that

$$\left\|\int fg \, dm\right\| \leq K \left(\int |f|^p u \, d\mu\right)^{\frac{1}{p}} \left(\int |g|^q v \, d\mu\right)^{\frac{1}{q}}$$

for every  $f \in L^p(m)$  and  $g \in L^q(m)$ .

(c) There is a control measure v of m such that

 $L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m).$ 

(d) The integration operator  $I_m^r : L^r(m) \to X$  is *r*-concave.

#### We want to prove ...

$$\left\|\int fg \ dm\right\| \leq K \left(\int |f|^p u \ d\mu\right)^{1/p} \left(\int |g|^q v \ d\mu\right)^{1/q} \ \forall f \in L^p(m), \ \forall g \in L^q(m) \ (*) \ \Longrightarrow \ \boxed{L^r(m) \hookrightarrow L^r(v) \hookrightarrow L^1(m)}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

#### We want to prove ...

$$\left\|\int fg \ dm\right\| \leq K \left(\int |f|^p u \ d\mu\right)^{1/p} \left(\int |g|^q v \ d\mu\right)^{1/q} \ \forall f \in L^p(m), \ \forall g \in L^q(m) \ (*) \ \right| \implies \boxed{L^r(m) \hookrightarrow L^r(v) \hookrightarrow L^1(m)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

(1)  $u d\mu$  and  $v d\mu$  are control measures of m. Indeed:

#### We want to prove ...

$$\left\|\int fg \ dm\right\| \leq K \left(\int |f|^{p} u \ d\mu\right)^{1/p} \left(\int |g|^{q} v \ d\mu\right)^{1/q} \ \forall f \in L^{p}(m), \ \forall g \in L^{q}(m) \ (*) \ \Longrightarrow \ L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

(1)  $u d\mu$  and  $v d\mu$  are control measures of *m*. Indeed:

• Take  $A \in \Sigma$  with  $(u d\mu)(A) = 0$ , that is,  $\int \chi_A u d\mu = 0$ .

#### We want to prove ...

$$\left\|\int fg \ dm\right\| \leq K \left(\int |f|^{\rho} u \ d\mu\right)^{1/\rho} \left(\int |g|^{q} v \ d\mu\right)^{1/q} \ \forall f \in L^{\rho}(m), \ \forall g \in L^{q}(m) \ (*) \ \Longrightarrow \ L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m)$$

(1)  $u d\mu$  and  $v d\mu$  are control measures of *m*. Indeed:

- Take  $A \in \Sigma$  with  $(u d\mu)(A) = 0$ , that is,  $\int \chi_A u d\mu = 0$ .
- ► For each  $B \subset A$  with  $B \in \Sigma$ , we apply (\*) to  $f = \chi_B$  and g = 1 to get m(B) = 0. Hence ||m||(A) = 0.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

#### We want to prove ....

$$\left\|\int fg \ dm\right\| \leq K \left(\int |f|^{p} u \ d\mu\right)^{1/p} \left(\int |g|^{q} v \ d\mu\right)^{1/q} \ \forall f \in L^{p}(m), \ \forall g \in L^{q}(m) \ (*) \ \Longrightarrow \ L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m)$$

(1)  $u d\mu$  and  $v d\mu$  are control measures of *m*. Indeed:

- Take  $A \in \Sigma$  with  $(u d\mu)(A) = 0$ , that is,  $\int \chi_A u d\mu = 0$ .
- ► For each  $B \subset A$  with  $B \in \Sigma$ , we apply (\*) to  $f = \chi_B$  and g = 1 to get m(B) = 0. Hence ||m||(A) = 0.
- (2) The bilinear map  $\mathscr{P}: L^p(u d\mu) \times L^q(v d\mu) \to L^1(m)$  given by  $(f,g) \rightsquigarrow fg$  is well-defined and continuous. Indeed:

#### We want to prove ...

$$\left\|\int fg \ dm\right\| \leq K \left(\int |f|^{p} u \ d\mu\right)^{1/p} \left(\int |g|^{q} v \ d\mu\right)^{1/q} \ \forall f \in L^{p}(m), \ \forall g \in L^{q}(m) \ (*) \ \Longrightarrow \ L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m)$$

(1)  $u d\mu$  and  $v d\mu$  are control measures of *m*. Indeed:

- Take  $A \in \Sigma$  with  $(u d\mu)(A) = 0$ , that is,  $\int \chi_A u d\mu = 0$ .
- ► For each  $B \subset A$  with  $B \in \Sigma$ , we apply (\*) to  $f = \chi_B$  and g = 1 to get m(B) = 0. Hence ||m||(A) = 0.
- (2) The bilinear map  $\mathscr{P}: L^p(u d\mu) \times L^q(v d\mu) \to L^1(m)$  given by  $(f,g) \rightsquigarrow fg$  is well-defined and continuous. Indeed:
  - ▶ If f and g are simple functions, then  $fg \in L^1(m)$  and (\*) yields

$$\|fg\|_{L^{1}(m)} = \sup_{h \in B_{L^{\infty}(\mu)}} \left\| \int fgh \ dm \right\| \le K \|f\|_{L^{p}(u \, d\mu)} \|g\|_{L^{q}(v \, d\mu)}.$$

So the restriction of  $\mathscr{P}$  to simple functions is well-defined and continuous.

#### We want to prove ...

$$\left\|\int fg \ dm\right\| \leq K \left(\int |f|^{p} u \ d\mu\right)^{1/p} \left(\int |g|^{q} v \ d\mu\right)^{1/q} \ \forall f \in L^{p}(m), \ \forall g \in L^{q}(m) \ (*) \ \Longrightarrow \ L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m)$$

(1)  $u d\mu$  and  $v d\mu$  are control measures of *m*. Indeed:

- Take  $A \in \Sigma$  with  $(u d\mu)(A) = 0$ , that is,  $\int \chi_A u d\mu = 0$ .
- ► For each  $B \subset A$  with  $B \in \Sigma$ , we apply (\*) to  $f = \chi_B$  and g = 1 to get m(B) = 0. Hence ||m||(A) = 0.
- (2) The bilinear map  $\mathscr{P}: L^p(u d\mu) \times L^q(v d\mu) \to L^1(m)$  given by  $(f,g) \rightsquigarrow fg$  is well-defined and continuous. Indeed:
  - ▶ If f and g are simple functions, then  $fg \in L^1(m)$  and (\*) yields

$$\|fg\|_{L^{1}(m)} = \sup_{h \in B_{L^{\infty}(\mu)}} \left\| \int fgh \ dm \right\| \le K \|f\|_{L^{p}(ud\mu)} \|g\|_{L^{q}(vd\mu)}.$$

So the restriction of 𝒫 to simple functions is well-defined and continuous. ► Now we apply a "density argument".

### We want to prove ...

There is a control measure v of m such that  $L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m)$ .

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ ○ ◆ ○ ◆

### We want to prove ....

There is a control measure v of m such that  $L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m)$ .

#### We already know . . .

- (1)  $u d\mu$  and  $v d\mu$  are control measures of m.
- (2) The bilinear map  $\mathscr{P}: L^p(ud\mu) \times L^q(vd\mu) \to L^1(m)$  given by  $(f,g) \rightsquigarrow fg$  is well-defined and continuous.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

#### We want to prove ...

There is a control measure v of m such that  $L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m)$ .

#### We already know . . .

- (1)  $u d\mu$  and  $v d\mu$  are control measures of m.
- (2) The bilinear map  $\mathscr{P}: L^p(ud\mu) \times L^q(vd\mu) \rightarrow L^1(m)$  given by  $(f,g) \rightsquigarrow fg$  is well-defined and continuous.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

(3) The function  $h_0 := u^{r/p} v^{r/q}$  belongs to  $B^+_{L^1(m)'}$ . Indeed:

#### We want to prove ...

There is a control measure v of m such that  $L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m)$ .

#### We already know . . .

- (1)  $u d\mu$  and  $v d\mu$  are control measures of m.
- (2) The bilinear map  $\mathscr{P}: L^p(ud\mu) \times L^q(vd\mu) \rightarrow L^1(m)$  given by  $(f,g) \rightsquigarrow fg$  is well-defined and continuous.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

(3) The function  $h_0 := u^{r/p} v^{r/q}$  belongs to  $B^+_{L^1(m)'}$ . Indeed:

▶ By Young's inequality we have 
$$h_0 \le \frac{r}{p}u + \frac{r}{q}v$$
.

### We want to prove ...

There is a control measure v of m such that  $L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m)$ .

#### We already know . . .

- (1)  $u d\mu$  and  $v d\mu$  are control measures of m.
- (2) The bilinear map  $\mathscr{P}: L^p(ud\mu) \times L^q(vd\mu) \to L^1(m)$  given by  $(f,g) \rightsquigarrow fg$  is well-defined and continuous.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- (3) The function  $h_0 := u^{r/p} v^{r/q}$  belongs to  $B^+_{L^1(m)'}$ . Indeed:
  - By Young's inequality we have  $h_0 \leq \frac{r}{p}u + \frac{r}{q}v$ .
- (4) We have  $L^r(h_0 d\mu) \hookrightarrow L^1(m)$ . Indeed:

#### We want to prove ....

There is a control measure v of m such that  $L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m)$ .

#### We already know . . .

- (1)  $u d\mu$  and  $v d\mu$  are control measures of m.
- (2) The bilinear map  $\mathscr{P}: L^p(ud\mu) \times L^q(vd\mu) \to L^1(m)$  given by  $(f,g) \rightsquigarrow fg$  is well-defined and continuous.
- (3) The function  $h_0 := u^{r/p} v^{r/q}$  belongs to  $B^+_{L^1(m)'}$ . Indeed:

• By Young's inequality we have 
$$h_0 \leq \frac{r}{p}u + \frac{r}{q}v$$

- (4) We have  $L^r(h_0 d\mu) \hookrightarrow L^1(m)$ . Indeed:
  - Fix  $h \in L^r(h_0 d\mu)$ . Then h = fg where

$$f := \operatorname{sign}(h)|h|^{\frac{r}{p}} \left(\frac{v}{u}\right)^{\frac{r}{pq}} \in L^p(ud\mu) \quad \text{and} \quad g := |h|^{\frac{r}{q}} \left(\frac{u}{v}\right)^{\frac{r}{pq}} \in L^q(vd\mu).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

#### We want to prove ....

There is a control measure v of m such that  $L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m)$ .

#### We already know . . .

- (1)  $u d\mu$  and  $v d\mu$  are control measures of m.
- (2) The bilinear map  $\mathscr{P}: L^p(ud\mu) \times L^q(vd\mu) \rightarrow L^1(m)$  given by  $(f,g) \rightsquigarrow fg$  is well-defined and continuous.
- (3) The function  $h_0 := u^{r/p} v^{r/q}$  belongs to  $B^+_{L^1(m)'}$ . <u>Indeed:</u>

• By Young's inequality we have 
$$h_0 \leq \frac{r}{p}u + \frac{r}{q}v$$

(4) We have 
$$L^r(h_0 d\mu) \hookrightarrow L^1(m)$$
. Indeed:

Fix  $h \in L^r(h_0 d\mu)$ . Then h = fg where

$$f:=\operatorname{sign}(h)|h|^{\frac{r}{p}}\left(\frac{v}{u}\right)^{\frac{r}{pq}}\in L^p(ud\mu) \quad \text{and} \quad g:=|h|^{\frac{r}{q}}\left(\frac{u}{v}\right)^{\frac{r}{pq}}\in L^q(vd\mu).$$

▶ By (2) we have  $h = fg \in L^1(m)$  and

$$\|h\|_{L^{1}(m)} \leq \|\mathscr{P}\| \|f\|_{L^{p}(ud\mu)} \|g\|_{L^{q}(vd\mu)} = \|\mathscr{P}\| \left(\int |h|^{r} h_{0} d\mu\right)^{1/p} \left(\int |h|^{r} h_{0} d\mu\right)^{1/q} = \|\mathscr{P}\| \|h\|_{L^{r}(h_{0} d\mu)}.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● のへで

#### We want to prove ...

There is a control measure v of m such that  $L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m)$ .

#### We already know . . .

- (1)  $u d\mu$  and  $v d\mu$  are control measures of m.
- (2) The bilinear map  $\mathscr{P}: L^p(ud\mu) \times L^q(vd\mu) \to L^1(m)$  given by  $(f,g) \rightsquigarrow fg$  is well-defined and continuous.
- (3) The function  $h_0 := u^{r/p} v^{r/q}$  belongs to  $B^+_{L^1(m)'}$ . Indeed:

• By Young's inequality we have 
$$h_0 \leq \frac{r}{p}u + \frac{r}{q}v$$

(4) We have 
$$L^r(h_0 d\mu) \hookrightarrow L^1(m)$$
. Indeed:

Fix  $h \in L^r(h_0 d\mu)$ . Then h = fg where

$$f:=\operatorname{sign}(h)|h|^{\frac{r}{p}}\left(\frac{v}{u}\right)^{\frac{r}{pq}}\in L^p(ud\mu) \quad \text{and} \quad g:=|h|^{\frac{r}{q}}\left(\frac{u}{v}\right)^{\frac{r}{pq}}\in L^q(vd\mu).$$

▶ By (2) we have  $h = fg \in L^1(m)$  and

$$\|h\|_{L^{1}(m)} \leq \|\mathscr{P}\| \|f\|_{L^{p}(ud\mu)} \|g\|_{L^{q}(vd\mu)} = \|\mathscr{P}\| \left(\int |h|^{r} h_{0} d\mu\right)^{1/p} \left(\int |h|^{r} h_{0} d\mu\right)^{1/q} = \|\mathscr{P}\| \|h\|_{L^{r}(h_{0} d\mu)}.$$

(5)  $v := h_0 d\mu$  is a control measure of m and  $L^r(m) \hookrightarrow L^r(h_0 d\mu)$ .

### Our domination theorem (again)

#### Theorem

Let  $r \geq 1$  and p, q > 1 be such that 1/r = 1/p + 1/q. TFAE:

(a) There is a constant K > 0 such that

$$\Big(\sum_{i=1}^{n} \left\| \int f_{i}g_{i} \, dm \right\|^{r} \Big)^{\frac{1}{r}} \leq K \left\| \Big(\sum_{i=1}^{n} |f_{i}|^{p} \Big)^{\frac{1}{p}} \right\|_{L^{p}(m)} \left\| \Big(\sum_{i=1}^{n} |g_{i}|^{q} \Big)^{\frac{1}{q}} \right\|_{L^{q}(m)}$$

for every  $f_1, \ldots, f_n \in L^p(m)$  and  $g_1, \ldots, g_n \in L^q(m)$ ,  $n \in \mathbb{N}$ . (b) There exist a constant K > 0 and  $u, v \in B^+_{L^1(m)'}$  such that

$$\left\|\int fg \, dm\right\| \leq K \left(\int |f|^p u \, d\mu\right)^{\frac{1}{p}} \left(\int |g|^q v \, d\mu\right)^{\frac{1}{q}}$$

for every  $f \in L^p(m)$  and  $g \in L^q(m)$ .

(c) There is a control measure v of m such that

 $L^{r}(m) \hookrightarrow L^{r}(v) \hookrightarrow L^{1}(m).$ 

(d) The integration operator  $I_m^r: L^r(m) \to X$  is *r*-concave.

・ロト・(四)・(日)・(日)・(日)・

### Definition

A B.f.s. *E* is *p*-concave (resp. *p*-convex), where  $1 \le p < \infty$ , if there is a constant K > 0 such that

$$\Big(\sum_{i=1}^n \|z_i\|^p\Big)^{\frac{1}{p}} \leq K \left\| \Big(\sum_{i=1}^n |z_i|^p\Big)^{\frac{1}{p}} \right\| \quad \text{(resp. the reverse one}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

for every  $z_1, \ldots, z_n \in E$ ,  $n \in \mathbb{N}$ .

### Definition

A B.f.s. *E* is *p*-concave (resp. *p*-convex), where  $1 \le p < \infty$ , if there is a constant K > 0 such that

$$\Big(\sum_{i=1}^n \|z_i\|^p\Big)^{\frac{1}{p}} \leq K \left\|\Big(\sum_{i=1}^n |z_i|^p\Big)^{\frac{1}{p}}\right\| \quad \text{(resp. the reverse one}$$

for every  $z_1, \ldots, z_n \in E$ ,  $n \in \mathbb{N}$ .

#### Corollary

#### TFAE:

(a) 
$$L^{p}(m)$$
 is *p*-concave for some/every  $1 \le p < \infty$ .

(b) The integration operator  $I_m^1 : L^1(m) \to X$  is 1-concave.

(c)  $L^1(m)$  is order isomorphic to  $L^1(v)$  for some control measure v of m.

#### ◆□> ◆□> ◆目> ◆目> ◆目> ● ● ●

### Definition

A B.f.s. *E* is *p*-concave (resp. *p*-convex), where  $1 \le p < \infty$ , if there is a constant K > 0 such that

$$\Big(\sum_{i=1}^n \|z_i\|^p\Big)^{\frac{1}{p}} \leq K \left\| \Big(\sum_{i=1}^n |z_i|^p\Big)^{\frac{1}{p}} \right\| \quad \text{(resp. the reverse one}$$

for every  $z_1, \ldots, z_n \in E$ ,  $n \in \mathbb{N}$ .

### Corollary

### TFAE:

(a) 
$$L^{p}(m)$$
 is *p*-concave for some/every  $1 \le p < \infty$ .

- (b) The integration operator  $I_m^1: L^1(m) \to X$  is 1-concave.
- (c)  $L^{1}(m)$  is order isomorphic to  $L^{1}(v)$  for some control measure v of m.

### Theorem (Maurey-Rosenthal)

A B.f.s. *E* is order isomorphic to the  $L^p$  space of a non-negative scalar measure (where  $1 \le p < \infty$ ) if and only if it is *p*-concave and *p*-convex.

・ロト・西ト・モト・モー シック

#### Definition

An operator T from a B.f.s. E to X is **positive** p-summing (where  $1 \le p < \infty$ ) if there is a constant K > 0 such that

$$\left(\sum_{i=1}^n \|\mathsf{T} z_i\|^p\right)^{\frac{1}{p}} \le \mathsf{K} \sup_{z' \in B_{E'}} \left(\sum_{i=1}^n |\langle z_i, z'\rangle|^p\right)^{\frac{1}{p}}$$

for every  $z_1, \ldots, z_n \in E^+$ .

#### Definition

An operator T from a B.f.s. E to X is **positive** p-summing (where  $1 \le p < \infty$ ) if there is a constant K > 0 such that

$$\left(\sum_{i=1}^n \|\mathsf{T} z_i\|^p\right)^{rac{1}{p}} \leq \mathsf{K} \sup_{z'\in B_{E'}} \left(\sum_{i=1}^n |\langle z_i, z'
angle|^p
ight)^{rac{1}{p}}$$

for every  $z_1, \ldots, z_n \in E^+$ .

• Absolutely *p*-summing  $\implies$  positive *p*-summing  $\implies$  *p*-concave.

#### Definition

An operator T from a B.f.s. E to X is **positive** p-summing (where  $1 \le p < \infty$ ) if there is a constant K > 0 such that

$$\left(\sum_{i=1}^n \|\mathsf{T} z_i\|^p\right)^{rac{1}{p}} \leq \mathsf{K} \sup_{z'\in B_{E'}} \left(\sum_{i=1}^n |\langle z_i, z'
angle|^p
ight)^{rac{1}{p}}$$

for every  $z_1, \ldots, z_n \in E^+$ .

- Absolutely *p*-summing  $\implies$  positive *p*-summing  $\implies$  *p*-concave.
- No one of these arrows can be reversed in general.

### Definition

An operator T from a B.f.s. E to X is **positive** p-summing (where  $1 \le p < \infty$ ) if there is a constant K > 0 such that

$$\sum_{i=1}^n \|\mathsf{T} z_i\|^p \Big)^{rac{1}{p}} \leq \mathsf{K} \sup_{z'\in B_{E'}} \Big(\sum_{i=1}^n |\langle z_i, z'
angle|^p \Big)^{rac{1}{p}}$$

for every  $z_1, \ldots, z_n \in E^+$ .

- Absolutely *p*-summing  $\implies$  positive *p*-summing  $\implies$  *p*-concave.
- No one of these arrows can be reversed in general.

#### Theorem

Let E be an order continuous B.f.s. having weak order unit. TFAE:

### Definition

An operator T from a B.f.s. E to X is **positive** p-summing (where  $1 \le p < \infty$ ) if there is a constant K > 0 such that

$$\sum_{i=1}^n \|\mathsf{T} z_i\|^p \Big)^{rac{1}{p}} \leq \mathsf{K} \sup_{z'\in B_{E'}} \Big(\sum_{i=1}^n |\langle z_i, z'
angle|^p \Big)^{rac{1}{p}}$$

for every  $z_1, \ldots, z_n \in \mathbf{E}^+$ .

- Absolutely *p*-summing  $\implies$  positive *p*-summing  $\implies$  *p*-concave.
- No one of these arrows can be reversed in general.

#### Theorem

Let E be an order continuous B.f.s. having weak order unit. TFAE:

(a) For some/every vector measure *m* representing *E* and some/every  $1 \le p < \infty$ , the integration operator  $I_m^1$  is positive *p*-summing.

### Definition

An operator T from a B.f.s. E to X is **positive** p-summing (where  $1 \le p < \infty$ ) if there is a constant K > 0 such that

$$\sum_{i=1}^n \|\mathsf{T} z_i\|^p \Big)^{rac{1}{p}} \leq K \sup_{z'\in B_{E'}} \Big(\sum_{i=1}^n |\langle z_i, z'
angle|^p \Big)^{rac{1}{p}}$$

for every  $z_1, \ldots, z_n \in \mathbf{E}^+$ .

- Absolutely *p*-summing  $\implies$  positive *p*-summing  $\implies$  *p*-concave.
- No one of these arrows can be reversed in general.

#### Theorem

Let E be an order continuous B.f.s. having weak order unit. TFAE:

- (a) For some/every vector measure *m* representing *E* and some/every  $1 \le p < \infty$ , the integration operator  $I_m^1$  is positive *p*-summing.
- (b) For some vector measure *m* representing *E* and some  $1 \le p < \infty$ , the integration operator  $I_m^1$  is absolutely *p*-summing.

### Definition

An operator T from a B.f.s. E to X is **positive** p-summing (where  $1 \le p < \infty$ ) if there is a constant K > 0 such that

$$\sum_{i=1}^n \|\mathsf{T} z_i\|^p \Big)^{rac{1}{p}} \leq \mathsf{K} \sup_{z'\in B_{E'}} \Big(\sum_{i=1}^n |\langle z_i, z'
angle|^p \Big)^{rac{1}{p}}$$

for every  $z_1, \ldots, z_n \in \mathbf{E}^+$ .

- Absolutely *p*-summing  $\implies$  positive *p*-summing  $\implies$  *p*-concave.
- No one of these arrows can be reversed in general.

#### Theorem

Let E be an order continuous B.f.s. having weak order unit. TFAE:

- (a) For some/every vector measure *m* representing *E* and some/every  $1 \le p < \infty$ , the integration operator  $I_m^1$  is positive *p*-summing.
- (b) For some vector measure *m* representing *E* and some  $1 \le p < \infty$ , the integration operator  $I_m^1$  is absolutely *p*-summing.
- (c) E is order isomorphic to the  $L^1$  space of a non-negative scalar measure.

#### We want to prove ...

 $I_m^1: L^1(m) \to X$  is positive *p*-summing (for some  $1 \le p < \infty) \Longrightarrow L^p(m)$  is *p*-concave



#### We want to prove ...

 $I_m^1: L^1(m) \to X$  is positive *p*-summing (for some  $1 \le p < \infty) \Longrightarrow L^p(m)$  is *p*-concave

(1) If p = 1 then  $I_m^1$  is 1-concave and  $L^1(m)$  is 1-concave.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

#### We want to prove ...

 $I_m^1: L^1(m) \to X$  is positive *p*-summing (for some  $1 \le p < \infty) \Longrightarrow L^p(m)$  is *p*-concave

(1) If p = 1 then  $I_m^1$  is 1-concave and  $L^1(m)$  is 1-concave.

(2) Now suppose p > 1 and let 1/p + 1/q = 1. Fix  $f_1, \ldots, f_n \in L^p(m)$ . Then:

$$\Big(\sum_{i=1}^n \left\|\int f_i g_i \,dm\right\|^p\Big)^{\frac{1}{p}} \leq K \left\|\Big(\sum_{i=1}^n |f_i|^p\Big)^{\frac{1}{p}}\right\|_{L^p(m)} \quad \text{for all } g_1, \dots, g_n \in B_{L^q(m)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Indeed:

#### We want to prove ...

- $I_m^1: L^1(m) \to X$  is positive *p*-summing (for some  $1 \le p < \infty) \Longrightarrow L^p(m)$  is *p*-concave
  - (1) If p = 1 then  $I_m^1$  is 1-concave and  $L^1(m)$  is 1-concave.
  - (2) Now suppose p > 1 and let 1/p + 1/q = 1. Fix  $f_1, \ldots, f_n \in L^p(m)$ . Then:

$$\Big(\sum_{i=1}^n \left\|\int f_i g_i \,dm\right\|^p\Big)^{\frac{1}{p}} \leq K \left\|\Big(\sum_{i=1}^n |f_i|^p\Big)^{\frac{1}{p}}\right\|_{L^p(m)} \quad \text{for all } g_1, \dots, g_n \in B_{L^q(m)}.$$

Indeed:

Since I<sup>1</sup><sub>m</sub> is positive p-summing we have:

$$\left(\sum_{i=1}^{n} \left\| \int f_{i}g_{i}\,dm \right\|^{p}\right)^{1/p} \leq K \sup_{h \in B_{L^{1}(m)'}} \left(\sum_{i=1}^{n} \left( \int |f_{i}g_{i}||h|\,d\mu \right)^{p} \right)^{1/p}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

#### We want to prove ...

- $I_m^1: L^1(m) \to X$  is positive *p*-summing (for some  $1 \le p < \infty) \Longrightarrow L^p(m)$  is *p*-concave
  - (1) If p = 1 then  $I_m^1$  is 1-concave and  $L^1(m)$  is 1-concave.
  - (2) Now suppose p > 1 and let 1/p + 1/q = 1. Fix  $f_1, \ldots, f_n \in L^p(m)$ . Then:

$$\Big(\sum_{i=1}^n \left\|\int f_i g_i \,dm\right\|^p\Big)^{\frac{1}{p}} \leq K \left\|\Big(\sum_{i=1}^n |f_i|^p\Big)^{\frac{1}{p}}\right\|_{L^p(m)} \quad \text{for all } g_1, \dots, g_n \in B_{L^q(m)}.$$

Indeed:

Since I<sup>1</sup><sub>m</sub> is positive p-summing we have:

$$\Big(\sum_{i=1}^{n} \left\| \int f_{i}g_{i}\,dm \right\|^{p} \Big)^{1/p} \leq K \sup_{h \in B_{L^{1}(m)'}} \Big(\sum_{i=1}^{n} \Big( \int |f_{i}g_{i}||h|\,d\mu \Big)^{p} \Big)^{1/p}.$$

By Hölder's inequality:

$$\int |f_i g_i| |h| \, d\mu \leq \left( \int |f_i|^p |h| \, d\mu \right)^{1/p} \left( \int |g_i|^q |h| \, d\mu \right)^{1/q} \leq \left( \int |f_i|^p |h| \, d\mu \right)^{1/p} \quad \text{for all } h \in B_{L^1(m)'}.$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

#### We want to prove ...

 $I_m^1: L^1(m) \to X$  is positive *p*-summing (for some  $1 \le p < \infty$ )  $\Longrightarrow L^p(m)$  is *p*-concave

#### We already known (for p>1 and 1/p+1/q=1) ...

(2) Given  $f_1, \ldots, f_n \in L^p(m)$ , we have:

$$\Big(\sum_{i=1}^n \Big\|\int f_i g_i \,dm\Big\|^p\Big)^{\frac{1}{p}} \leq K \Big\|\Big(\sum_{i=1}^n |f_i|^p\Big)^{\frac{1}{p}}\Big\|_{L^p(m)} \quad \text{for all } g_1,\ldots,g_n \in B_Lq_{(m)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

#### We want to prove ...

 $I_m^1: L^1(m) \to X$  is positive *p*-summing (for some  $1 \le p < \infty) \Longrightarrow L^p(m)$  is *p*-concave

#### We already known (for p>1 and 1/p+1/q=1) ....

(2) Given  $f_1, \ldots, f_n \in L^p(m)$ , we have:

$$\Big(\sum_{i=1}^n \Big\| \int f_i g_i \, dm \Big\|^p \Big)^{\frac{1}{p}} \leq K \Big\| \Big( \sum_{i=1}^n |f_i|^p \Big)^{\frac{1}{p}} \Big\|_{L^p(m)} \quad \text{for all } g_1, \dots, g_n \in B_{L^q(m)}.$$

(3) Since

$$\|f_i\|_{L^p(m)} = \sup_{g \in B_{L^q(m)}} \left\| \int f_i g \, dm \right\|$$

we infer:

$$\left(\sum_{i=1}^{n} \|f_{i}\|_{L^{p}(m)}^{p}\right)^{\frac{1}{p}} \leq K \left\| \left(\sum_{i=1}^{n} |f_{i}|^{p}\right)^{\frac{1}{p}} \right\|_{L^{p}(m)}$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへの

#### Theorem

Let E be an order continuous B.f.s. having weak order unit. TFAE:

- (a) For some/every vector measure *m* representing *E* and some/every  $1 \le p < \infty$ , the integration operator  $I_m^1$  is positive *p*-summing.
- (b) For some vector measure *m* representing *E* and some  $1 \le p < \infty$ , the integration operator  $I_m^1$  is absolutely *p*-summing.
- (c) E is order isomorphic to the  $L^1$  space of a non-negative scalar measure.

### Theorem

Let E be an order continuous B.f.s. having weak order unit. TFAE:

- (a) For some/every vector measure *m* representing *E* and some/every  $1 \le p < \infty$ , the integration operator  $I_m^1$  is positive *p*-summing.
- (b) For some vector measure *m* representing *E* and some  $1 \le p < \infty$ , the integration operator  $I_m^1$  is absolutely *p*-summing.
- (c) E is order isomorphic to the  $L^1$  space of a non-negative scalar measure.

#### In general, the previous statements are **not** equivalent to ....

(b') For every vector measure *m* representing *E* there is some  $1 \le p < \infty$  such that  $I_m^1$  is absolutely *p*-summing.

### References

- J.M. Calabuig, J. Rodríguez and E.A. Sánchez-Pérez, On the structure of L<sup>1</sup> of a vector measure via its integration operator, Integr. Equ. Oper. Theory 64 (2009), 21–33.
- O. Blasco, Positive p-summing operators on L<sub>p</sub>-spaces, Proc. Amer. Math. Soc. 100 (1987), 275–280.
- G.P. Curbera, Operators into L<sup>1</sup> of a vector measure and applications to Banach lattices, Math. Ann. **293** (1992), 317–330.
- A. Defant, Variants of the Maurey-Rosenthal theorem for quasi Köthe function spaces, Positivity **5** (2001), 153–175.
- S. Okada, W.J. Ricker and E.A. Sánchez-Pérez, Optimal domain and integral extension of operators. Acting in function spaces, Operator Theory: Advances and Applications, vol. 180, Birkhäuser Verlag, Basel, 2008.