The Gelfand integral for multi-valued functions

José Rodriguez
Universidad de Murcia

Functional Analysis Valencia 2010



The co-authors

@ B. Cascales, V. Kadets, and J. Rodriguez, Measurable selectors and
set-valued Pettis integral in non-separable Banach spaces, J. Funct. Anal.
256 (2009), 673-699.

@ B. Cascales, V. Kadets, and J. Rodriguez, Measurability and selections
of multi-functions in Banach spaces, J. Convex Anal. 17 (2010), 229-240.

@ B. Cascales, V. Kadets, and J. Rodriguez, The Gelfand integral for
multi-valued functions, submitted.



Classical measurable selection theorems

f:Q — X is a selector of F:Q — 2X iff f(w) € F(w) for all @ € Q. )




Classical measurable selection theorems

f:Q — X is a selector of F:Q — 2X iff f(w) € F(w) for all @ € Q. )

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let (©2,X) be a measurable space and X a Polish space.
Let F:Q — 2X be a multi-function having non-empty closed values such that

‘{a)eQ: F(a))ﬂU;ﬁ@}EZ‘ for every open set U C X.

Then F admits Borel measurable selectors.




Classical measurable selection theorems

f:Q — X is a selector of F:Q — 2X iff f(w) € F(w) for all @ € Q.

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let (©2,X) be a measurable space and X a Polish space.
Let F:Q — 2X be a multi-function having non-empty closed values such that

‘{a)eQ: F(a))ﬂU;ﬁ@}EZ‘ for every open set U C X.

Then F admits Borel measurable selectors.

\

Theorem (Aumann, 1969)
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@ Then NF, is a single-valued scalarly
measurable selector of F.
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» For a scalarly measurable G : Q — 2X set

AG:= sup /(6*(X*,G)76*(X*,G))du.

x*€Sxx JQ

»» Note: if AG =0 then every selector of G is scalarly measurable.

Sketch of proof:

(1) We assume wlog that there is M > 0 such that, for each x* € Sx-, we
have |6%(x*,F)| < M p-a.e.
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(the exceptional p-null set depending on x).

Theorem (Cascales-Kadets-R.)

Every w*-scalarly measurable multi-function F : Q — 2X" with bounded values
admits a w*-scalarly measurable w*-almost selector.

» The proof uses the existence of liftings on (,X, ).
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F:Q — cw*k(X*) is Gelfand integrable iff 6*(x, F) is integrable for all x € X. In this case:

/Aqu ::XDX{X* exX*: .//;‘&(X.F)dy Sx*(x)gv/;‘ﬁ*(x.F)du}.

»» Clearly, the set [ F du is convex and w*-compact. Is [ F du non-empty?

Theorem (Cascales-Kadets-R.)

If F:Q— cw*k(X*) is Gelfand integrable, then [ Fdp is non-empty and:

(1] / Fdu= {/ fdu: fis a Gelfand integrable w*-almost selector of F}
Q Q

[2) 5*(x,/Aqu) :/AS*(X,F)du for all x € X.

Corollary

Suppose X is separable. If F:Q — cw*k(X*) is Gelfand integrable, then

/QFd/.L = {/Q fdu: fis a Gelfand integrable selector of F}




Compactness of Gelfand integral

For a Gelfand integrable multi-function F : Q — cw*k(X*), one might ask:

=
(N) F takes norm compact values — / Fdu is norm compact
Q




Compactness of Gelfand integral

For a Gelfand integrable multi-function F : Q — cw*k(X*), one might ask:

? .
(N) F takes norm compact values — / Fdu is norm compact
Q

(W) F takes weakly compact values 2, / F du is weakly compact
Q




Compactness of Gelfand integral

QUESTIONS
For a Gelfand integrable multi-function F : Q — cw*k(X*), one might ask:

? .
(N) F takes norm compact values — / Fdu is norm compact
Q

(W) F takes weakly compact values 2, / F du is weakly compact
Q

v
We know:
v




Compactness of Gelfand integral

QUESTIONS
For a Gelfand integrable multi-function F : Q — cw*k(X*), one might ask:

? .
(N) F takes norm compact values — / Fdu is norm compact
Q

(W) F takes weakly compact values 2, / F du is weakly compact
Q

”
© In general, the answer to (N) is no,




Compactness of Gelfand integral

QUESTIONS
For a Gelfand integrable multi-function F : Q — cw*k(X*), one might ask:

? .
(N) F takes norm compact values — / Fdu is norm compact
Q

(W) F takes weakly compact values 2, / F du is weakly compact
Q

@ In general, the answer to (N) is no, even for bounded F.




Compactness of Gelfand integral

QUESTIONS
For a Gelfand integrable multi-function F : Q — cw*k(X*), one might ask:

? .
(N) F takes norm compact values — / Fdu is norm compact
Q

(W) F takes weakly compact values 2, / F du is weakly compact
Q

@ In general, the answer to (N) is no, even for bounded F.

@ In general, the answer to (W) is no.




Compactness of Gelfand integral

QUESTIONS

For a Gelfand integrable multi-function F : Q — cw*k(X*), one might ask:

? .
(N) F takes norm compact values — / Fdu is norm compact
Q

(W) F takes weakly compact values 2, / F du is weakly compact
Q

We know:

| \

@ In general, the answer to (N) is no, even for bounded F.

@ In general, the answer to (W) is no.

We don’t know ...

... whether (W) has affirmative answer for bounded F.




Compactness of Gelfand integral

QUESTIONS

For a Gelfand integrable multi-function F : Q — cw*k(X*), one might ask:

? .
(N) F takes norm compact values — / Fdu is norm compact
Q

(W) F takes weakly compact values 2, / F du is weakly compact
Q

@ In general, the answer to (N) is no, even for bounded F.

@ In general, the answer to (W) is no.

© When F is bounded and takes norm compact values,
then [ F du is weakly compact.

We don’t know ...

... whether (W) has affirmative answer for bounded F.




Compactness of Gelfand integral

QUESTIONS

For a Gelfand integrable multi-function F : Q — cw*k(X*), one might ask:

? .
(N) F takes norm compact values — / Fdu is norm compact
Q

(W) F takes weakly compact values 2, / F du is weakly compact
Q

@ In general, the answer to (N) is no, even for bounded F.

@ In general, the answer to (W) is no.

© When F is bounded and takes norm compact values,
then [ F du is weakly compact.

We don’t know ...

... whether (W) has affirmative answer for bounded F.

THANKS FOR YOUR ATTENTION I ’http://webs.um.es/joserr‘




