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Classical measurable selection theorems

f : Ω→ X is a selector of F : Ω→ 2X iff f (ω) ∈ F (ω) for all ω ∈Ω.

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let (Ω,Σ) be a measurable space and X a Polish space.
Let F : Ω→ 2X be a multi-function having non-empty closed values such that{

ω ∈Ω : F (ω)∩U 6= /0
}
∈Σ for every open set U ⊂ X .

Then F admits Borel measurable selectors.

Theorem (Aumann, 1969)

Let (Ω,Σ,µ) be a complete probability space and X a Polish space.
Let F : Ω→ 2X be a multi-function having non-empty values such that{

(ω,x) ∈Ω×X : x ∈ F (ω)
}
∈Σ⊗Borel(X ) .

Then F admits Borel measurable selectors.
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Scalar measurability

II (Ω,Σ,µ) is a complete probability space and X is a Banach space.

f : Ω→ X is scalarly measurable iff 〈x∗, f 〉 is measurable for all x∗ ∈ X ∗.

For C ⊂ X and x∗ ∈ X ∗ we write For F : Ω→ 2X and x∗ ∈ X ∗ we define

F : Ω→ 2X is scalarly measurable iff δ ∗(x∗,F ) is measurable for all x∗ ∈ X ∗.

GENERAL PROBLEM

When do scalarly measurable multi-functions F : Ω→ 2X

admit scalarly measurable selectors?

Well-known fact

If X is separable, then every scalarly
measurable F : Ω→ cwk(X ) admits
strongly measurable selectors.

Why?

If X is separable, then F : Ω→ cwk(X ) is
scalarly measurable iff{

ω ∈Ω : F (ω)∩U 6= /0
}
∈Σ ∀U ⊂X open.
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Existence of scalarly measurable selectors, I

Lemma (Valadier, 1971)

Let F : Ω→ cwk(X ) be a scalarly measurable multi-function.
Then, for each x∗ ∈ X ∗, the multi-functions F |x∗ ,F |x∗ : Ω→ cwk(X ) defined by

F |x
∗
(ω) :=

{
x ∈ F (ω) : x∗(x) = δ

∗(x∗,F )(ω)
}

F |x∗(ω) :=
{
x ∈ F (ω) : x∗(x) = δ∗(x

∗,F )(ω)
}

are scalarly measurable.

Theorem (Valadier, 1971)

If X ∗ is w∗-separable, then every
scalarly measurable F : Ω→ cwk(X )
admits scalarly measurable selectors.

Sketch of proof:

1 Fix a w∗-dense sequence (x∗n) in X ∗.

2 Set F0 := F and Fn := Fn−1|x
∗
n .

3 Each Fn is scalarly measurable and
F0 ⊃ F1 ⊃ ·· · ⊃ Fn ⊃ Fn+1 ⊃ ·· ·

4 Then
⋂

Fn is a single-valued scalarly
measurable selector of F .
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Existence of scalarly measurable selectors, II

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function F : Ω→ wk(X ) admits scalarly
measurable selectors.

Sketch of proof:

(4) For each σ ∈ {0,1}<N, we find a functional x∗σ ∈ SX ∗ and a scalarly
measurable Fσ : Ω→ wk(X ) such that∫

Ω

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
dµ > ε

and Fσa0∪Fσa1 ⊂ Fσ ⊂ F .

(5) ϕn :=
1

2n ∑
σ∈{0,1}n

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
satisfies

∫
Ω ϕn dµ > ε .

(6) For each ω ∈Ω, we find a co(F (ω))-valued martingale (gn) such that

E
(
‖gn+1−gn‖

)
≥ ϕn(ω) for all n ∈ N.

(gn) is mean convergent since co(F (ω)) has the RNP. So ϕn(ω)→ 0 .

(7) This contradicts Lebesgue’s dominated convergence theorem.



Existence of scalarly measurable selectors, II

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function F : Ω→ wk(X ) admits scalarly
measurable selectors.

I For a scalarly measurable G : Ω→ 2X , set

∆G := sup
x∗∈SX∗

∫
Ω

(
δ
∗(x∗,G)−δ∗(x

∗,G)
)
dµ.

Sketch of proof:

(4) For each σ ∈ {0,1}<N, we find a functional x∗σ ∈ SX ∗ and a scalarly
measurable Fσ : Ω→ wk(X ) such that∫

Ω

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
dµ > ε

and Fσa0∪Fσa1 ⊂ Fσ ⊂ F .

(5) ϕn :=
1

2n ∑
σ∈{0,1}n

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
satisfies

∫
Ω ϕn dµ > ε .

(6) For each ω ∈Ω, we find a co(F (ω))-valued martingale (gn) such that

E
(
‖gn+1−gn‖

)
≥ ϕn(ω) for all n ∈ N.

(gn) is mean convergent since co(F (ω)) has the RNP. So ϕn(ω)→ 0 .

(7) This contradicts Lebesgue’s dominated convergence theorem.



Existence of scalarly measurable selectors, II

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function F : Ω→ wk(X ) admits scalarly
measurable selectors.

I For a scalarly measurable G : Ω→ 2X , set

∆G := sup
x∗∈SX∗

∫
Ω

(
δ
∗(x∗,G)−δ∗(x

∗,G)
)
dµ.

II Note: if ∆G = 0 then every selector of G is scalarly measurable.

Sketch of proof:

(4) For each σ ∈ {0,1}<N, we find a functional x∗σ ∈ SX ∗ and a scalarly
measurable Fσ : Ω→ wk(X ) such that∫

Ω

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
dµ > ε

and Fσa0∪Fσa1 ⊂ Fσ ⊂ F .

(5) ϕn :=
1

2n ∑
σ∈{0,1}n

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
satisfies

∫
Ω ϕn dµ > ε .

(6) For each ω ∈Ω, we find a co(F (ω))-valued martingale (gn) such that

E
(
‖gn+1−gn‖

)
≥ ϕn(ω) for all n ∈ N.

(gn) is mean convergent since co(F (ω)) has the RNP. So ϕn(ω)→ 0 .

(7) This contradicts Lebesgue’s dominated convergence theorem.



Existence of scalarly measurable selectors, II

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function F : Ω→ wk(X ) admits scalarly
measurable selectors.

I For a scalarly measurable G : Ω→ 2X , set

∆G := sup
x∗∈SX∗

∫
Ω

(
δ
∗(x∗,G)−δ∗(x

∗,G)
)
dµ.

II Note: if ∆G = 0 then every selector of G is scalarly measurable.

Sketch of proof:

(1) We assume wlog that there is M > 0 such that, for each x∗ ∈ SX ∗ , we
have |δ ∗(x∗,F )| ≤M µ-a.e.

(4) For each σ ∈ {0,1}<N, we find a functional x∗σ ∈ SX ∗ and a scalarly
measurable Fσ : Ω→ wk(X ) such that∫

Ω

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
dµ > ε

and Fσa0∪Fσa1 ⊂ Fσ ⊂ F .

(5) ϕn :=
1

2n ∑
σ∈{0,1}n

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
satisfies

∫
Ω ϕn dµ > ε .

(6) For each ω ∈Ω, we find a co(F (ω))-valued martingale (gn) such that

E
(
‖gn+1−gn‖

)
≥ ϕn(ω) for all n ∈ N.

(gn) is mean convergent since co(F (ω)) has the RNP. So ϕn(ω)→ 0 .

(7) This contradicts Lebesgue’s dominated convergence theorem.



Existence of scalarly measurable selectors, II

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function F : Ω→ wk(X ) admits scalarly
measurable selectors.

I For a scalarly measurable G : Ω→ 2X , set

∆G := sup
x∗∈SX∗

∫
Ω

(
δ
∗(x∗,G)−δ∗(x

∗,G)
)
dµ.

II Note: if ∆G = 0 then every selector of G is scalarly measurable.

Sketch of proof:

(2) It suffices to prove that for every ε > 0 there is a scalarly measurable
G : Ω→ wk(X ) such that G ⊂ F and ∆G ≤ ε.

(4) For each σ ∈ {0,1}<N, we find a functional x∗σ ∈ SX ∗ and a scalarly
measurable Fσ : Ω→ wk(X ) such that∫

Ω

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
dµ > ε

and Fσa0∪Fσa1 ⊂ Fσ ⊂ F .

(5) ϕn :=
1

2n ∑
σ∈{0,1}n

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
satisfies

∫
Ω ϕn dµ > ε .

(6) For each ω ∈Ω, we find a co(F (ω))-valued martingale (gn) such that

E
(
‖gn+1−gn‖

)
≥ ϕn(ω) for all n ∈ N.

(gn) is mean convergent since co(F (ω)) has the RNP. So ϕn(ω)→ 0 .

(7) This contradicts Lebesgue’s dominated convergence theorem.



Existence of scalarly measurable selectors, II

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function F : Ω→ wk(X ) admits scalarly
measurable selectors.

I For a scalarly measurable G : Ω→ 2X , set

∆G := sup
x∗∈SX∗

∫
Ω

(
δ
∗(x∗,G)−δ∗(x

∗,G)
)
dµ.

Sketch of proof:

(2) It suffices to prove that for every ε > 0 there is a scalarly measurable
G : Ω→ wk(X ) such that G ⊂ F and ∆G ≤ ε.

(3) By contradiction: suppose there is ε > 0 such that ∆G > ε for every
scalarly measurable G : Ω→ wk(X ) such that G ⊂ F .

(4) For each σ ∈ {0,1}<N, we find a functional x∗σ ∈ SX ∗ and a scalarly
measurable Fσ : Ω→ wk(X ) such that∫

Ω

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
dµ > ε

and Fσa0∪Fσa1 ⊂ Fσ ⊂ F .

(5) ϕn :=
1

2n ∑
σ∈{0,1}n

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
satisfies

∫
Ω ϕn dµ > ε .

(6) For each ω ∈Ω, we find a co(F (ω))-valued martingale (gn) such that

E
(
‖gn+1−gn‖

)
≥ ϕn(ω) for all n ∈ N.

(gn) is mean convergent since co(F (ω)) has the RNP. So ϕn(ω)→ 0 .

(7) This contradicts Lebesgue’s dominated convergence theorem.



Existence of scalarly measurable selectors, II

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function F : Ω→ wk(X ) admits scalarly
measurable selectors.

I For a scalarly measurable G : Ω→ 2X , set

∆G := sup
x∗∈SX∗

∫
Ω

(
δ
∗(x∗,G)−δ∗(x

∗,G)
)
dµ.

Sketch of proof:

(3) By contradiction: suppose there is ε > 0 such that ∆G > ε for every
scalarly measurable G : Ω→ wk(X ) such that G ⊂ F .

(4) For each σ ∈ {0,1}<N, we find a functional x∗σ ∈ SX ∗ and a scalarly
measurable Fσ : Ω→ wk(X ) such that∫

Ω

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
dµ > ε

and Fσa0∪Fσa1 ⊂ Fσ ⊂ F .

(5) ϕn :=
1

2n ∑
σ∈{0,1}n

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
satisfies

∫
Ω ϕn dµ > ε .

(6) For each ω ∈Ω, we find a co(F (ω))-valued martingale (gn) such that

E
(
‖gn+1−gn‖

)
≥ ϕn(ω) for all n ∈ N.

(gn) is mean convergent since co(F (ω)) has the RNP. So ϕn(ω)→ 0 .

(7) This contradicts Lebesgue’s dominated convergence theorem.



Existence of scalarly measurable selectors, II

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function F : Ω→ wk(X ) admits scalarly
measurable selectors.

Sketch of proof:

(3) By contradiction: suppose there is ε > 0 such that ∆G > ε for every
scalarly measurable G : Ω→ wk(X ) such that G ⊂ F .

(4) For each σ ∈ {0,1}<N, we find a functional x∗σ ∈ SX ∗ and a scalarly
measurable Fσ : Ω→ wk(X ) such that∫

Ω

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
dµ > ε

and Fσa0∪Fσa1 ⊂ Fσ ⊂ F .

(5) ϕn :=
1

2n ∑
σ∈{0,1}n

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
satisfies

∫
Ω ϕn dµ > ε .

(6) For each ω ∈Ω, we find a co(F (ω))-valued martingale (gn) such that

E
(
‖gn+1−gn‖

)
≥ ϕn(ω) for all n ∈ N.

(gn) is mean convergent since co(F (ω)) has the RNP. So ϕn(ω)→ 0 .

(7) This contradicts Lebesgue’s dominated convergence theorem.



Existence of scalarly measurable selectors, II

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function F : Ω→ wk(X ) admits scalarly
measurable selectors.

Sketch of proof:

(4) For each σ ∈ {0,1}<N, we find a functional x∗σ ∈ SX ∗ and a scalarly
measurable Fσ : Ω→ wk(X ) such that∫

Ω

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
dµ > ε

and Fσa0∪Fσa1 ⊂ Fσ ⊂ F .

(5) ϕn :=
1

2n ∑
σ∈{0,1}n

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
satisfies

∫
Ω ϕn dµ > ε .

(6) For each ω ∈Ω, we find a co(F (ω))-valued martingale (gn) such that

E
(
‖gn+1−gn‖

)
≥ ϕn(ω) for all n ∈ N.

(gn) is mean convergent since co(F (ω)) has the RNP. So ϕn(ω)→ 0 .

(7) This contradicts Lebesgue’s dominated convergence theorem.



Existence of scalarly measurable selectors, II

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function F : Ω→ wk(X ) admits scalarly
measurable selectors.

Sketch of proof:

(4) For each σ ∈ {0,1}<N, we find a functional x∗σ ∈ SX ∗ and a scalarly
measurable Fσ : Ω→ wk(X ) such that∫

Ω

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
dµ > ε

and Fσa0∪Fσa1 ⊂ Fσ ⊂ F .

(5) ϕn :=
1

2n ∑
σ∈{0,1}n

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
satisfies

∫
Ω ϕn dµ > ε .

(6) For each ω ∈Ω, we find a co(F (ω))-valued martingale (gn) such that

E
(
‖gn+1−gn‖

)
≥ ϕn(ω) for all n ∈ N.

(gn) is mean convergent since co(F (ω)) has the RNP.

So ϕn(ω)→ 0 .

(7) This contradicts Lebesgue’s dominated convergence theorem.



Existence of scalarly measurable selectors, II

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function F : Ω→ wk(X ) admits scalarly
measurable selectors.

Sketch of proof:

(4) For each σ ∈ {0,1}<N, we find a functional x∗σ ∈ SX ∗ and a scalarly
measurable Fσ : Ω→ wk(X ) such that∫

Ω

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
dµ > ε

and Fσa0∪Fσa1 ⊂ Fσ ⊂ F .

(5) ϕn :=
1

2n ∑
σ∈{0,1}n

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
satisfies

∫
Ω ϕn dµ > ε .

(6) For each ω ∈Ω, we find a co(F (ω))-valued martingale (gn) such that

E
(
‖gn+1−gn‖

)
≥ ϕn(ω) for all n ∈ N.

(gn) is mean convergent since co(F (ω)) has the RNP. So ϕn(ω)→ 0 .

(7) This contradicts Lebesgue’s dominated convergence theorem.



Existence of scalarly measurable selectors, II

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function F : Ω→ wk(X ) admits scalarly
measurable selectors.

Sketch of proof:

(4) For each σ ∈ {0,1}<N, we find a functional x∗σ ∈ SX ∗ and a scalarly
measurable Fσ : Ω→ wk(X ) such that∫

Ω

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
dµ > ε

and Fσa0∪Fσa1 ⊂ Fσ ⊂ F .

(5) ϕn :=
1

2n ∑
σ∈{0,1}n

(
δ
∗(x∗σ ,Fσ )−δ∗(x

∗
σ ,Fσ )

)
satisfies

∫
Ω ϕn dµ > ε .

(6) For each ω ∈Ω, we find a co(F (ω))-valued martingale (gn) such that

E
(
‖gn+1−gn‖

)
≥ ϕn(ω) for all n ∈ N.

(gn) is mean convergent since co(F (ω)) has the RNP. So ϕn(ω)→ 0 .

(7) This contradicts Lebesgue’s dominated convergence theorem.



Weak∗-scalarly measurable selectors

f : Ω→ X ∗ is w∗-scalarly measurable iff 〈x , f 〉 is measurable for all x ∈ X .

F : Ω→ 2X ∗ is w∗-scalarly measurable iff δ ∗(x ,F ) is measurable for all x ∈ X .

GENERAL PROBLEM

When do w∗-scalarly measurable multi-functions F : Ω→ 2X ∗

admit w∗-scalarly measurable selectors?

Positive answers . . .

The w∗-scalarly measurable multi-function F : Ω→ 2X ∗ admits w∗-scalarly
measurable selectors in each of the following cases:

1 F is cw∗k(X ∗)-valued and X is separable. (Valadier, 1971)

2 F is w∗k(X ∗)-valued and cow ∗(F (ω)) has the RNP for all ω ∈Ω.
(Cascales-Kadets-R.)

3 Ω is a compact metric space and µ is Radon, F is cw∗k(X ∗)-valued and
δ ∗(x ,F ) is continuous for all x ∈ X . (Cascales-Kadets-R.)
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Weak∗-almost selectors

f : Ω→ X ∗ is a selector of F : Ω→ 2X ∗

m
∀ω ∈Ω, we have f (ω) ∈ F (ω)

m

Definition

f : Ω→ X ∗ is a w∗-almost selector of F : Ω→ 2X ∗ iff for every x ∈ X we have

〈x , f 〉 ≤ δ
∗(x ,F ) µ-a.e.

(the exceptional µ-null set depending on x).

Theorem (Cascales-Kadets-R.)

Every w∗-scalarly measurable multi-function F : Ω→ 2X ∗ with bounded values
admits a w∗-scalarly measurable w∗-almost selector.

I The proof uses the existence of liftings on (Ω,Σ,µ).
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Gelfand integral

f : Ω→ X ∗ is Gelfand integrable iff 〈x , f 〉 is integrable for all x ∈ X .

In this case, for each A ∈Σ there is a vector
∫
A f dµ ∈ X ∗ satisfying

〈
x ,
∫
A

f dµ

〉
=
∫
A
〈x , f 〉dµ for all x ∈ X .

II Clearly, the set
∫

Ω F dµ is convex and w∗-compact. Is
∫

Ω F dµ non-empty?

Theorem (Cascales-Kadets-R.)

If F : Ω→ cw∗k(X ∗) is Gelfand integrable, then
∫

Ω F dµ is non-empty and:

1

∫
Ω

F dµ =
{∫

Ω
f dµ : f is a Gelfand integrable w∗-almost selector of F

}
2 δ

∗
(
x ,
∫
A

F dµ

)
=
∫
A

δ
∗(x ,F )dµ for all x ∈ X .

Corollary

Suppose X is separable. If F : Ω→ cw∗k(X ∗) is Gelfand integrable, then∫
Ω

F dµ =
{∫

Ω
f dµ : f is a Gelfand integrable selector of F

}
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Compactness of Gelfand integral

QUESTIONS

For a Gelfand integrable multi-function F : Ω→ cw∗k(X ∗), one might ask:

(N) F takes norm compact values
?−→

∫
Ω

F dµ is norm compact

(W) F takes weakly compact values
?−→

∫
Ω

F dµ is weakly compact

We know:

1 In general, the answer to (N) is no, even for bounded F .

2 In general, the answer to (W) is no.

3 When F is bounded and takes norm compact values,

then
∫

Ω F dµ is weakly compact.

We don’t know . . .

. . . whether (W) has affirmative answer for bounded F .

THANKS FOR YOUR ATTENTION !! http://webs.um.es/joserr
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