The Gelfand integral for multi-valued functions

José Rodríguez

Universidad de Murcia

Functional Analysis Valencia 2010

イロン イロン イヨン イヨン 三日

- **B. Cascales, V. Kadets**, and J. Rodríguez, *Measurable selectors and set-valued Pettis integral in non-separable Banach spaces*, J. Funct. Anal. **256** (2009), 673–699.
- B. Cascales, V. Kadets, and J. Rodríguez, Measurability and selections of multi-functions in Banach spaces, J. Convex Anal. 17 (2010), 229–240.
- B. Cascales, V. Kadets, and J. Rodríguez, The Gelfand integral for multi-valued functions, submitted.

Classical measurable selection theorems

 $f: \Omega \to X$ is a selector of $F: \Omega \to 2^X$ iff $f(\omega) \in F(\omega)$ for all $\omega \in \Omega$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○へ⊙

Classical measurable selection theorems

 $f: \Omega \to X$ is a selector of $F: \Omega \to 2^X$ iff $f(\omega) \in F(\omega)$ for all $\omega \in \Omega$.

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let (Ω, Σ) be a measurable space and X a Polish space. Let $F : \Omega \to 2^X$ be a multi-function having non-empty closed values such that

 $\left\{ \boldsymbol{\omega} \in \Omega : F(\boldsymbol{\omega}) \cap \boldsymbol{U} \neq \boldsymbol{\emptyset} \right\} \in \boldsymbol{\Sigma}$

for every open set $U \subset X$.

Then F admits Borel measurable selectors.

Classical measurable selection theorems

 $f: \Omega \to X$ is a selector of $F: \Omega \to 2^X$ iff $f(\omega) \in F(\omega)$ for all $\omega \in \Omega$.

Theorem (Kuratowski and Ryll-Nardzewski, 1965)

Let (Ω, Σ) be a measurable space and X a Polish space. Let $F : \Omega \to 2^X$ be a multi-function having non-empty closed values such that

 $\{\omega \in \Omega: F(\omega) \cap U \neq \emptyset\} \in \Sigma$

for every open set $U \subset X$.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Then F admits Borel measurable selectors.

Theorem (Aumann, 1969)

Let (Ω, Σ, μ) be a complete probability space and X a Polish space. Let $F : \Omega \to 2^X$ be a multi-function having non-empty values such that

 $\{(\boldsymbol{\omega}, \boldsymbol{x}) \in \Omega \times \boldsymbol{X} : \boldsymbol{x} \in \boldsymbol{F}(\boldsymbol{\omega})\} \in \Sigma \otimes \operatorname{Borel}(\boldsymbol{X})$

Then F admits Borel measurable selectors.

 $\triangleright \triangleright (\Omega, \Sigma, \mu)$ is a complete probability space and X is a Banach space.

 $\triangleright \triangleright (\Omega, \Sigma, \mu)$ is a complete probability space and X is a Banach space.

 $f: \Omega \to X$ is scalarly measurable iff $\langle x^*, f \rangle$ is measurable for all $x^* \in X^*$.

 $\triangleright \triangleright (\Omega, \Sigma, \mu)$ is a complete probability space and X is a Banach space.

 $f: \Omega \to X$ is scalarly measurable iff $\langle x^*, f \rangle$ is measurable for all $x^* \in X^*$.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

For $C \subset X$ and $x^* \in X^*$ we write $\delta_*(x^*, C) := \inf\{x^*(x) : x \in C\},$

 $\triangleright \triangleright (\Omega, \Sigma, \mu)$ is a complete probability space and X is a Banach space.

 $f: \Omega \to X$ is scalarly measurable iff $\langle x^*, f \rangle$ is measurable for all $x^* \in X^*$.

For $C \subset X$ and $x^* \in X^*$ we write $\delta_*(x^*, C) := \inf\{x^*(x) : x \in C\},\$ For $F: \Omega \to 2^X$ and $x^* \in X^*$ we define $\delta_*(x^*, F)(\omega) := \delta_*(x^*, F(\omega)),$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

 $\triangleright \triangleright (\Omega, \Sigma, \mu)$ is a complete probability space and X is a Banach space.

 $f: \Omega \to X$ is scalarly measurable iff $\langle x^*, f \rangle$ is measurable for all $x^* \in X^*$.

For $C \subset X$ and $x^* \in X^*$ we write $\delta^*(x^*, C) := \sup\{x^*(x) : x \in C\}.$ For $F: \Omega \to 2^X$ and $x^* \in X^*$ we define $\delta^*(x^*, F)(\omega) := \delta^*(x^*, F(\omega)).$

・ロト ・四ト ・ヨト ・ヨト - ヨ

 $\triangleright \triangleright (\Omega, \Sigma, \mu)$ is a complete probability space and X is a Banach space.

 $f: \Omega \to X$ is scalarly measurable iff $\langle x^*, f \rangle$ is measurable for all $x^* \in X^*$.

For $C \subset X$ and $x^* \in X^*$ we write

 $\delta^*(x^*,C) := \sup\{x^*(x) : x \in C\}.$

For $F: \Omega \to 2^X$ and $x^* \in X^*$ we define $\delta^*(x^*, F)(\omega) := \delta^*(x^*, F(\omega)).$

 $F: \Omega \to 2^X$ is scalarly measurable iff $\delta^*(x^*, F)$ is measurable for all $x^* \in X^*$.

 $\triangleright \triangleright (\Omega, \Sigma, \mu)$ is a complete probability space and X is a Banach space.

 $f: \Omega \to X$ is scalarly measurable iff $\langle x^*, f \rangle$ is measurable for all $x^* \in X^*$.

For $C \subset X$ and $x^* \in X^*$ we write

 $\delta^*(x^*, C) := \sup\{x^*(x) : x \in C\}.$

For $F : \Omega \to 2^X$ and $x^* \in X^*$ we define $\delta^*(x^*, F)(\omega) := \delta^*(x^*, F(\omega)).$

 $F: \Omega \to 2^X$ is scalarly measurable iff $\delta^*(x^*, F)$ is measurable for all $x^* \in X^*$.

GENERAL PROBLEM

When do scalarly measurable multi-functions $F: \Omega \to 2^X$ admit scalarly measurable selectors?

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

 $\triangleright \triangleright (\Omega, \Sigma, \mu)$ is a complete probability space and X is a Banach space.

 $f: \Omega \to X$ is scalarly measurable iff $\langle x^*, f \rangle$ is measurable for all $x^* \in X^*$.

For $C \subset X$ and $x^* \in X^*$ we write

 $\delta^*(x^*,C) := \sup\{x^*(x) : x \in C\}.$

For $F : \Omega \to 2^X$ and $x^* \in X^*$ we define $\delta^*(x^*, F)(\omega) := \delta^*(x^*, F(\omega)).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

 $F: \Omega \to 2^X$ is scalarly measurable iff $\delta^*(x^*, F)$ is measurable for all $x^* \in X^*$.

GENERAL PROBLEM

When do scalarly measurable multi-functions $F: \Omega \rightarrow 2^{X}$ admit scalarly measurable selectors?

Well-known fact

If X is **separable**, then every scalarly measurable $F : \Omega \rightarrow cwk(X)$ admits *strongly measurable* selectors.

 $\triangleright \triangleright (\Omega, \Sigma, \mu)$ is a complete probability space and X is a Banach space.

 $f: \Omega \to X$ is scalarly measurable iff $\langle x^*, f \rangle$ is measurable for all $x^* \in X^*$.

For $C \subset X$ and $x^* \in X^*$ we write

 $\delta^*(x^*,C) := \sup\{x^*(x) : x \in C\}.$

For $F : \Omega \to 2^X$ and $x^* \in X^*$ we define $\delta^*(x^*, F)(\omega) := \delta^*(x^*, F(\omega)).$

 $F: \Omega \to 2^X$ is scalarly measurable iff $\delta^*(x^*, F)$ is measurable for all $x^* \in X^*$.

GENERAL PROBLEM

When do scalarly measurable multi-functions $F: \Omega \rightarrow 2^{X}$ admit scalarly measurable selectors?

Well-known fact

If X is **separable**, then every scalarly measurable $F : \Omega \rightarrow cwk(X)$ admits *strongly measurable* selectors.

Why?

If X is separable, then $F : \Omega \to cwk(X)$ is scalarly measurable iff

 $\{\omega \in \Omega: F(\omega) \cap U \neq \emptyset\} \in \Sigma \quad \forall U \subset X \text{ open.}$

C

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 - のへで

Let $F: \Omega \to cwk(X)$ be a scalarly measurable multi-function. Then, for each $x^* \in X^*$, the multi-functions $F|^{x^*}, F|_{x^*}: \Omega \to cwk(X)$ defined by

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

$$F|^{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta^*(x^*, F)(\omega) \right\}$$
$$F|_{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta_*(x^*, F)(\omega) \right\}$$

are scalarly measurable.

Let $F: \Omega \to cwk(X)$ be a scalarly measurable multi-function. Then, for each $x^* \in X^*$, the multi-functions $F|^{x^*}, F|_{x^*}: \Omega \to cwk(X)$ defined by

$$F|^{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta^*(x^*, F)(\omega) \right\}$$
$$F|_{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta_*(x^*, F)(\omega) \right\}$$

are scalarly measurable.

Theorem (Valadier, 1971)

If X^* is w^* -separable, then every scalarly measurable $F : \Omega \to cwk(X)$ admits scalarly measurable selectors.

Let $F: \Omega \to cwk(X)$ be a scalarly measurable multi-function. Then, for each $x^* \in X^*$, the multi-functions $F|^{x^*}, F|_{x^*}: \Omega \to cwk(X)$ defined by

$$F|^{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta^*(x^*, F)(\omega) \right\}$$
$$F|_{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta_*(x^*, F)(\omega) \right\}$$

are scalarly measurable.

Theorem (Valadier, 1971)

If X^* is w^* -separable, then every scalarly measurable $F : \Omega \to cwk(X)$ admits scalarly measurable selectors.

Sketch of proof:

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Let $F: \Omega \to cwk(X)$ be a scalarly measurable multi-function. Then, for each $x^* \in X^*$, the multi-functions $F|^{x^*}, F|_{x^*}: \Omega \to cwk(X)$ defined by

$$F|^{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta^*(x^*, F)(\omega) \right\}$$
$$F|_{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta_*(x^*, F)(\omega) \right\}$$

are scalarly measurable.

Theorem (Valadier, 1971)

If X^* is w^* -separable, then every scalarly measurable $F : \Omega \to cwk(X)$ admits scalarly measurable selectors.

Sketch of proof: Fix a w*-dense sequence (x^{*}_n) in X*.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Let $F: \Omega \to cwk(X)$ be a scalarly measurable multi-function. Then, for each $x^* \in X^*$, the multi-functions $F|^{x^*}, F|_{x^*}: \Omega \to cwk(X)$ defined by

$$F|^{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta^*(x^*, F)(\omega) \right\}$$
$$F|_{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta_*(x^*, F)(\omega) \right\}$$

are scalarly measurable.

Theorem (Valadier, 1971)

If X^* is w^* -separable, then every scalarly measurable $F : \Omega \to cwk(X)$ admits scalarly measurable selectors.

Sketch of proof:

1 Fix a w^* -dense sequence (x_n^*) in X^* .

2 Set
$$F_0 := F$$
 and $F_n := F_{n-1}|_{x_n^*}$.

Let $F: \Omega \to cwk(X)$ be a scalarly measurable multi-function. Then, for each $x^* \in X^*$, the multi-functions $F|^{x^*}, F|_{x^*}: \Omega \to cwk(X)$ defined by

$$F|^{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta^*(x^*, F)(\omega) \right\}$$
$$F|_{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta_*(x^*, F)(\omega) \right\}$$

are scalarly measurable.

Theorem (Valadier, 1971)

If X^* is w^* -separable, then every scalarly measurable $F : \Omega \to cwk(X)$ admits scalarly measurable selectors.

Sketch of proof:

- **1** Fix a w^* -dense sequence (x_n^*) in X^* .
- 2 Set $F_0 := F$ and $F_n := F_{n-1}|^{x_n^*}$.
- **3** Each F_n is scalarly measurable and $F_0 \supset F_1 \supset \cdots \supset F_n \supset F_{n+1} \supset \cdots$

Let $F: \Omega \to cwk(X)$ be a scalarly measurable multi-function. Then, for each $x^* \in X^*$, the multi-functions $F|^{x^*}, F|_{x^*}: \Omega \to cwk(X)$ defined by

$$F|^{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta^*(x^*, F)(\omega) \right\}$$
$$F|_{x^*}(\omega) := \left\{ x \in F(\omega) : \ x^*(x) = \delta_*(x^*, F)(\omega) \right\}$$

are scalarly measurable.

Theorem (Valadier, 1971)

If X^* is w^* -separable, then every scalarly measurable $F : \Omega \to cwk(X)$ admits scalarly measurable selectors.

Sketch of proof:

- **1** Fix a w^* -dense sequence (x_n^*) in X^* .
- **2** Set $F_0 := F$ and $F_n := F_{n-1}|^{x_n^*}$.
- **3** Each F_n is scalarly measurable and $F_0 \supset F_1 \supset \cdots \supset F_n \supset F_{n+1} \supset \cdots$
- Then $\bigcap F_n$ is a single-valued scalarly measurable selector of F.

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function $F : \Omega \rightarrow wk(X)$ admits scalarly measurable selectors.

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function $F : \Omega \rightarrow wk(X)$ admits scalarly measurable selectors.

► For a scalarly measurable $G: \Omega \rightarrow 2^X$, set

$$\Delta G := \sup_{x^* \in S_{X^*}} \int_{\Omega} \left(\delta^*(x^*, G) - \delta_*(x^*, G) \right) d\mu.$$

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function $F : \Omega \to wk(X)$ admits scalarly measurable selectors.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

 For a scalarly measurable G: Ω → 2^X, set
 ΔG := sup_{x*∈S_{X*}} ∫_Ω (δ*(x*, G) − δ_{*}(x*, G)) dμ.

 Note: if ΔG = 0 then *every* selector of G is scalarly measurable.

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function $F : \Omega \to wk(X)$ admits scalarly measurable selectors.

► For a scalarly measurable $G : \Omega \rightarrow 2^X$, set

$$\Delta G := \sup_{x^* \in S_{\mathbf{X}^*}} \int_{\Omega} \left(\delta^*(x^*, G) - \delta_*(x^*, G) \right) d\mu.$$

>> Note: if $\Delta G = 0$ then *every* selector of G is scalarly measurable.

Sketch of proof:

We assume wlog that there is M > 0 such that, for each x^{*} ∈ S_{X*}, we have |δ^{*}(x^{*}, F)| ≤ M μ-a.e.

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function $F : \Omega \to wk(X)$ admits scalarly measurable selectors.

► For a scalarly measurable $G : \Omega \rightarrow 2^X$, set

$$\Delta G := \sup_{x^* \in S_{\mathbf{x}^*}} \int_{\Omega} \left(\delta^*(x^*, G) - \delta_*(x^*, G) \right) d\mu.$$

>> Note: if $\Delta G = 0$ then *every* selector of G is scalarly measurable.

Sketch of proof:

(2) It suffices to prove that for every ε > 0 there is a scalarly measurable G: Ω → wk(X) such that G ⊂ F and ΔG ≤ ε.

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function $F : \Omega \to wk(X)$ admits scalarly measurable selectors.

► For a scalarly measurable $G: \Omega \to 2^X$, set

$$\Delta G := \sup_{x^* \in S_{X^*}} \int_{\Omega} \left(\delta^*(x^*, G) - \delta_*(x^*, G) \right) d\mu.$$

Sketch of proof:

- (2) It suffices to prove that for every $\varepsilon > 0$ there is a scalarly measurable $G: \Omega \to wk(X)$ such that $G \subset F$ and $\Delta G \leq \varepsilon$.
- (3) By contradiction: suppose there is $\varepsilon > 0$ such that $\Delta G > \varepsilon$ for every scalarly measurable $G : \Omega \to wk(X)$ such that $G \subset F$.

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function $F : \Omega \to wk(X)$ admits scalarly measurable selectors.

► For a scalarly measurable $G: \Omega \to 2^X$, set

$$\Delta G := \sup_{x^* \in S_{X^*}} \int_{\Omega} \left(\delta^*(x^*, G) - \delta_*(x^*, G) \right) d\mu.$$

Sketch of proof:

- (3) By contradiction: suppose there is $\varepsilon > 0$ such that $\Delta G > \varepsilon$ for every scalarly measurable $G : \Omega \to wk(X)$ such that $G \subset F$.
- (4) For each σ ∈ {0,1}^{<ℕ}, we find a functional x^{*}_σ ∈ S_{X*} and a scalarly measurable F_σ : Ω → wk(X) such that

$$\int_{\Omega} \left(\delta^*(x_{\sigma}^*, \mathcal{F}_{\sigma}) - \delta_*(x_{\sigma}^*, \mathcal{F}_{\sigma}) \right) d\mu > \varepsilon$$

and $F_{\sigma \frown 0} \cup F_{\sigma \frown 1} \subset F_{\sigma} \subset F$.

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function $F : \Omega \to wk(X)$ admits scalarly measurable selectors.

Sketch of proof:

- (3) By contradiction: suppose there is $\varepsilon > 0$ such that $\Delta G > \varepsilon$ for every scalarly measurable $G : \Omega \to wk(X)$ such that $G \subset F$.
- (4) For each $\sigma \in \{0,1\}^{<\mathbb{N}}$, we find a functional $x_{\sigma}^* \in S_{X^*}$ and a scalarly measurable $F_{\sigma} : \Omega \to wk(X)$ such that

$$\int_{\Omega} \left(\delta^*(\mathsf{x}^*_{\sigma}, \mathsf{F}_{\sigma}) - \delta_*(\mathsf{x}^*_{\sigma}, \mathsf{F}_{\sigma}) \right) d\mu > \varepsilon$$

and $F_{\sigma \frown 0} \cup F_{\sigma \frown 1} \subset F_{\sigma} \subset F$.

(5) $\varphi_n := \frac{1}{2^n} \sum_{\sigma \in \{0,1\}^n} \left(\delta^*(x^*_{\sigma}, F_{\sigma}) - \delta_*(x^*_{\sigma}, F_{\sigma}) \right)$ satisfies $\int_{\Omega} \varphi_n \, d\mu > \varepsilon$.

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function $F : \Omega \to wk(X)$ admits scalarly measurable selectors.

Sketch of proof:

(4) For each $\sigma \in \{0,1\}^{<\mathbb{N}}$, we find a functional $x_{\sigma}^* \in S_{X^*}$ and a scalarly measurable $F_{\sigma} : \Omega \to wk(X)$ such that

$$\int_{\Omega} \left(\delta^*(x_{\sigma}^*, F_{\sigma}) - \delta_*(x_{\sigma}^*, F_{\sigma}) \right) d\mu > \varepsilon$$

and $F_{\sigma \frown 0} \cup F_{\sigma \frown 1} \subset F_{\sigma} \subset F$.

(5)
$$\varphi_n := \frac{1}{2^n} \sum_{\sigma \in \{0,1\}^n} \left(\delta^*(x^*_{\sigma}, F_{\sigma}) - \delta_*(x^*_{\sigma}, F_{\sigma}) \right)$$
 satisfies $\int_{\Omega} \varphi_n \, d\mu > \varepsilon$

(6) For each $\omega \in \Omega$, we find a $\overline{co}(F(\omega))$ -valued martingale (g_n) such that

$$\mathbb{E}(\|g_{n+1}-g_n\|) \ge \varphi_n(\omega)$$
 for all $n \in \mathbb{N}$.

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function $F : \Omega \to wk(X)$ admits scalarly measurable selectors.

Sketch of proof:

(4) For each $\sigma \in \{0,1\}^{<\mathbb{N}}$, we find a functional $x_{\sigma}^* \in S_{X^*}$ and a scalarly measurable $F_{\sigma} : \Omega \to wk(X)$ such that

$$\int_{\Omega} \left(\delta^*(x_{\sigma}^*, F_{\sigma}) - \delta_*(x_{\sigma}^*, F_{\sigma}) \right) d\mu > \varepsilon$$

and $F_{\sigma \frown 0} \cup F_{\sigma \frown 1} \subset F_{\sigma} \subset F$.

(5)
$$\varphi_n := \frac{1}{2^n} \sum_{\sigma \in \{0,1\}^n} \left(\delta^*(x^*_{\sigma}, F_{\sigma}) - \delta_*(x^*_{\sigma}, F_{\sigma}) \right)$$
 satisfies $\int_{\Omega} \varphi_n \, d\mu > \varepsilon$

(6) For each $\omega \in \Omega$, we find a $\overline{co}(F(\omega))$ -valued martingale (g_n) such that

$$\mathbb{E}(\|g_{n+1}-g_n\|) \ge \varphi_n(\omega)$$
 for all $n \in \mathbb{N}$.

 (g_n) is mean convergent since $\overline{co}(F(\omega))$ has the **RNP**.

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function $F : \Omega \to wk(X)$ admits scalarly measurable selectors.

Sketch of proof:

(4) For each $\sigma \in \{0,1\}^{<\mathbb{N}}$, we find a functional $x_{\sigma}^* \in S_{X^*}$ and a scalarly measurable $F_{\sigma} : \Omega \to wk(X)$ such that

$$\int_{\Omega} \left(\delta^*(x_{\sigma}^*, F_{\sigma}) - \delta_*(x_{\sigma}^*, F_{\sigma}) \right) d\mu > \varepsilon$$

and $F_{\sigma \frown 0} \cup F_{\sigma \frown 1} \subset F_{\sigma} \subset F$.

(5)
$$\varphi_n := \frac{1}{2^n} \sum_{\sigma \in \{0,1\}^n} \left(\delta^*(x^*_{\sigma}, F_{\sigma}) - \delta_*(x^*_{\sigma}, F_{\sigma}) \right)$$
 satisfies $\int_{\Omega} \varphi_n \, d\mu > \varepsilon$

(6) For each $\omega \in \Omega$, we find a $\overline{co}(F(\omega))$ -valued martingale (g_n) such that

 $\mathbb{E}(\|g_{n+1} - g_n\|) \ge \varphi_n(\omega) \quad \text{for all } n \in \mathbb{N}.$

 (g_n) is mean convergent since $\overline{co}(F(\omega))$ has the **RNP**. So $\varphi_n(\omega) \to 0$.

Theorem (Cascales-Kadets-R.)

Every scalarly measurable multi-function $F : \Omega \to wk(X)$ admits scalarly measurable selectors.

Sketch of proof:

(4) For each $\sigma \in \{0,1\}^{<\mathbb{N}}$, we find a functional $x_{\sigma}^* \in S_{X^*}$ and a scalarly measurable $F_{\sigma} : \Omega \to wk(X)$ such that

$$\int_{\Omega} \left(\delta^*(x_{\sigma}^*, F_{\sigma}) - \delta_*(x_{\sigma}^*, F_{\sigma}) \right) d\mu > \varepsilon$$

and $F_{\sigma \frown 0} \cup F_{\sigma \frown 1} \subset F_{\sigma} \subset F$.

(5)
$$\varphi_n := \frac{1}{2^n} \sum_{\sigma \in \{0,1\}^n} \left(\delta^*(x^*_{\sigma}, F_{\sigma}) - \delta_*(x^*_{\sigma}, F_{\sigma}) \right)$$
 satisfies $\int_{\Omega} \varphi_n \, d\mu > \varepsilon$

(6) For each $\omega \in \Omega$, we find a $\overline{co}(F(\omega))$ -valued martingale (g_n) such that

 $\mathbb{E}(\|g_{n+1}-g_n\|) \ge \varphi_n(\omega)$ for all $n \in \mathbb{N}$.

 (g_n) is mean convergent since $\overline{co}(F(\omega))$ has the **RNP**. So $\varphi_n(\omega) \to 0$.

(7) This contradicts Lebesgue's dominated convergence theorem.

・ロト・西ト・モン・モー もんの

 $f: \Omega \to X^*$ is w*-scalarly measurable iff $\langle x, f \rangle$ is measurable for all $x \in X$.

 $f: \Omega \to X^*$ is w*-scalarly measurable iff $\langle x, f \rangle$ is measurable for all $x \in X$.

 $F: \Omega \to 2^{X^*}$ is w*-scalarly measurable iff $\delta^*(x, F)$ is measurable for all $x \in X$.

 $f: \Omega \to X^*$ is w*-scalarly measurable iff $\langle x, f \rangle$ is measurable for all $x \in X$.

 $F: \Omega \to 2^{X^*}$ is w^* -scalarly measurable iff $\delta^*(x, F)$ is measurable for all $x \in X$.

GENERAL PROBLEM

When do w^* -scalarly measurable multi-functions $F : \Omega \to 2^{X^*}$ admit w^* -scalarly measurable selectors?

 $f: \Omega \to X^*$ is w*-scalarly measurable iff $\langle x, f \rangle$ is measurable for all $x \in X$.

 $F: \Omega \to 2^{X^*}$ is w*-scalarly measurable iff $\delta^*(x, F)$ is measurable for all $x \in X$.

GENERAL PROBLEM

When do w^* -scalarly measurable multi-functions $F: \Omega \to 2^{X^*}$ admit w^* -scalarly measurable selectors?

Positive answers ...

The w^* -scalarly measurable multi-function $F : \Omega \to 2^{X^*}$ admits w^* -scalarly measurable selectors in each of the following cases:

 $f: \Omega \to X^*$ is w*-scalarly measurable iff $\langle x, f \rangle$ is measurable for all $x \in X$.

 $F: \Omega \to 2^{X^*}$ is w*-scalarly measurable iff $\delta^*(x, F)$ is measurable for all $x \in X$.

GENERAL PROBLEM

When do w^* -scalarly measurable multi-functions $F: \Omega \to 2^{X^*}$ admit w^* -scalarly measurable selectors?

Positive answers . . .

The w*-scalarly measurable multi-function $F: \Omega \to 2^{X^*}$ admits w*-scalarly measurable selectors in each of the following cases:

• F is $cw^*k(X^*)$ -valued and X is separable. (Valadier, 1971)

 $f: \Omega \to X^*$ is w*-scalarly measurable iff $\langle x, f \rangle$ is measurable for all $x \in X$.

 $F: \Omega \to 2^{X^*}$ is w*-scalarly measurable iff $\delta^*(x, F)$ is measurable for all $x \in X$.

GENERAL PROBLEM

When do w^* -scalarly measurable multi-functions $F: \Omega \to 2^{X^*}$ admit w^* -scalarly measurable selectors?

Positive answers . . .

The w*-scalarly measurable multi-function $F: \Omega \to 2^{X^*}$ admits w*-scalarly measurable selectors in each of the following cases:

- F is $cw^*k(X^*)$ -valued and X is separable. (Valadier, 1971)
- P is w^{*}k(X^{*})-valued and co^{w^{*}}(F(ω)) has the RNP for all ω ∈ Ω. (Cascales-Kadets-R.)

 $f: \Omega \to X^*$ is w*-scalarly measurable iff $\langle x, f \rangle$ is measurable for all $x \in X$.

 $F: \Omega \to 2^{X^*}$ is w*-scalarly measurable iff $\delta^*(x, F)$ is measurable for all $x \in X$.

GENERAL PROBLEM

When do w^* -scalarly measurable multi-functions $F : \Omega \to 2^{X^*}$ admit w^* -scalarly measurable selectors?

Positive answers . . .

The w*-scalarly measurable multi-function $F: \Omega \to 2^{X^*}$ admits w*-scalarly measurable selectors in each of the following cases:

- F is $cw^*k(X^*)$ -valued and X is separable. (Valadier, 1971)
- P is w^{*}k(X^{*})-valued and co^{w^{*}}(F(ω)) has the RNP for all ω ∈ Ω. (Cascales-Kadets-R.)

③ Ω is a compact metric space and µ is Radon, F is cw^{*}k(X^{*})-valued and δ^{*}(x, F) is continuous for all x ∈ X. (Cascales-Kadets-R.)

 $f: \Omega \to X^*$ is w*-scalarly measurable iff $\langle x, f \rangle$ is measurable for all $x \in X$.

 $F: \Omega \to 2^{X^*}$ is w^* -scalarly measurable iff $\delta^*(x, F)$ is measurable for all $x \in X$.

►►► OPEN PROBLEM ◄◄◄

Does every w^* -scalarly measurable multi-function $F : \Omega \to w^* k(X^*)$ admit w^* -scalarly measurable selectors?

Positive answers . . .

The w^* -scalarly measurable multi-function $F : \Omega \to 2^{X^*}$ admits w^* -scalarly measurable selectors in each of the following cases:

- F is $cw^*k(X^*)$ -valued and X is separable. (Valadier, 1971)
- P is w^{*}k(X^{*})-valued and co^{w^{*}}(F(ω)) has the RNP for all ω ∈ Ω. (Cascales-Kadets-R.)

3 Ω is a compact metric space and μ is Radon, F is $cw^*k(X^*)$ -valued and $\delta^*(x, F)$ is continuous for all $x \in X$. (Cascales-Kadets-R.)

・ロト・日本・モト・モー ショー もくら

 $f: \Omega \to X^*$ is a selector of $F: \Omega \to 2^{X^*}$

(ロ) (四) (E) (E) (E)

イロン イボン イヨン イヨン 三日

 $f: \Omega \to X^* \text{ is a selector of } F: \Omega \to 2^{X^*} \text{ with convex } w^* \text{-closed values}$ $\textcircled{} \\ \forall \omega \in \Omega, \text{ we have } f(\omega) \in F(\omega)$ $\textcircled{} \\ \forall \omega \in \Omega, \forall x \in X, \text{ we have } \langle x, f(\omega) \rangle \leq \delta^*(x, F(\omega))$

イロン イボン イヨン イヨン 三日

Definition

 $f: \Omega \to X^*$ is a *w*^{*}-almost selector of $F: \Omega \to 2^{X^*}$ iff for every $x \in X$ we have

 $\langle x,f\rangle \leq \delta^*(x,F)$ μ -a.e.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

(the exceptional μ -null set depending on x).

Definition

 $f: \Omega \to X^*$ is a w^* -almost selector of $F: \Omega \to 2^{X^*}$ iff for every $x \in X$ we have

 $\langle x,f\rangle \leq \delta^*(x,F)$ μ -a.e.

(the exceptional μ -null set depending on x).

Theorem (Cascales-Kadets-R.)

Every w^* -scalarly measurable multi-function $F : \Omega \to 2^{X^*}$ with bounded values admits a w^* -scalarly measurable w^* -almost selector.

Definition

 $f: \Omega \to X^*$ is a *w*^{*}-almost selector of $F: \Omega \to 2^{X^*}$ iff for every $x \in X$ we have

 $\langle x,f\rangle \leq \delta^*(x,F)$ μ -a.e.

(the exceptional μ -null set depending on x).

Theorem (Cascales-Kadets-R.)

Every w^* -scalarly measurable multi-function $F : \Omega \to 2^{X^*}$ with bounded values admits a w^* -scalarly measurable w^* -almost selector.

► The proof uses the existence of *liftings* on (Ω, Σ, μ) .

 $f: \Omega \to X^*$ is **Gelfand integrable** iff $\langle x, f \rangle$ is integrable for all $x \in X$. In this case, for each $A \in \Sigma$ there is a vector $\int_A f d\mu \in X^*$ satisfying

$$\left\langle x, \int_{A} f \, d\mu \right\rangle = \int_{A} \langle x, f \rangle \, d\mu$$
 for all $x \in X$.

イロン イロン イヨン イヨン 三日

 $f: \Omega \to X^*$ is **Gelfand integrable** iff $\langle x, f \rangle$ is integrable for all $x \in X$. In this case, for each $A \in \Sigma$ there is a vector $\int_A f d\mu \in X^*$ satisfying

$$\left\langle x, \int_{A} f \, d\mu \right\rangle = \int_{A} \langle x, f \rangle \, d\mu$$
 for all $x \in X$.

I.M. Gelfand (1913-2009)

 $f: \Omega \to X^*$ is **Gelfand integrable** iff $\langle x, f \rangle$ is integrable for all $x \in X$. In this case, for each $A \in \Sigma$ there is a vector $\int_A f d\mu \in X^*$ satisfying

$$\left\langle x, \int_{A} f \, d\mu \right\rangle = \int_{A} \langle x, f \rangle \, d\mu$$
 for all $x \in X$.

Definition

 $F: \Omega \to cw^*k(X^*)$ is Gelfand integrable iff $\delta^*(x, F)$ is integrable for all $x \in X$. In this case, the Gelfand integral of F over $A \in \Sigma$ is defined as

$$\int_{A} F d\mu := \bigcap_{x \in X} \left\{ x^* \in X^* : \int_{A} \delta_*(x, F) d\mu \le x^*(x) \le \int_{A} \delta^*(x, F) d\mu \right\}$$

 $f: \Omega \to X^*$ is **Gelfand integrable** iff $\langle x, f \rangle$ is integrable for all $x \in X$. In this case, for each $A \in \Sigma$ there is a vector $\int_A f d\mu \in X^*$ satisfying

$$\left\langle x, \int_{A} f \, d\mu \right\rangle = \int_{A} \langle x, f \rangle \, d\mu$$
 for all $x \in X$.

Definition

 $F: \Omega \to cw^*k(X^*)$ is Gelfand integrable iff $\delta^*(x, F)$ is integrable for all $x \in X$. In this case, the Gelfand integral of F over $A \in \Sigma$ is defined as

$$\int_{A} F d\mu := \bigcap_{x \in X} \left\{ x^* \in X^* : \int_{A} \delta_*(x, F) d\mu \le x^*(x) \le \int_{A} \delta^*(x, F) d\mu \right\}$$

(ロ) (部) (E) (E) (E) (0000

>> Clearly, the set $\int_{\Omega} F d\mu$ is convex and w^* -compact.

 $f: \Omega \to X^*$ is **Gelfand integrable** iff $\langle x, f \rangle$ is integrable for all $x \in X$. In this case, for each $A \in \Sigma$ there is a vector $\int_A f d\mu \in X^*$ satisfying

$$\left\langle x, \int_{A} f \, d\mu \right\rangle = \int_{A} \langle x, f \rangle \, d\mu$$
 for all $x \in X$.

Definition

 $F: \Omega \to cw^*k(X^*)$ is Gelfand integrable iff $\delta^*(x, F)$ is integrable for all $x \in X$. In this case, the Gelfand integral of F over $A \in \Sigma$ is defined as

$$\int_{A} F d\mu := \bigcap_{x \in X} \left\{ x^* \in X^* : \int_{A} \delta_*(x, F) d\mu \le x^*(x) \le \int_{A} \delta^*(x, F) d\mu \right\}$$

►► Clearly, the set $\int_{\Omega} F d\mu$ is convex and w^* -compact. Is $\int_{\Omega} F d\mu$ non-empty?

 $F: \Omega \to cw^*k(X^*)$ is **Gelfand integrable** iff $\delta^*(x, F)$ is integrable for all $x \in X$. In this case:

$$\int_{A} F d\mu := \bigcap_{x \in X} \Big\{ x^* \in X^* : \int_{A} \delta_*(x, F) d\mu \le x^*(x) \le \int_{A} \delta^*(x, F) d\mu \Big\}.$$

►► Clearly, the set $\int_{\Omega} F d\mu$ is convex and w^* -compact. Is $\int_{\Omega} F d\mu$ non-empty?

(ロ) (四) (E) (E) (E)

 $F: \Omega \to cw^*k(X^*)$ is **Gelfand integrable** iff $\delta^*(x, F)$ is integrable for all $x \in X$. In this case:

$$\int_{A} F d\mu := \bigcap_{x \in X} \Big\{ x^* \in X^* : \int_{A} \delta_*(x, F) d\mu \le x^*(x) \le \int_{A} \delta^*(x, F) d\mu \Big\}.$$

►► Clearly, the set $\int_{\Omega} F d\mu$ is convex and w^* -compact. Is $\int_{\Omega} F d\mu$ non-empty?

Theorem (Cascales-Kadets-R.)

If $F: \Omega \to cw^*k(X^*)$ is Gelfand integrable, then $\int_{\Omega} F d\mu$ is non-empty and:

 $F: \Omega \to cw^*k(X^*)$ is **Gelfand integrable** iff $\delta^*(x, F)$ is integrable for all $x \in X$. In this case:

$$\int_{A} F d\mu := \bigcap_{x \in X} \Big\{ x^* \in X^* : \int_{A} \delta_*(x, F) d\mu \le x^*(x) \le \int_{A} \delta^*(x, F) d\mu \Big\}.$$

►► Clearly, the set $\int_{\Omega} F d\mu$ is convex and w^* -compact. Is $\int_{\Omega} F d\mu$ non-empty?

Theorem (Cascales-Kadets-R.)

If $F: \Omega \to cw^*k(X^*)$ is Gelfand integrable, then $\int_{\Omega} F d\mu$ is non-empty and:

$$\int_{\Omega} F \, d\mu = \left\{ \int_{\Omega} f \, d\mu : f \text{ is a Gelfand integrable } w^* \text{-almost selector of } F \right\}$$

 $F: \Omega \to cw^*k(X^*)$ is **Gelfand integrable** iff $\delta^*(x, F)$ is integrable for all $x \in X$. In this case:

$$\int_{A} F d\mu := \bigcap_{x \in X} \Big\{ x^* \in X^* : \int_{A} \delta_*(x, F) d\mu \le x^*(x) \le \int_{A} \delta^*(x, F) d\mu \Big\}.$$

►► Clearly, the set $\int_{\Omega} F d\mu$ is convex and w^* -compact. Is $\int_{\Omega} F d\mu$ non-empty?

Theorem (Cascales-Kadets-R.)

If $F: \Omega \to cw^*k(X^*)$ is Gelfand integrable, then $\int_{\Omega} F d\mu$ is non-empty and:

$$\int_{\Omega} F d\mu = \left\{ \int_{\Omega} f d\mu : f \text{ is a Gelfand integrable } w^* \text{-almost selector of } F \right\}$$

$$\delta^* \left(x, \int_A F d\mu \right) = \int_A \delta^* (x, F) d\mu$$
 for all $x \in X$.

 $F: \Omega \to cw^*k(X^*)$ is **Gelfand integrable** iff $\delta^*(x, F)$ is integrable for all $x \in X$. In this case:

$$\int_{A} F d\mu := \bigcap_{x \in X} \Big\{ x^* \in X^* : \int_{A} \delta_*(x, F) d\mu \le x^*(x) \le \int_{A} \delta^*(x, F) d\mu \Big\}.$$

►► Clearly, the set $\int_{\Omega} F d\mu$ is convex and w^* -compact. Is $\int_{\Omega} F d\mu$ non-empty?

Theorem (Cascales-Kadets-R.)

If $F: \Omega \to cw^*k(X^*)$ is Gelfand integrable, then $\int_{\Omega} F d\mu$ is non-empty and:

$$\int_{\Omega} F d\mu = \left\{ \int_{\Omega} f d\mu : f \text{ is a Gelfand integrable } w^* \text{-almost selector of } F \right\}$$

$$\delta^* \left(x, \int_A F d\mu \right) = \int_A \delta^* (x, F) d\mu \quad \text{for all } x \in X.$$

Corollary

Suppose X is separable. If $F : \Omega \to cw^*k(X^*)$ is Gelfand integrable, then

$$\int_{\Omega} F \, d\mu = \left\{ \int_{\Omega} f \, d\mu : f \text{ is a Gelfand integrable selector of } F \right\}$$

QUESTIONS

For a Gelfand integrable multi-function $F: \Omega \rightarrow cw^*k(X^*)$, one might ask:

(N) F takes norm compact values $\xrightarrow{?} \int_{\Omega} F d\mu$ is norm compact

QUESTIONS

For a Gelfand integrable multi-function $F: \Omega \rightarrow cw^*k(X^*)$, one might ask:

(N) F takes norm compact values $\stackrel{?}{\longrightarrow} \int_{\Omega} F d\mu$ is norm compact (W) F takes weakly compact values $\stackrel{?}{\longrightarrow} \int_{\Omega} F d\mu$ is weakly compact

QUESTIONS

For a Gelfand integrable multi-function $F: \Omega \rightarrow cw^*k(X^*)$, one might ask:

(N) *F* takes norm compact values $\xrightarrow{?} \int_{\Omega} F d\mu$ is norm compact (W) *F* takes weakly compact values $\xrightarrow{?} \int_{\Omega} F d\mu$ is weakly compact

(ロ) (部) (E) (E) (E) (0000

We know:

QUESTIONS

For a Gelfand integrable multi-function $F: \Omega \rightarrow cw^*k(X^*)$, one might ask:

(N) *F* takes norm compact values $\xrightarrow{?} \int_{\Omega} F d\mu$ is norm compact (W) *F* takes weakly compact values $\xrightarrow{?} \int_{\Omega} F d\mu$ is weakly compact

(ロ) (部) (E) (E) (E) (0000

We know:

In general, the answer to (N) is no,

QUESTIONS

For a Gelfand integrable multi-function $F: \Omega \rightarrow cw^*k(X^*)$, one might ask:

(N) *F* takes norm compact values $\xrightarrow{?} \int_{\Omega} F d\mu$ is norm compact (W) *F* takes weakly compact values $\xrightarrow{?} \int_{\Omega} F d\mu$ is weakly compact

(ロ) (部) (E) (E) (E) (0000

We know:

1 In general, the answer to (N) is **no**, even for bounded F.

QUESTIONS

For a Gelfand integrable multi-function $F: \Omega \rightarrow cw^*k(X^*)$, one might ask:

(N) F takes norm compact values $\xrightarrow{?} \int_{\Omega} F d\mu$ is norm compact (W) F takes weakly compact values $\xrightarrow{?} \int_{\Omega} F d\mu$ is weakly compact

We know:

- In general, the answer to (N) is no, even for bounded F.
- In general, the answer to (W) is no.

QUESTIONS

For a Gelfand integrable multi-function $F: \Omega \rightarrow cw^*k(X^*)$, one might ask:

(N) F takes norm compact values $\xrightarrow{?} \int_{\Omega} F d\mu$ is norm compact (W) F takes weakly compact values $\xrightarrow{?} \int_{\Omega} F d\mu$ is weakly compact

We know:

- In general, the answer to (N) is no, even for bounded F.
- In general, the answer to (W) is no.

We don't know ...

 \dots whether (W) has affirmative answer for bounded F.

QUESTIONS

For a Gelfand integrable multi-function $F: \Omega \to cw^*k(X^*)$, one might ask:

(N) F takes norm compact values

(W) F takes weakly compact values

$$\stackrel{\rightarrow}{\longrightarrow} \int_{\Omega} F d\mu \text{ is norm compact}$$

$$\stackrel{?}{\longrightarrow} \int_{\Omega} F d\mu \text{ is weakly compact}$$

We know:

- In general, the answer to (N) is **no**, even for bounded F.
- In general, the answer to (W) is no.
- 3 When F is bounded and takes norm compact values, then $\int_{\Omega} F d\mu$ is weakly compact.

We don't know

 \dots whether (W) has affirmative answer for bounded F.

QUESTIONS

For a Gelfand integrable multi-function $F: \Omega \to cw^*k(X^*)$, one might ask:

(N) F takes norm compact values

(W) F takes weakly compact values

$$\stackrel{\rightarrow}{\longrightarrow} \int_{\Omega} F d\mu \text{ is norm compact}$$

$$\stackrel{?}{\longrightarrow} \int_{\Omega} F d\mu \text{ is weakly compac}$$

We know:

- In general, the answer to (N) is **no**, even for bounded F.
- In general, the answer to (W) is no.
- When F is bounded and takes norm compact values, then $\int_{\Omega} F d\mu$ is weakly compact.

We don't know

 \dots whether (W) has affirmative answer for bounded F.

THANKS FOR YOUR ATTENTION !!

http://webs.um.es/joserr