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»»» Let X be a Banach space.

Definition (Gordon, 1990)
f:[0,1] — X is McShane integrable iff there is a vector / € X such that:

for each € > 0 there is a function & : [0,1] — R™ such that

zn:/’L(A,-)f(t,-)—IH <e
i=1

for every finite partition Ay,...,An of [0,1] into intervals and every choice of
points ti,..., tn € [0,1] satisfying A; C (tj — 8(t;),ti + 8(t;)).

Definition (Pettis, 1938)
f:]0,1] — X is Pettis integrable iff
@ x*f is Lebesgue integrable Vx* € X*,

@ for each measurable set A C [0,1] there is a vector [, € X such that

x*(/;‘f):/Ax*f Vx* € X*.
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@ Bochner =—> McShane — Pettis.

@ No one of these arrows can be reversed in general.

Theorem (Gordon 1990, Fremlin-Mendoza 1994)

If X is separable, then for any f :[0,1] — X we have:

McShane integrable <= Pettis integrable.

» Key: strong measurability = scalar measurability if X is separable.
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The answer is YES if
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© X is Hilbert generated (Deville-R., 2010).

Problem (Musiat)

Let f:[0,1] — X be scalarly null, i.e. x*f =0 a.e. Vx* € X*.
Is f McShane integrable?

The answer to Musiat's problem is NO under CH (Di Piazza-Preiss, R.). )
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Our main result

Theorem (Avilés-Plebanek-R.)

There exists a WCG Banach space X and a scalarly null function
f:[0,1] — X that is not McShane integrable.

@ This answers in the negative the question of Di Piazza and Preiss.

@ Also, it provides a ZFC negative answer to Musiat's question.

X can be taken reflexive, using the Davis-Figiel-Johnson-Pelczynski theorem. )
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Definition

Let € > 0. A family ¢ of finite subsets of a set S is e-filling on S iff it is
hereditary and for every finite set A C S there exists B C A, B € ¢, such that

|B| > €A .

The family & = {A C N: |A| < min(A)} is -filling and compact.
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Proposition

If ¢ is e-filling on S = [0,1], then ¥ is measure-filling.

Open Problem DU (Fremlin)
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A family ¢ of finite subsets of a set S is log-filling on S iff it is hereditary and
for every finite set A C S there exists B C A, B € ¥, such that |B| > log|A| .

Theorem (Fremlin)
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Proposition

There exist measure-filling hereditary compact families on [0, 1].

Sketch of proof:
@ Consider a partition [0,1] = ses Zs with |S| =c¢ and 1*(Z;) = 1.
@ Let ¥4 be a log-filling compact family of finite subsets of S.
@ Let .# be the family of all finite sets A C [0,1] such that

o |[ANZ| <1 for every s,
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@ Then % is measure-filling, hereditary and compact.




