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McShane’s approach to Lebesgue integration

Theorem (McShane, 1969)

f : [0,1]→ R is Lebesgue integrable if and only if there is I ∈ R
such that:

for each ε > 0 there is a function δ : [0,1]→ R+ such that∣∣∣ n

∑
i=1

λ (Ai )f (ti )− I
∣∣∣< ε

for every finite partition A1, . . . ,An of [0,1] into intervals and every
choice of points t1, . . . , tn ∈ [0,1] satisfying

Ai ⊂
(
ti −δ (ti ), ti + δ (ti )

)
.

II In this case, I is the Lebesgue integral of f over [0,1].
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The vector-valued McShane and Pettis integrals

III Let X be a Banach space.

Definition (Gordon, 1990)

f : [0,1]→ X is McShane integrable iff there is a vector I ∈ X such that:

for each ε > 0 there is a function δ : [0,1]→ R+ such that∥∥∥ n

∑
i=1

λ (Ai )f (ti )− I
∥∥∥< ε

for every finite partition A1, . . . ,An of [0,1] into intervals and every choice of
points t1, . . . ,tn ∈ [0,1] satisfying Ai ⊂

(
ti −δ (ti ),ti + δ (ti )

)
.

Definition (Pettis, 1938)

f : [0,1]→ X is Pettis integrable iff

1 x∗f is Lebesgue integrable ∀x∗ ∈ X ∗,

2 for each measurable set A⊂ [0,1] there is a vector
∫

A f ∈ X such that

x∗
(∫

A
f
)

=
∫

A
x∗f ∀x∗ ∈ X ∗.
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Relationships

For any f : [0,1]→ X we have:

McShane ≡ Lebesgue when X = R.

Bochner =⇒ McShane =⇒ Pettis.

No one of these arrows can be reversed in general.

Theorem (Gordon 1990, Fremlin-Mendoza 1994)

If X is separable, then for any f : [0,1]→ X we have:

McShane integrable ⇐⇒ Pettis integrable.

I Key: strong measurability ≡ scalar measurability if X is separable.
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The PROBLEM

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG).
Let f : [0,1]→ X be Pettis integrable. Is f McShane integrable?

The answer is YES if

1 X = c0(Γ) or X is superreflexive (Di Piazza-Preiss, 2003).

2 X = L1(µ) (R., 2008).

3 X is Hilbert generated (Deville-R., 2010)

Problem (Musia l)

Let f : [0,1]→ X be scalarly null, i.e. x∗f = 0 a.e. ∀x∗ ∈ X ∗.
Is f McShane integrable?

The answer to Musia l’s problem is NO under CH (Di Piazza-Preiss, R.).



The PROBLEM

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG).
Let f : [0,1]→ X be Pettis integrable. Is f McShane integrable?

The answer is YES if

1 X = c0(Γ) or X is superreflexive (Di Piazza-Preiss, 2003).

2 X = L1(µ) (R., 2008).

3 X is Hilbert generated (Deville-R., 2010)

Problem (Musia l)

Let f : [0,1]→ X be scalarly null, i.e. x∗f = 0 a.e. ∀x∗ ∈ X ∗.
Is f McShane integrable?

The answer to Musia l’s problem is NO under CH (Di Piazza-Preiss, R.).



The PROBLEM

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG).
Let f : [0,1]→ X be Pettis integrable. Is f McShane integrable?

The answer is YES if

1 X = c0(Γ) or X is superreflexive (Di Piazza-Preiss, 2003).

2 X = L1(µ) (R., 2008).

3 X is Hilbert generated (Deville-R., 2010)

Problem (Musia l)

Let f : [0,1]→ X be scalarly null, i.e. x∗f = 0 a.e. ∀x∗ ∈ X ∗.
Is f McShane integrable?

The answer to Musia l’s problem is NO under CH (Di Piazza-Preiss, R.).



The PROBLEM

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG).
Let f : [0,1]→ X be Pettis integrable. Is f McShane integrable?

The answer is YES if

1 X = c0(Γ) or X is superreflexive (Di Piazza-Preiss, 2003).

2 X = L1(µ) (R., 2008).

3 X is Hilbert generated (Deville-R., 2010)

Problem (Musia l)

Let f : [0,1]→ X be scalarly null, i.e. x∗f = 0 a.e. ∀x∗ ∈ X ∗.
Is f McShane integrable?

The answer to Musia l’s problem is NO under CH (Di Piazza-Preiss, R.).



The PROBLEM

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG).
Let f : [0,1]→ X be Pettis integrable. Is f McShane integrable?

The answer is YES if

1 X = c0(Γ) or X is superreflexive (Di Piazza-Preiss, 2003).

2 X = L1(µ) (R., 2008).

3 X is Hilbert generated (Deville-R., 2010).

Problem (Musia l)

Let f : [0,1]→ X be scalarly null, i.e. x∗f = 0 a.e. ∀x∗ ∈ X ∗.
Is f McShane integrable?

The answer to Musia l’s problem is NO under CH (Di Piazza-Preiss, R.).



The PROBLEM

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG).
Let f : [0,1]→ X be Pettis integrable. Is f McShane integrable?

The answer is YES if

1 X = c0(Γ) or X is superreflexive (Di Piazza-Preiss, 2003).

2 X = L1(µ) (R., 2008).

3 X is Hilbert generated (Deville-R., 2010)

i.e. there is an operator T : `2(Γ)→ X with T [`2(Γ)] = X .

Problem (Musia l)

Let f : [0,1]→ X be scalarly null, i.e. x∗f = 0 a.e. ∀x∗ ∈ X ∗.
Is f McShane integrable?

The answer to Musia l’s problem is NO under CH (Di Piazza-Preiss, R.).



The PROBLEM

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG).
Let f : [0,1]→ X be Pettis integrable. Is f McShane integrable?

The answer is YES if

1 X = c0(Γ) or X is superreflexive (Di Piazza-Preiss, 2003).

2 X = L1(µ) (R., 2008).

3 X is Hilbert generated (Deville-R., 2010).

Problem (Musia l)

Let f : [0,1]→ X be scalarly null, i.e. x∗f = 0 a.e. ∀x∗ ∈ X ∗.
Is f McShane integrable?

The answer to Musia l’s problem is NO under CH (Di Piazza-Preiss, R.).



The PROBLEM

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG).
Let f : [0,1]→ X be Pettis integrable. Is f McShane integrable?

The answer is YES if

1 X = c0(Γ) or X is superreflexive (Di Piazza-Preiss, 2003).

2 X = L1(µ) (R., 2008).

3 X is Hilbert generated (Deville-R., 2010).

Problem (Musia l)

Let f : [0,1]→ X be scalarly null, i.e. x∗f = 0 a.e. ∀x∗ ∈ X ∗.
Is f McShane integrable?

The answer to Musia l’s problem is NO under CH (Di Piazza-Preiss, R.).



Our main result

Theorem (Avilés-Plebanek-R.)

There exists a WCG Banach space X and a scalarly null function
f : [0,1]→ X that is not McShane integrable.

This answers in the negative the question of Di Piazza and Preiss.

Also, it provides a ZFC negative answer to Musia l’s question.

X can be taken reflexive, using the Davis-Figiel-Johnson-Pelczynski theorem.
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Some ideas of the proof I: measure-filling families

Theorem (Avilés-Plebanek-R.)

There exists a WCG Banach space X and a scalarly null function f : [0,1]→ X that is not McShane integrable.

Proposition

Let F ⊂ 2[0,1] be a hereditary compact family of finite sets. Let

f : [0,1]→ C(F ) f (t)[F ] := 1F (t).

Then C(F ) is WCG and f is scalarly null.

Moreover, f fails to be McShane integrable iff F is measure-filling, i.e.

there exists ε > 0 such that:

for every countable partition [0,1] =
⋃

n Ωn there is F ∈F with

λ
∗
(⋃{

Ωn : F ∩Ωn 6= /0
})

> ε.

Are there measure-filling hereditary compact families on [0,1]?
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Some ideas of the proof II: ε-filling families

Definition

Let ε > 0. A family G of finite subsets of a set S is ε-filling on S iff it is
hereditary and for every finite set A⊂ S there exists B ⊂ A, B ∈ G , such that

|B| ≥ ε|A| .

Example

The family G = {A⊂ N : |A| ≤min(A)} is 1
2 -filling and compact.

III Hence, there are ε-filling compact families on countable sets.

Proposition

If G is ε-filling on S = [0,1], then G is measure-filling.

Open Problem DU (Fremlin)

Are there ε-filling compact families on uncountable sets?
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Some ideas of the proof III: log-filling families

Definition

A family G of finite subsets of a set S is log-filling on S iff it is hereditary and
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Theorem (Fremlin)
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