The McShane integral in weakly compactly generated spaces

Antonio Avilés (Murcia) Grzegorz Plebanek (Wrocław) José Rodríguez (Murcia)

Functional Analysis Valencia 2010

(ロ) (同) (E) (E) (E)

 $f:[0,1] \rightarrow \mathbb{R}$ is **Lebesgue integrable** if and only if there is $I \in \mathbb{R}$ such that:

 $f:[0,1] \to \mathbb{R}$ is **Lebesgue integrable** if and only if there is $I \in \mathbb{R}$ such that:

for each $\epsilon>0$ there is a function $\delta:[0,1]\to \mathbb{R}^+$ such that

$$\left|\sum_{i=1}^n \lambda(A_i)f(t_i) - I\right| < \varepsilon$$

for every finite partition A_1, \ldots, A_n of [0,1] into intervals and every choice of points $t_1, \ldots, t_n \in [0,1]$ satisfying

 $A_i \subset (t_i - \delta(t_i), t_i + \delta(t_i)).$

 $f:[0,1] \to \mathbb{R}$ is **Lebesgue integrable** if and only if there is $I \in \mathbb{R}$ such that:

for each $\epsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left|\sum_{i=1}^n \lambda(A_i)f(t_i) - I\right| < \varepsilon$$

for every finite partition A_1, \ldots, A_n of [0,1] into intervals and every choice of points $t_1, \ldots, t_n \in [0,1]$ satisfying

$$A_i \subset (t_i - \delta(t_i), t_i + \delta(t_i)).$$

▶▶ In this case, I is the Lebesgue integral of f over [0,1].

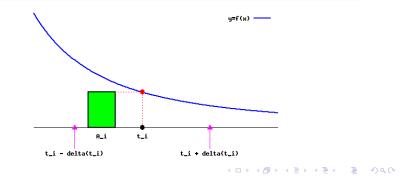
 $f:[0,1] \to \mathbb{R}$ is Lebesgue integrable if and only if there is $I \in \mathbb{R}$ such that: for each $\varepsilon > 0$ there is a function $\delta:[0,1] \to \mathbb{R}^+$ such that

$$\left|\sum_{i=1}^n \lambda(A_i)f(t_i) - I\right| < \varepsilon$$

for every finite partition A_1, \ldots, A_n of [0,1] into intervals and every choice of points $t_1, \ldots, t_n \in [0,1]$ satisfying

$$A_i \subset (t_i - \delta(t_i), t_i + \delta(t_i)).$$

▶▶ In this case, I is the Lebesgue integral of f over [0,1].



 $f:[0,1]\to\mathbb{R}$ is Lebesgue integrable if and only if there is $I\in\mathbb{R}$ such that:

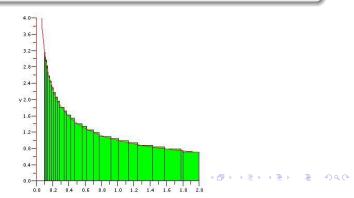
for each $\epsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left|\sum_{i=1}^n \lambda(A_i)f(t_i) - I\right| < \varepsilon$$

for every finite partition A_1, \ldots, A_n of [0,1] into intervals and every choice of points $t_1, \ldots, t_n \in [0,1]$ satisfying

$$A_i \subset (t_i - \delta(t_i), t_i + \delta(t_i)).$$

▶▶ In this case, I is the Lebesgue integral of f over [0,1].



►►► Let X be a Banach space.

Definition (Gordon, 1990)

 $f:[0,1] \rightarrow X$ is **McShane integrable** iff there is a vector $I \in X$ such that:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

 \blacktriangleright Let X be a Banach space.

Definition (Gordon, 1990)

 $f:[0,1] \rightarrow X$ is **McShane integrable** iff there is a vector $I \in X$ such that:

for each $\epsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left\|\sum_{i=1}^n \lambda(A_i)f(t_i) - I\right\| < \varepsilon$$

for every finite partition $A_1, ..., A_n$ of [0,1] into intervals and every choice of points $t_1, ..., t_n \in [0,1]$ satisfying $A_i \subset (t_i - \delta(t_i), t_i + \delta(t_i))$.

・ロ・・日・・日・・日・ ・ 日・ うへつ

 \blacktriangleright Let X be a Banach space.

Definition (Gordon, 1990)

 $f:[0,1] \rightarrow X$ is **McShane integrable** iff there is a vector $I \in X$ such that:

for each $\epsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left\|\sum_{i=1}^n \lambda(A_i)f(t_i) - I\right\| < \varepsilon$$

for every finite partition $A_1, ..., A_n$ of [0,1] into intervals and every choice of points $t_1, ..., t_n \in [0,1]$ satisfying $A_i \subset (t_i - \delta(t_i), t_i + \delta(t_i))$.

Definition (Pettis, 1938)

 $f:[0,1] \rightarrow X$ is **Pettis integrable** iff

 \blacktriangleright Let X be a Banach space.

Definition (Gordon, 1990)

 $f:[0,1] \rightarrow X$ is **McShane integrable** iff there is a vector $I \in X$ such that:

for each $\epsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left\|\sum_{i=1}^n \lambda(A_i)f(t_i) - I\right\| < \varepsilon$$

for every finite partition $A_1, ..., A_n$ of [0,1] into intervals and every choice of points $t_1, ..., t_n \in [0,1]$ satisfying $A_i \subset (t_i - \delta(t_i), t_i + \delta(t_i))$.

Definition (Pettis, 1938)

- $f:[0,1] \rightarrow X$ is **Pettis integrable** iff
 - **1** x^*f is Lebesgue integrable $\forall x^* \in X^*$,

 \blacktriangleright Let X be a Banach space.

Definition (Gordon, 1990)

 $f:[0,1] \rightarrow X$ is **McShane integrable** iff there is a vector $I \in X$ such that:

for each $\epsilon > 0$ there is a function $\delta : [0,1] \to \mathbb{R}^+$ such that

$$\left\|\sum_{i=1}^n \lambda(A_i)f(t_i) - I\right\| < \varepsilon$$

for every finite partition $A_1, ..., A_n$ of [0,1] into intervals and every choice of points $t_1, ..., t_n \in [0,1]$ satisfying $A_i \subset (t_i - \delta(t_i), t_i + \delta(t_i))$.

Definition (Pettis, 1938)

 $f:[0,1] \rightarrow X$ is **Pettis integrable** iff

1 x^*f is Lebesgue integrable $\forall x^* \in X^*$,

2 for each measurable set $A \subset [0,1]$ there is a vector $\int_A f \in X$ such that

$$x^*\left(\int_A f\right) = \int_A x^* f \qquad \forall x^* \in X^*$$

• McShane \equiv Lebesgue when $X = \mathbb{R}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Relationships

For any $f : [0,1] \rightarrow X$ we have:

- McShane \equiv Lebesgue when $X = \mathbb{R}$.
- Bochner \implies McShane \implies Pettis.

- McShane \equiv Lebesgue when $X = \mathbb{R}$.
- Bochner \implies McShane \implies Pettis.
- No one of these arrows can be reversed in general.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- McShane \equiv Lebesgue when $X = \mathbb{R}$.
- Bochner \implies McShane \implies Pettis.
- No one of these arrows can be reversed in general.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

- McShane \equiv Lebesgue when $X = \mathbb{R}$.
- Bochner \implies McShane \implies Pettis.
- No one of these arrows can be reversed in general.

Theorem (Gordon 1990, Fremlin-Mendoza 1994)

If X is **separable**, then for any $f : [0,1] \rightarrow X$ we have:

McShane integrable \iff Pettis integrable.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- McShane \equiv Lebesgue when $X = \mathbb{R}$.
- Bochner \implies McShane \implies Pettis.
- No one of these arrows can be reversed in general.

Theorem (Gordon 1990, Fremlin-Mendoza 1994)

If X is **separable**, then for any $f : [0,1] \rightarrow X$ we have:

McShane integrable \iff Pettis integrable.

• Key: strong measurability \equiv scalar measurability if X is separable.

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG). Let $f : [0,1] \rightarrow X$ be Pettis integrable. Is f McShane integrable?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG). Let $f : [0,1] \rightarrow X$ be Pettis integrable. Is f McShane integrable?

The answer is **YES** if

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG). Let $f : [0,1] \rightarrow X$ be Pettis integrable. Is f McShane integrable?

イロト (部) (日) (日) (日) (日)

The answer is **YES** if

1 $X = c_0(\Gamma)$ or X is superreflexive (Di Piazza-Preiss, 2003).

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG). Let $f : [0,1] \rightarrow X$ be Pettis integrable. Is f McShane integrable?

イロト (部) (日) (日) (日) (日)

The answer is **YES** if

X = c₀(Γ) or X is superreflexive (Di Piazza-Preiss, 2003).
X = L¹(μ) (R., 2008).

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG). Let $f : [0,1] \rightarrow X$ be Pettis integrable. Is f McShane integrable?

The answer is **YES** if

- **1** $X = c_0(\Gamma)$ or X is superreflexive (Di Piazza-Preiss, 2003).
- **2** $X = L^{1}(\mu)$ (R., 2008).
- 3 X is Hilbert generated (Deville-R., 2010).

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG). Let $f : [0,1] \rightarrow X$ be Pettis integrable. Is f McShane integrable?

The answer is **YES** if

- **1** $X = c_0(\Gamma)$ or X is superreflexive (Di Piazza-Preiss, 2003).
- **2** $X = L^{1}(\mu)$ (R., 2008).
- 3 X is Hilbert generated (Deville-R., 2010)

i.e. there is an operator $T : \ell_2(\Gamma) \to X$ with $\overline{T[\ell_2(\Gamma)]} = X$.

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG). Let $f : [0,1] \rightarrow X$ be Pettis integrable. Is f McShane integrable?

The answer is **YES** if

- $X = c_0(\Gamma)$ or X is superreflexive (Di Piazza-Preiss, 2003).
- **2** $X = L^{1}(\mu)$ (R., 2008).
- 3 X is Hilbert generated (Deville-R., 2010).

Problem (Musiał)

Let $f : [0,1] \to X$ be scalarly null, i.e. $x^*f = 0$ a.e. $\forall x^* \in X^*$. Is f McShane integrable?

◆□ → ◆□ → ◆目 → ◆目 → ● ● ● ● ●

Problem (Di Piazza-Preiss, 2003)

Suppose X is weakly compactly generated (WCG). Let $f : [0,1] \rightarrow X$ be Pettis integrable. Is f McShane integrable?

The answer is **YES** if

- $X = c_0(\Gamma)$ or X is superreflexive (Di Piazza-Preiss, 2003).
- **2** $X = L^{1}(\mu)$ (R., 2008).
- 3 X is Hilbert generated (Deville-R., 2010).

Problem (Musiał)

Let $f : [0,1] \to X$ be scalarly null, i.e. $x^*f = 0$ a.e. $\forall x^* \in X^*$. Is f McShane integrable?

The answer to Musial's problem is **NO** under CH (Di Piazza-Preiss, R.).

There exists a **WCG** Banach space X and a scalarly null function $f : [0,1] \rightarrow X$ that is **not** McShane integrable.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

There exists a **WCG** Banach space X and a scalarly null function $f : [0,1] \rightarrow X$ that is **not** McShane integrable.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

• This answers in the negative the question of Di Piazza and Preiss.

There exists a **WCG** Banach space X and a scalarly null function $f : [0,1] \rightarrow X$ that is **not** McShane integrable.

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ○ ○ ○ ○

- This answers in the negative the question of Di Piazza and Preiss.
- Also, it provides a ZFC negative answer to Musiał's question.

There exists a **WCG** Banach space X and a scalarly null function $f : [0,1] \rightarrow X$ that is **not** McShane integrable.

- This answers in the negative the question of Di Piazza and Preiss.
- Also, it provides a ZFC negative answer to Musial's question.

X can be taken **reflexive**, using the Davis-Figiel-Johnson-Pelczynski theorem.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Theorem (Avilés-Plebanek-R.)

There exists a WCG Banach space X and a scalarly null function $f:[0,1] \rightarrow X$ that is not McShane integrable.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ◆ ●

Theorem (Avilés-Plebanek-R.)

There exists a WCG Banach space X and a scalarly null function $f:[0,1] \rightarrow X$ that is not McShane integrable.

Proposition

Let $\mathscr{F} \subset 2^{[0,1]}$ be a hereditary compact family of finite sets.

Theorem (Avilés-Plebanek-R.)

There exists a WCG Banach space X and a scalarly null function $f:[0,1] \rightarrow X$ that is not McShane integrable.

Proposition

Let $\mathscr{F} \subset 2^{[0,1]}$ be a hereditary compact family of finite sets. Let

 $f:[0,1]\to C(\mathscr{F})\qquad f(t)[F]:=\mathbb{1}_F(t).$

Theorem (Avilés-Plebanek-R.)

There exists a WCG Banach space X and a scalarly null function $f:[0,1] \rightarrow X$ that is not McShane integrable.

Proposition

Let $\mathscr{F} \subset 2^{[0,1]}$ be a hereditary compact family of finite sets. Let

 $f:[0,1]\to C(\mathscr{F}) \qquad f(t)[F]:=\mathbb{1}_F(t).$

• Then $C(\mathscr{F})$ is WCG

Theorem (Avilés-Plebanek-R.)

There exists a WCG Banach space X and a scalarly null function $f:[0,1] \rightarrow X$ that is not McShane integrable.

Proposition

Let $\mathscr{F} \subset 2^{[0,1]}$ be a hereditary compact family of finite sets. Let

 $f:[0,1] \to C(\mathscr{F})$ $f(t)[F]:=\mathbb{1}_F(t).$

• Then $C(\mathscr{F})$ is WCG and f is scalarly null.

Theorem (Avilés-Plebanek-R.)

There exists a WCG Banach space X and a scalarly null function $f:[0,1] \rightarrow X$ that is not McShane integrable.

Proposition

Let $\mathscr{F} \subset 2^{[0,1]}$ be a hereditary compact family of finite sets. Let

 $f:[0,1]\to C(\mathscr{F}) \qquad f(t)[F]:=\mathbb{1}_F(t).$

- Then $C(\mathcal{F})$ is WCG and f is scalarly null.
- Moreover, f fails to be McShane integrable iff F is measure-filling, i.e.

Some ideas of the proof I: measure-filling families

Theorem (Avilés-Plebanek-R.)

There exists a WCG Banach space X and a scalarly null function $f:[0,1] \rightarrow X$ that is not McShane integrable.

Proposition

Let $\mathscr{F} \subset 2^{[0,1]}$ be a hereditary compact family of finite sets. Let

 $f:[0,1]\to C(\mathscr{F}) \qquad f(t)[F]:=\mathbb{1}_F(t).$

• Then $C(\mathscr{F})$ is WCG and f is scalarly null.

Moreover, f fails to be McShane integrable iff *F* is measure-filling, i.e. there exists ε > 0 such that:

for every countable partition $[0,1] = \bigcup_n \Omega_n$ there is $F \in \mathscr{F}$ with

$$\lambda^*\left(\bigcup\left\{\Omega_n: F\cap\Omega_n\neq\emptyset\right\}\right)>\varepsilon.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Some ideas of the proof I: measure-filling families

Theorem (Avilés-Plebanek-R.)

There exists a WCG Banach space X and a scalarly null function $f:[0,1] \rightarrow X$ that is not McShane integrable.

Proposition

Let $\mathscr{F} \subset 2^{[0,1]}$ be a hereditary compact family of finite sets. Let

 $f:[0,1]\to C(\mathscr{F}) \qquad f(t)[F]:=\mathbb{1}_F(t).$

• Then $C(\mathcal{F})$ is WCG and f is scalarly null.

Moreover, f fails to be McShane integrable iff *F* is measure-filling, i.e. there exists ε > 0 such that:

for every countable partition $[0,1] = \bigcup_n \Omega_n$ there is $F \in \mathscr{F}$ with

$$\lambda^*\left(\bigcup\left\{\Omega_n: F\cap\Omega_n\neq\emptyset\right\}\right)>\varepsilon.$$

Are there measure-filling hereditary compact families on [0,1]?

Definition

Let $\varepsilon > 0$. A family \mathscr{G} of finite subsets of a set S is ε -filling on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that

 $|B| \geq \varepsilon |A|$.

(ロ) (回) (三) (三) (三) (三) (○)

Definition

Let $\varepsilon > 0$. A family \mathscr{G} of finite subsets of a set S is ε -filling on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that

 $|B| \geq \varepsilon |A|$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Example

The family $\mathscr{G} = \{A \subset \mathbb{N} : |A| \le \min(A)\}$ is $\frac{1}{2}$ -filling and compact.

Some ideas of the proof II: ε -filling families

Definition

Let $\varepsilon > 0$. A family \mathscr{G} of finite subsets of a set S is ε -filling on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that

 $|B| \geq \varepsilon |A|$.

Example

The family $\mathscr{G} = \{A \subset \mathbb{N} : |A| \leq \min(A)\}$ is $\frac{1}{2}$ -filling and compact.

>>> Hence, there are ε -filling compact families on countable sets.

Some ideas of the proof II: ε -filling families

Definition

Let $\varepsilon > 0$. A family \mathscr{G} of finite subsets of a set S is ε -filling on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that

 $|B| \geq \varepsilon |A|$.

Example

The family $\mathscr{G} = \{A \subset \mathbb{N} : |A| \le \min(A)\}$ is $\frac{1}{2}$ -filling and compact.

>>> Hence, there are ε -filling compact families on countable sets.

Proposition

If \mathscr{G} is ε -filling on S = [0, 1], then \mathscr{G} is measure-filling.

Some ideas of the proof II: ε -filling families

Definition

Let $\varepsilon > 0$. A family \mathscr{G} of finite subsets of a set S is ε -filling on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that

 $|B| \geq \varepsilon |A|$.

Example

The family $\mathscr{G} = \{A \subset \mathbb{N} : |A| \le \min(A)\}$ is $\frac{1}{2}$ -filling and compact.

>>> Hence, there are ε -filling compact families on countable sets.

Proposition

If \mathscr{G} is ε -filling on S = [0, 1], then \mathscr{G} is measure-filling.

Open Problem DU (Fremlin)

Are there ε -filling compact families on **uncountable** sets?

Definition

A family \mathscr{G} of finite subsets of a set S is **log-filling** on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that $|B| \ge \log |A|$.

Definition

A family \mathscr{G} of finite subsets of a set S is **log-filling** on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that $|B| \ge \log |A|$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Theorem (Fremlin)

There exist log-filling compact families on sets of cardinality c.

Definition

A family \mathscr{G} of finite subsets of a set S is **log-filling** on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that $|B| \ge \log |A|$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Theorem (Fremlin)

There exist log-filling compact families on sets of cardinality $\mathfrak{c}.$

Proposition

There exist measure-filling hereditary compact families on [0,1].

Definition

A family \mathscr{G} of finite subsets of a set S is **log-filling** on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that $|B| \ge \log |A|$.

Theorem (Fremlin)

There exist log-filling compact families on sets of cardinality c.

Proposition

There exist measure-filling hereditary compact families on [0,1].

Definition

A family \mathscr{G} of finite subsets of a set S is **log-filling** on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that $|B| \ge \log |A|$.

Theorem (Fremlin)

There exist log-filling compact families on sets of cardinality c.

Proposition

There exist measure-filling hereditary compact families on [0,1].

Sketch of proof:

• Consider a partition $[0,1] = \bigcup_{s \in S} Z_s$ with $|S| = \mathfrak{c}$ and $\lambda^*(Z_s) = 1$.

Definition

A family \mathscr{G} of finite subsets of a set S is **log-filling** on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that $|B| \ge \log |A|$.

Theorem (Fremlin)

There exist log-filling compact families on sets of cardinality c.

Proposition

There exist measure-filling hereditary compact families on [0,1].

- Consider a partition $[0,1] = \bigcup_{s \in S} Z_s$ with $|S| = \mathfrak{c}$ and $\lambda^*(Z_s) = 1$.
- Let \mathscr{G} be a **log-filling** compact family of finite subsets of S.

Definition

A family \mathscr{G} of finite subsets of a set S is **log-filling** on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that $|B| \ge \log |A|$.

Theorem (Fremlin)

There exist log-filling compact families on sets of cardinality c.

Proposition

There exist measure-filling hereditary compact families on [0,1].

- Consider a partition $[0,1] = \bigcup_{s \in S} Z_s$ with $|S| = \mathfrak{c}$ and $\lambda^*(Z_s) = 1$.
- Let \mathscr{G} be a log-filling compact family of finite subsets of S.
- Let \mathscr{F} be the family of all finite sets $A \subset [0,1]$ such that

Definition

A family \mathscr{G} of finite subsets of a set S is **log-filling** on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that $|B| \ge \log |A|$.

Theorem (Fremlin)

There exist log-filling compact families on sets of cardinality c.

Proposition

There exist measure-filling hereditary compact families on [0,1].

Sketch of proof:

- Consider a partition $[0,1] = \bigcup_{s \in S} Z_s$ with $|S| = \mathfrak{c}$ and $\lambda^*(Z_s) = 1$.
- Let \mathscr{G} be a **log-filling** compact family of finite subsets of S.
- Let \mathscr{F} be the family of all finite sets $A \subset [0,1]$ such that

• $|A \cap Z_s| \le 1$ for every *s*,

Definition

A family \mathscr{G} of finite subsets of a set S is **log-filling** on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that $|B| \ge \log |A|$.

Theorem (Fremlin)

There exist log-filling compact families on sets of cardinality c.

Proposition

There exist measure-filling hereditary compact families on [0,1].

- Consider a partition $[0,1] = \bigcup_{s \in S} Z_s$ with $|S| = \mathfrak{c}$ and $\lambda^*(Z_s) = 1$.
- Let \mathscr{G} be a log-filling compact family of finite subsets of S.
- Let \mathscr{F} be the family of all finite sets $A \subset [0,1]$ such that
 - $|A \cap Z_s| \le 1$ for every *s*,
 - $\{s \in S : A \cap Z_s \neq \emptyset\} \in \mathscr{G}.$

Definition

A family \mathscr{G} of finite subsets of a set S is **log-filling** on S iff it is hereditary and for every finite set $A \subset S$ there exists $B \subset A$, $B \in \mathscr{G}$, such that $|B| \ge \log |A|$.

Theorem (Fremlin)

There exist log-filling compact families on sets of cardinality c.

Proposition

There exist measure-filling hereditary compact families on [0,1].

- Consider a partition $[0,1] = \bigcup_{s \in S} Z_s$ with $|S| = \mathfrak{c}$ and $\lambda^*(Z_s) = 1$.
- Let \mathscr{G} be a **log-filling** compact family of finite subsets of S.
- Let \mathscr{F} be the family of all finite sets $A \subset [0,1]$ such that
 - $|A \cap Z_s| \le 1$ for every *s*,
 - $\{s \in S : A \cap Z_s \neq \emptyset\} \in \mathscr{G}.$
- Then \mathscr{F} is measure-filling, hereditary and compact.