BIRKHOFF INTEGRAL FOR MULTI-VALUED FUNCTIONS

B. Cascales, J. Rodríguez

University of Murcia (Spain)

 $(X, \parallel \parallel) \equiv$ real Banach space

 $B_X = \{x \in X : \|x\| \le 1\}$

 $X^* \equiv$ (topological) dual of X

 $cwk(X) \equiv$ family of all non-empty convex weakly compact subsets of X

 $ck(X) \equiv$ family of all non-empty convex norm compact subsets of X

 $(\Omega, \Sigma, \mu) \equiv$ complete finite measure space

For $B \subset X$ bounded and $x^* \in X^*$, we write $\delta^*(x^*, B) := \sup\{x^*(x) : x \in B\}.$

Lem. The map $j : cwk(X) \longrightarrow \ell_{\infty}(B_{X^*})$ given by $j(B) := \delta^*(\cdot, B)$ satisfies:

(*i*)
$$j(B + C) = j(B) + j(C)$$

(ii)
$$j(\lambda B) = \lambda j(B)$$

(iii)

$$h(B,C) :=$$

$$\inf\{\eta > 0: B \subset C + \eta B_X, C \subset B + \eta B_X\}$$

$$= \|j(B) - j(C)\|_{\infty}$$

for every $B, C \in cwk(X)$ and every $\lambda \ge 0$.

Def. A multifunction $F : \Omega \longrightarrow cwk(X)$ is said to be Debreu integrable if the single-valued function $j \circ F : \Omega \longrightarrow \ell_{\infty}(B_{X^*})$ is Bochner integrable. The Debreu integral of F is the unique element $(D) \int_{\Omega} F \ d\mu \in cwk(X)$ such that

$$j\Big((D)\int_{\Omega}F \ d\mu\Big) = \int_{\Omega}j\circ F \ d\mu.$$

Def. A multifunction $F : \Omega \longrightarrow cwk(X)$ is said to be Birkhoff integrable if the single-valued function $j \circ F : \Omega \longrightarrow \ell_{\infty}(B_{X^*})$ is Birkhoff integrable. The Birkhoff integral of F is the unique element $(B) \int_{\Omega} F \ d\mu \in cwk(X)$ such that

$$j\Big((B)\int_{\Omega}F \ d\mu\Big) = \int_{\Omega}j\circ F \ d\mu.$$

Prop. Let Y be a Banach space. A function $f: \Omega \longrightarrow Y$ is Birkhoff integrable if, and only if, there is $y \in Y$ with the following property:

for every $\varepsilon > 0$ there is a countable partition Γ_0 of Ω in Σ such that for every countable partition $\Gamma = (A_n)$ of Ω in Σ finer than Γ_0 and any choice $T = (t_n)$ in Γ (i.e., $t_n \in A_n$ for every n)

(i) the series $\sum_{n} \mu(A_n) f(t_n)$ converges unconditionally in Y

(ii)

$$\left\|\sum_{n}\mu(A_{n})f(t_{n})-y\right\|\leq\varepsilon.$$

In this case, $y = \int_{\Omega} f \ d\mu$.

Prop. A multifunction $F : \Omega \longrightarrow cwk(X)$ is Birkhoff integrable if, and only if, there exists $B \in cwk(X)$ with the following property:

for every $\varepsilon > 0$ there is a countable partition Γ_0 of Ω in Σ such that for every countable partition $\Gamma = (A_n)$ of Ω in Σ finer than Γ_0 and any choice $T = (t_n)$ in Γ (i.e., $t_n \in A_n$ for every n)

(i) the series $\sum_{n} \mu(A_n) F(t_n)$ is unconditionally convergent

(ii)

$$h\left(\sum_{n} \mu(A_n) F(t_n), B\right) \leq \varepsilon.$$

In this case, $B = (B) \int_{\Omega} F d\mu$.

Lem. Let (B_n) be a sequence in cwk(X). TFAE:

- (i) $\sum_{n} B_{n}$ is unconditionally convergent, i.e., for every choice $b_{n} \in B_{n}$, $n \in \mathbb{N}$, the series $\sum_{n} b_{n}$ is unconditionally convergent in X;
- (ii) there is $B \in cwk(X)$ with the following property: for every $\varepsilon > 0$ there is a finite set $P \subset \mathbb{N}$ such that $h(\sum_{n \in Q} B_n, B) \leq \varepsilon$ for every finite set $Q \subset \mathbb{N}$ such that $P \subset Q$;
- (iii) $\sum_{n} j(B_n)$ is unconditionally convergent in $\ell_{\infty}(B_{X^*})$.

In this case,

$$\sum_{n} B_n := \left\{ \sum_{n=1}^{\infty} b_n : b_n \in B_n, n \in \mathbb{N} \right\} = B$$
$$j(\sum_{n} B_n) = \sum_{n} j(B_n).$$

(For X separable) F is Pettis integrable if $\delta^*(x^*, F) \in \mathcal{L}^1(\mu)$ for every $x^* \in X^*$ and for every $A \in \Sigma$ there is $(P) \int_A F \ d\mu \in cwk(X)$ such that

$$\delta^*\left(x^*, (P)\int_A F \ d\mu\right) = \int_A \delta^*(x^*, F) \ d\mu$$

for every $x^* \in X^*$.