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X ≡ Banach space

Theorem (Edgar, 1977)

Baire(X ,weak) is the σ -algebra on X generated by X ∗.

Baire(X ,weak)⊂ Borel(X ,weak)⊂ Borel(X ,norm)

In general, the inclusions are strict (Talagrand, 1978).

Borel(X ,weak) = Borel(X ,norm)
if X admits an equivalent Kadec norm (Edgar, 1977).

All σ -algebras coincide if X is separable.
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‖ ·‖ ≡ equivalent norm on X

B(X ,‖ · ‖) = {x ∈ X : ‖x‖ ≤ 1}
‖ · ‖∗ ≡ its dual norm on X ∗

B(X ∗,‖ · ‖∗) is weak∗-separable
m

(X ,‖ · ‖) is isometric to a subspace of (`∞(N),‖ · ‖∞)

If B(X ∗,‖ · ‖∗) is weak∗-separable . . .

Take a weak∗-dense sequence {x∗n}n∈N ⊂ B(X ∗,‖ · ‖∗). Then

B(X ,‖ · ‖) =
⋂
n∈N

{x ∈ X : |x∗n(x)| ≤ 1} ∈ Baire(X ,weak).
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Summarizing . . .

B(X ∗,‖ · ‖∗) is weak∗-separable

⇓
B(X ,‖ · ‖) belongs to Baire(X ,weak)

⇓
X ∗ is weak∗-separable

Question (Okada)

What about the reverse implications ??

Some Banach spaces admitting an equivalent norm with
non weak∗-separable dual unit ball

Spaces failing property (C) (Granero et al., 2003), like `∞(N).
The spaces JL0 and JL2 of (Johnson-Lindenstrauss, 1974).
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Our results

Theorem A

Let X be either `∞(N), JL0 or JL2.
Then there is an equivalent norm ‖ · ‖ on X such that

B(X ,‖ · ‖) does not belong to Baire(X ,weak).

Example

`1(ω1) has weak∗-separable dual and fails property (C), but

Baire(`1(ω1),weak) = Borel(`1(ω1),norm) (Fremlin, 1980).

Theorem B

There is an equivalent norm ‖ · ‖ on `∞(N) such that:

B(`∞(N),‖ · ‖) belongs to Baire(`∞(N),weak).
B(`∞(N)∗,‖ · ‖∗) is not weak∗-separable.
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Measurability of the “norm” of a function taking values in
a Banach space

X ≡ Banach space

f ≡ X -valued function defined on a complete probability space

A consequence of Edgar’s theorem

f is scalarly measurable (i.e. x∗f is measurable ∀x∗ ∈ X ∗)
m

f is Baire(X ,weak)-measurable

‖ · ‖ ≡ equivalent norm on X

If B(X ,‖ · ‖) belongs to Baire(X ,weak) . . .

. . . then ‖f (·)‖ is measurable whenever f is scalarly measurable.
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. . . then ‖f (·)‖ is measurable whenever f is scalarly measurable.



A family of equivalent norms on `∞(N)

B :=
⋃

n∈N{0,1}n countable set

Given u = (u1,u2, . . .) ∈ {0,1}N,

define

Bu := {u|n : n ∈ N} ⊂B, where u|n := (u1, . . . ,un).

Consider the seminorm ‖ · ‖u on `∞(B) defined by

‖x‖u := limsup
n→∞

|x(u|n)|.

Definition (Edgar, see (Talagrand, 1984))

Fix ϕ : {0,1}N → [1,∞) bounded. The formula

‖x‖ϕ := max
{
‖x‖∞, sup

u∈{0,1}N
ϕ(u)‖x‖u

}
defines an equivalent norm on `∞(B).
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Sketch of proof of Theorem A

{0,1}N equipped with the (completion of) the usual product
probability on Borel({0,1}N)

Fact (Edgar, 1979)

f : {0,1}N → `∞(B) given by f (u) := χBu is scalarly measurable.

`∞(B) equipped with ‖ · ‖ϕ for some ϕ : {0,1}N → [1,∞)

Since ‖f (·)‖ϕ = ϕ, we conclude:

If ϕ is non-measurable . . .

. . . then B(`∞(B),‖ · ‖ϕ) does not belong to Baire(`∞(B),weak) !!
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An application

Question (Musial, 1991)

Let X be a Banach space and ‖ · ‖ an equivalent norm on it.
Let f : Ω → X be a Pettis integrable function defined on a complete
probability space (Ω,Σ,µ).
Is there a function g : Ω → X such that:

(i) ‖g(·)‖ is measurable and

(ii) f and g are scalarly equivalent

(i.e. ∀x∗ ∈ X ∗, we have x∗f = x∗g a.e.) ??

The answer is affirmative . . .

. . . if (X ,weak) is measure compact (e.g. Lindelöf). In this case g can
be chosen strongly measurable !! (Edgar, 1979)

Corollary

The answer is negative in general,
even for Banach spaces with property (C) (like JL0 and JL2).
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Sketch of proof of Theorem B

Recall . . .

Theorem B

There is an equivalent norm ‖ · ‖ on `∞(N) such that:

B(`∞(N),‖ · ‖) belongs to Baire(`∞(N),weak).
B(`∞(N)∗,‖ · ‖∗) is not weak∗-separable.

The key for the proof . . .

Proposition

Let ϕ : {0,1}N → [1,∞) be a bounded function. TFAE:

(i) B(`∞(B)∗,‖ · ‖∗ϕ) is weak∗-separable.

(ii) ϕ(u) = 1 ∀u ∈ {0,1}N (i.e. ‖ · ‖ϕ = ‖ · ‖∞).
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Let ϕ : {0,1}N → [1,∞) be a bounded function. TFAE:

(i) B(`∞(B)∗,‖ · ‖∗ϕ) is weak∗-separable.

(ii) ϕ(u) = 1 ∀u ∈ {0,1}N

(i.e. ‖ · ‖ϕ = ‖ · ‖∞).
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