Weak Baire measurability of the balls in a Banach space

José Rodríguez
University of Valencia

35th Winter School in Abstract Analysis
Lhota nad Rohanovem - January 2007

$X \equiv$ Banach space

$X \equiv$ Banach space
Theorem (Edgar, 1977)
Baire $(X$, weak $)$ is the σ-algebra on X generated by X^{*}.

$X \equiv$ Banach space

Theorem (Edgar, 1977)

Baire $(X$, weak $)$ is the σ-algebra on X generated by X^{*}.

Baire (X, weak)

$X \equiv$ Banach space

Theorem (Edgar, 1977)

Baire $(X$, weak $)$ is the σ-algebra on X generated by X^{*}.
$\operatorname{Baire}(X$, weak $) \subset \operatorname{Borel}(X$, weak $)$

$X \equiv$ Banach space

Theorem (Edgar, 1977)

Baire $(X$, weak $)$ is the σ-algebra on X generated by X^{*}.

$$
\operatorname{Baire}(X, \text { weak }) \subset \operatorname{Borel}(X, \text { weak }) \subset \operatorname{Borel}(X, \text { norm })
$$

$X \equiv$ Banach space

Theorem (Edgar, 1977)

Baire $(X$, weak $)$ is the σ-algebra on X generated by X^{*}.

$$
\operatorname{Baire}(X, \text { weak }) \subset \operatorname{Borel}(X, \text { weak }) \subset \operatorname{Borel}(X, \text { norm })
$$

- In general, the inclusions are strict (Talagrand, 1978).
$X \equiv$ Banach space

Theorem (Edgar, 1977)

Baire $(X$, weak $)$ is the σ-algebra on X generated by X^{*}.

$$
\operatorname{Baire}(X, \text { weak }) \subset \operatorname{Borel}(X, \text { weak }) \subset \operatorname{Borel}(X, \text { norm })
$$

- In general, the inclusions are strict (Talagrand, 1978).
- $\operatorname{Borel}(X$, weak $)=\operatorname{Borel}(X$, norm $)$ if X admits an equivalent Kadec norm (Edgar, 1977).
$X \equiv$ Banach space

Theorem (Edgar, 1977)

Baire $(X$, weak $)$ is the σ-algebra on X generated by X^{*}.

$$
\operatorname{Baire}(X, \text { weak }) \subset \operatorname{Borel}(X, \text { weak }) \subset \operatorname{Borel}(X, \text { norm })
$$

- In general, the inclusions are strict (Talagrand, 1978).
- $\operatorname{Borel}(X$, weak $)=\operatorname{Borel}(X$, norm $)$ if X admits an equivalent Kadec norm (Edgar, 1977).
- All σ-algebras coincide if X is separable.
$X \equiv$ Banach space

Theorem (Edgar, 1977)

Baire $(X$, weak $)$ is the σ-algebra on X generated by X^{*}.

$$
\operatorname{Baire}(X, \text { weak }) \subset \operatorname{Borel}(X, \text { weak }) \subset \operatorname{Borel}(X, \text { norm })
$$

- In general, the inclusions are strict (Talagrand, 1978).
- $\operatorname{Borel}(X$, weak $)=\operatorname{Borel}(X$, norm $)$ if X admits an equivalent Kadec norm (Edgar, 1977).
- All σ-algebras coincide if X is separable.
$\|\cdot\| \equiv$ equivalent norm on X
$\|\cdot\| \equiv$ equivalent norm on X

$$
B(X,\|\cdot\|)=\{x \in X:\|x\| \leq 1\}
$$

$\|\cdot\| \equiv$ equivalent norm on X

$$
B(X,\|\cdot\|)=\{x \in X:\|x\| \leq 1\}
$$

$\|\cdot\|^{*} \equiv$ its dual norm on X^{*}
$\|\cdot\| \equiv$ equivalent norm on X

$$
B(X,\|\cdot\|)=\{x \in X:\|x\| \leq 1\}
$$

$\|\cdot\|^{*} \equiv$ its dual norm on X^{*}

$$
B\left(X^{*},\|\cdot\|^{*}\right) \text { is weak*-separable }
$$ I

$(X,\|\cdot\|)$ is isometric to a subspace of $\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|_{\infty}\right)$
$\|\cdot\| \equiv$ equivalent norm on X

$$
B(X,\|\cdot\|)=\{x \in X:\|x\| \leq 1\}
$$

$\|\cdot\|^{*} \equiv$ its dual norm on X^{*}

$$
B\left(X^{*},\|\cdot\|^{*}\right) \text { is weak*-separable }
$$ §

$(X,\|\cdot\|)$ is isometric to a subspace of $\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|_{\infty}\right)$

If $B\left(X^{*},\|\cdot\|^{*}\right)$ is weak ${ }^{*}$-separable
$\|\cdot\| \equiv$ equivalent norm on X

$$
B(X,\|\cdot\|)=\{x \in X:\|x\| \leq 1\}
$$

$\|\cdot\|^{*} \equiv$ its dual norm on X^{*}

$$
B\left(X^{*},\|\cdot\|^{*}\right) \text { is weak*-separable }
$$ I

$(X,\|\cdot\|)$ is isometric to a subspace of $\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|_{\infty}\right)$

If $B\left(X^{*},\|\cdot\|^{*}\right)$ is weak ${ }^{*}$-separable
Take a weak*-dense sequence $\left\{x_{n}^{*}\right\}_{n \in \mathbb{N}} \subset B\left(X^{*},\|\cdot\|^{*}\right)$.
$\|\cdot\| \equiv$ equivalent norm on X

$$
B(X,\|\cdot\|)=\{x \in X:\|x\| \leq 1\}
$$

$\|\cdot\|^{*} \equiv$ its dual norm on X^{*}

$$
B\left(X^{*},\|\cdot\|^{*}\right) \text { is weak*-separable }
$$

$$
\Uparrow
$$

$(X,\|\cdot\|)$ is isometric to a subspace of $\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|_{\infty}\right)$

If $B\left(X^{*},\|\cdot\|^{*}\right)$ is weak ${ }^{*}$-separable
Take a weak ${ }^{*}$-dense sequence $\left\{x_{n}^{*}\right\}_{n \in \mathbb{N}} \subset B\left(X^{*},\|\cdot\|^{*}\right)$. Then

$$
B(X,\|\cdot\|)=\bigcap_{n \in \mathbb{N}}\left\{x \in X:\left|x_{n}^{*}(x)\right| \leq 1\right\}
$$

$\|\cdot\| \equiv$ equivalent norm on X

$$
B(X,\|\cdot\|)=\{x \in X:\|x\| \leq 1\}
$$

$\|\cdot\|^{*} \equiv$ its dual norm on X^{*}

$$
B\left(X^{*},\|\cdot\|^{*}\right) \text { is weak*-separable }
$$

$$
\Uparrow
$$

$(X,\|\cdot\|)$ is isometric to a subspace of $\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|_{\infty}\right)$

If $B\left(X^{*},\|\cdot\|^{*}\right)$ is weak ${ }^{*}$-separable
Take a weak ${ }^{*}$-dense sequence $\left\{x_{n}^{*}\right\}_{n \in \mathbb{N}} \subset B\left(X^{*},\|\cdot\|^{*}\right)$. Then

$$
B(X,\|\cdot\|)=\bigcap_{n \in \mathbb{N}}\left\{x \in X:\left|x_{n}^{*}(x)\right| \leq 1\right\} \in \text { Baire(} X, \text { weak) }
$$

Summarizing ...

$$
B\left(X^{*},\|\cdot\|^{*}\right) \text { is weak*-separable }
$$

Summarizing ...

$B\left(X^{*},\|\cdot\|^{*}\right)$ is weak ${ }^{*}$-separable
\Downarrow
$B(X,\|\cdot\|)$ belongs to $\operatorname{Baire}(X$, weak $)$

Summarizing

$B\left(X^{*},\|\cdot\|^{*}\right)$ is weak*-separable
\Downarrow
$B(X,\|\cdot\|)$ belongs to Baire $(X$, weak $)$
\Downarrow
X^{*} is weak ${ }^{*}$-separable

Summarizing

$$
\begin{gathered}
B\left(X^{*},\|\cdot\|^{*}\right) \text { is weak*-separable } \\
\Downarrow \\
B(X,\|\cdot\|) \text { belongs to } \operatorname{Baire}(X, \text { weak }) \\
\Downarrow \\
X^{*} \text { is } \text { weak }^{*} \text {-separable }
\end{gathered}
$$

Question (Okada)

What about the reverse implications ??

Summarizing . . .

$$
\begin{gathered}
B\left(X^{*},\|\cdot\|^{*}\right) \text { is weak*-separable } \\
\Downarrow \\
B(X,\|\cdot\|) \text { belongs to Baire }(X, \text { weak }) \\
\Downarrow \\
X^{*} \text { is } \text { weak }^{*} \text {-separable }
\end{gathered}
$$

Question (Okada)

What about the reverse implications ??

Some Banach spaces admitting an equivalent norm with non weak*-separable dual unit ball

Summarizing . . .

$$
\begin{gathered}
B\left(X^{*},\|\cdot\|^{*}\right) \text { is weak*-separable } \\
\Downarrow \\
B(X,\|\cdot\|) \text { belongs to Baire }(X, \text { weak }) \\
\Downarrow \\
X^{*} \text { is } \text { weak }^{*} \text {-separable }
\end{gathered}
$$

Question (Okada)

What about the reverse implications ??

Some Banach spaces admitting an equivalent norm with non weak*-separable dual unit ball

- Spaces failing property (C) (Granero et al., 2003),

Summarizing . . .

$$
\begin{gathered}
B\left(X^{*},\|\cdot\|^{*}\right) \text { is weak*-separable } \\
\Downarrow \\
B(X,\|\cdot\|) \text { belongs to Baire }(X, \text { weak }) \\
\Downarrow \\
X^{*} \text { is } \text { weak }^{*} \text {-separable }
\end{gathered}
$$

Question (Okada)

What about the reverse implications ??

Some Banach spaces admitting an equivalent norm with non weak*-separable dual unit ball

- Spaces failing property (C) (Granero et al., 2003), like $\ell^{\infty}(\mathbb{N})$.

Summarizing . . .

$$
\begin{gathered}
B\left(X^{*},\|\cdot\|^{*}\right) \text { is weak*-separable } \\
\Downarrow \\
B(X,\|\cdot\|) \text { belongs to Baire }(X, \text { weak }) \\
\Downarrow \\
X^{*} \text { is } \text { weak }^{*} \text {-separable }
\end{gathered}
$$

Question (Okada)

What about the reverse implications ??

Some Banach spaces admitting an equivalent norm with non weak*-separable dual unit ball

- Spaces failing property (C) (Granero et al., 2003), like $\ell^{\infty}(\mathbb{N})$.
- The spaces $J L_{0}$ and $J L_{2}$ of (Johnson-Lindenstrauss, 1974).

Summarizing . . .

$$
\begin{gathered}
B\left(X^{*},\|\cdot\|^{*}\right) \text { is weak*-separable } \\
\Downarrow \\
B(X,\|\cdot\|) \text { belongs to Baire }(X, \text { weak }) \\
\Downarrow \\
X^{*} \text { is } \text { weak }^{*} \text {-separable }
\end{gathered}
$$

Question (Okada)

What about the reverse implications ??

Some Banach spaces admitting an equivalent norm with non weak*-separable dual unit ball

- Spaces failing property (C) (Granero et al., 2003), like $\ell^{\infty}(\mathbb{N})$.
- The spaces $J L_{0}$ and $J L_{2}$ of (Johnson-Lindenstrauss, 1974).

Our results

Theorem A

Our results

Theorem A

Let X be either $\ell^{\infty}(\mathbb{N})$,

Our results

Theorem A

Let X be either $\ell^{\infty}(\mathbb{N})$, $J L_{0}$

Our results

Theorem A

Let X be either $\ell^{\infty}(\mathbb{N}), J L_{0}$ or $J L_{2}$.

Our results

Theorem A

Let X be either $\ell^{\infty}(\mathbb{N}), J L_{0}$ or $J L_{2}$.
Then there is an equivalent norm $\|\cdot\|$ on X such that
$B(X,\|\cdot\|)$ does not belong to $\operatorname{Baire}(X$, weak $)$.

Our results

Theorem A

Let X be either $\ell^{\infty}(\mathbb{N}), J L_{0}$ or $J L_{2}$.
Then there is an equivalent norm $\|\cdot\|$ on X such that $B(X,\|\cdot\|)$ does not belong to Baire $(X$, weak $)$.

Example

$\ell^{1}\left(\omega_{1}\right)$ has weak ${ }^{*}$-separable dual and fails property (C),

Our results

Theorem A

Let X be either $\ell^{\infty}(\mathbb{N}), J L_{0}$ or $J L_{2}$.
Then there is an equivalent norm $\|\cdot\|$ on X such that

$$
B(X,\|\cdot\|) \text { does not belong to } \operatorname{Baire}(X, \text { weak }) .
$$

Example

$\ell^{1}\left(\omega_{1}\right)$ has weak*-separable dual and fails property (C), but

$$
\operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right), \text { weak }\right)=\operatorname{Borel}\left(\ell^{1}\left(\omega_{1}\right), \text { norm }\right) \quad(\text { Fremlin, } 1980)
$$

Our results

Theorem A

Let X be either $\ell^{\infty}(\mathbb{N}), J L_{0}$ or $J L_{2}$.
Then there is an equivalent norm $\|\cdot\|$ on X such that

$$
B(X,\|\cdot\|) \text { does not belong to Baire }(X, \text { weak }) \text {. }
$$

Example

$\ell^{1}\left(\omega_{1}\right)$ has weak*-separable dual and fails property (C), but $\operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right)\right.$, weak $)=\operatorname{Borel}\left(\ell^{1}\left(\omega_{1}\right)\right.$, norm $) \quad($ Fremlin, 1980 $)$.

Theorem B

Our results

Theorem A

Let X be either $\ell^{\infty}(\mathbb{N}), J L_{0}$ or $J L_{2}$.
Then there is an equivalent norm $\|\cdot\|$ on X such that

$$
B(X,\|\cdot\|) \text { does not belong to } \operatorname{Baire}(X, \text { weak }) .
$$

Example

$\ell^{1}\left(\omega_{1}\right)$ has weak*-separable dual and fails property (C), but $\operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right)\right.$, weak $)=\operatorname{Borel}\left(\ell^{1}\left(\omega_{1}\right)\right.$, norm $) \quad($ Fremlin, 1980 $)$.

Theorem B

There is an equivalent norm $\|\cdot\|$ on $\ell^{\infty}(\mathbb{N})$ such that:

Our results

Theorem A

Let X be either $\ell^{\infty}(\mathbb{N}), J L_{0}$ or $J L_{2}$.
Then there is an equivalent norm $\|\cdot\|$ on X such that

$$
B(X,\|\cdot\|) \text { does not belong to } \operatorname{Baire}(X, \text { weak })
$$

Example

$\ell^{1}\left(\omega_{1}\right)$ has weak*-separable dual and fails property (C), but $\operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right)\right.$, weak $)=\operatorname{Borel}\left(\ell^{1}\left(\omega_{1}\right)\right.$, norm $) \quad($ Fremlin, 1980 $)$.

Theorem B

There is an equivalent norm $\|\cdot\|$ on $\ell^{\infty}(\mathbb{N})$ such that:

- $B\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|\right)$ belongs to Baire $\left(\ell^{\infty}(\mathbb{N})\right.$, weak $)$.

Our results

Theorem A

Let X be either $\ell^{\infty}(\mathbb{N}), J L_{0}$ or $J L_{2}$.
Then there is an equivalent norm $\|\cdot\|$ on X such that $B(X,\|\cdot\|)$ does not belong to $\operatorname{Baire}(X$, weak $)$.

Example

$\ell^{1}\left(\omega_{1}\right)$ has weak*-separable dual and fails property (C), but $\operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right)\right.$, weak $)=\operatorname{Borel}\left(\ell^{1}\left(\omega_{1}\right)\right.$, norm $) \quad($ Fremlin, 1980 $)$.

Theorem B

There is an equivalent norm $\|\cdot\|$ on $\ell^{\infty}(\mathbb{N})$ such that:

- $B\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|\right)$ belongs to Baire $\left(\ell^{\infty}(\mathbb{N})\right.$, weak $)$.
- $B\left(\ell^{\infty}(\mathbb{N})^{*},\|\cdot\|^{*}\right)$ is not weak*-separable.

Our results

Theorem A

Let X be either $\ell^{\infty}(\mathbb{N}), J L_{0}$ or $J L_{2}$.
Then there is an equivalent norm $\|\cdot\|$ on X such that
$B(X,\|\cdot\|)$ does not belong to Baire $(X$, weak $)$.

Example

$\ell^{1}\left(\omega_{1}\right)$ has weak*-separable dual and fails property (C), but $\operatorname{Baire}\left(\ell^{1}\left(\omega_{1}\right)\right.$, weak $)=\operatorname{Borel}\left(\ell^{1}\left(\omega_{1}\right)\right.$, norm $) \quad($ Fremlin, 1980 $)$.

Theorem B

There is an equivalent norm $\|\cdot\|$ on $\ell^{\infty}(\mathbb{N})$ such that:

- $B\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|\right)$ belongs to Baire $\left(\ell^{\infty}(\mathbb{N})\right.$, weak $)$.
- $B\left(\ell^{\infty}(\mathbb{N})^{*},\|\cdot\|^{*}\right)$ is not weak*-separable.

Measurability of the "norm" of a function taking values in a Banach space

Measurability of the "norm" of a function taking values in a Banach space

$X \equiv$ Banach space

Measurability of the "norm" of a function taking values in a Banach space

$X \equiv$ Banach space
$f \equiv \underline{X}$-valued function defined on a complete probability space

Measurability of the "norm" of a function taking values in a Banach space

$X \equiv$ Banach space
$f \equiv \underline{X}$-valued function defined on a complete probability space
A consequence of Edgar's theorem
f is scalarly measurable

Measurability of the "norm" of a function taking values in a Banach space

$X \equiv$ Banach space
$f \equiv \underline{X}$-valued function defined on a complete probability space
A consequence of Edgar's theorem
f is scalarly measurable (i.e. $x^{*} f$ is measurable $\forall x^{*} \in X^{*}$)

Measurability of the "norm" of a function taking values in

 a Banach space$X \equiv$ Banach space
$f \equiv \underline{X}$-valued function defined on a complete probability space
A consequence of Edgar's theorem
f is scalarly measurable (i.e. $x^{*} f$ is measurable $\forall x^{*} \in X^{*}$)
f is Baire (X, weak)-measurable

Measurability of the "norm" of a function taking values in a Banach space

$X \equiv$ Banach space
$f \equiv \underline{X}$-valued function defined on a complete probability space

A consequence of Edgar's theorem

f is scalarly measurable (i.e. $x^{*} f$ is measurable $\forall x^{*} \in X^{*}$)
f is Baire (X, weak)-measurable
$\|\cdot\| \equiv$ equivalent norm on X

Measurability of the "norm" of a function taking values in

 a Banach space$X \equiv$ Banach space
$f \equiv \underline{X}$-valued function defined on a complete probability space
A consequence of Edgar's theorem
f is scalarly measurable (i.e. $x^{*} f$ is measurable $\forall x^{*} \in X^{*}$)
f is Baire (X, weak)-measurable
$\|\cdot\| \equiv$ equivalent norm on X
If $B(X,\|\cdot\|)$ belongs to Baire $(X$, weak $)$

Measurability of the "norm" of a function taking values in a Banach space

$X \equiv$ Banach space
$f \equiv \underline{X}$-valued function defined on a complete probability space
A consequence of Edgar's theorem
f is scalarly measurable (i.e. $x^{*} f$ is measurable $\forall x^{*} \in X^{*}$)
f is Baire $(X$, weak)-measurable
$\|\cdot\| \equiv$ equivalent norm on X
If $B(X,\|\cdot\|)$ belongs to Baire $(X$, weak $)$
... then $\|f(\cdot)\|$ is measurable whenever f is scalarly measurable.

A family of equivalent norms on $\ell^{\infty}(\mathbb{N})$

A family of equivalent norms on $\ell^{\infty}(\mathbb{N})$

- $\mathscr{B}:=\bigcup_{n \in \mathbb{N}}\{0,1\}^{n}$ countable set

A family of equivalent norms on $\ell^{\infty}(\mathbb{N})$

- $\mathscr{B}:=\bigcup_{n \in \mathbb{N}}\{0,1\}^{n}$ countable set
- Given $u=\left(u_{1}, u_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$,

A family of equivalent norms on $\ell^{\infty}(\mathbb{N})$

- $\mathscr{B}:=\bigcup_{n \in \mathbb{N}}\{0,1\}^{n}$ countable set
- Given $u=\left(u_{1}, u_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$, define

$$
\mathscr{B}_{u}:=\{u \mid n: n \in \mathbb{N}\} \subset \mathscr{B},
$$

A family of equivalent norms on $\ell^{\infty}(\mathbb{N})$

- $\mathscr{B}:=\bigcup_{n \in \mathbb{N}}\{0,1\}^{n}$ countable set
- Given $u=\left(u_{1}, u_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$, define

$$
\mathscr{B}_{u}:=\{u \mid n: n \in \mathbb{N}\} \subset \mathscr{B}, \quad \text { where } u \mid n:=\left(u_{1}, \ldots, u_{n}\right) .
$$

A family of equivalent norms on $\ell^{\infty}(\mathbb{N})$

- $\mathscr{B}:=\bigcup_{n \in \mathbb{N}}\{0,1\}^{n}$ countable set
- Given $u=\left(u_{1}, u_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$, define

$$
\mathscr{B}_{u}:=\{u \mid n: n \in \mathbb{N}\} \subset \mathscr{B}, \quad \text { where } u \mid n:=\left(u_{1}, \ldots, u_{n}\right) .
$$

Consider the seminorm $\|\cdot\|_{u}$ on $\ell^{\infty}(\mathscr{B})$ defined by

A family of equivalent norms on $\ell^{\infty}(\mathbb{N})$

- $\mathscr{B}:=\bigcup_{n \in \mathbb{N}}\{0,1\}^{n}$ countable set
- Given $u=\left(u_{1}, u_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$, define

$$
\mathscr{B}_{u}:=\{u \mid n: n \in \mathbb{N}\} \subset \mathscr{B}, \quad \text { where } u \mid n:=\left(u_{1}, \ldots, u_{n}\right) .
$$

Consider the seminorm $\|\cdot\|_{u}$ on $\ell^{\infty}(\mathscr{B})$ defined by

$$
\|x\|_{u}:=\limsup _{n \rightarrow \infty}|x(u \mid n)|
$$

A family of equivalent norms on $\ell^{\infty}(\mathbb{N})$

- $\mathscr{B}:=\bigcup_{n \in \mathbb{N}}\{0,1\}^{n}$ countable set
- Given $u=\left(u_{1}, u_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$, define

$$
\mathscr{B}_{u}:=\{u \mid n: n \in \mathbb{N}\} \subset \mathscr{B}, \quad \text { where } u \mid n:=\left(u_{1}, \ldots, u_{n}\right) \text {. }
$$

Consider the seminorm $\|\cdot\|_{u}$ on $\ell^{\infty}(\mathscr{B})$ defined by

$$
\|x\|_{u}:=\limsup _{n \rightarrow \infty}|x(u \mid n)| \text {. }
$$

Definition (Edgar, see (Talagrand, 1984))

A family of equivalent norms on $\ell^{\infty}(\mathbb{N})$

- $\mathscr{B}:=\bigcup_{n \in \mathbb{N}}\{0,1\}^{n}$ countable set
- Given $u=\left(u_{1}, u_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$, define

$$
\mathscr{B}_{u}:=\{u \mid n: n \in \mathbb{N}\} \subset \mathscr{B}, \quad \text { where } u \mid n:=\left(u_{1}, \ldots, u_{n}\right) \text {. }
$$

Consider the seminorm $\|\cdot\|_{u}$ on $\ell^{\infty}(\mathscr{B})$ defined by

$$
\|x\|_{u}:=\underset{n \rightarrow \infty}{\limsup }|x(u \mid n)| .
$$

Definition (Edgar, see (Talagrand, 1984))

Fix $\varphi:\{0,1\}^{\mathbb{N}} \rightarrow[1, \infty)$ bounded.

A family of equivalent norms on $\ell^{\infty}(\mathbb{N})$

- $\mathscr{B}:=\bigcup_{n \in \mathbb{N}}\{0,1\}^{n}$ countable set
- Given $u=\left(u_{1}, u_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$, define

$$
\mathscr{B}_{u}:=\{u \mid n: n \in \mathbb{N}\} \subset \mathscr{B}, \quad \text { where } u \mid n:=\left(u_{1}, \ldots, u_{n}\right) \text {. }
$$

Consider the seminorm $\|\cdot\|_{u}$ on $\ell^{\infty}(\mathscr{B})$ defined by

$$
\|x\|_{u}:=\underset{n \rightarrow \infty}{\limsup }|x(u \mid n)| .
$$

Definition (Edgar, see (Talagrand, 1984))

Fix $\varphi:\{0,1\}^{\mathbb{N}} \rightarrow[1, \infty)$ bounded. The formula

$$
\|x\|_{\varphi}:=\max \left\{\|x\|_{\infty}, \sup _{u \in\{0,1\}^{\mathbb{N}}} \varphi(u)\|x\|_{u}\right\}
$$

defines an equivalent norm on $\ell^{\infty}(\mathscr{B})$.

Sketch of proof of Theorem A

Sketch of proof of Theorem A

$\{0,1\}^{\mathbb{N}}$ equipped with the (completion of) the usual product probability on $\operatorname{Borel}\left(\{0,1\}^{\mathbb{N}}\right)$

Sketch of proof of Theorem A

$\{0,1\}^{\mathbb{N}}$ equipped with the (completion of) the usual product probability on $\operatorname{Borel}\left(\{0,1\}^{\mathbb{N}}\right)$

Fact (Edgar, 1979)

$f:\{0,1\}^{\mathbb{N}} \rightarrow \ell^{\infty}(\mathscr{B})$ given by $f(u):=\chi_{\mathscr{B}_{u}}$ is scalarly measurable.

Sketch of proof of Theorem A

$\{0,1\}^{\mathbb{N}}$ equipped with the (completion of) the usual product probability on $\operatorname{Borel}\left(\{0,1\}^{\mathbb{N}}\right)$

Fact (Edgar, 1979)

$f:\{0,1\}^{\mathbb{N}} \rightarrow \ell^{\infty}(\mathscr{B})$ given by $f(u):=\chi_{\mathscr{B}_{u}}$ is scalarly measurable.
$\ell^{\infty}(\mathscr{B})$ equipped with $\|\cdot\|_{\varphi}$ for some $\varphi:\{0,1\}^{\mathbb{N}} \rightarrow[1, \infty)$

Sketch of proof of Theorem A

$\{0,1\}^{\mathbb{N}}$ equipped with the (completion of) the usual product probability on $\operatorname{Borel}\left(\{0,1\}^{\mathbb{N}}\right)$

Fact (Edgar, 1979)

$f:\{0,1\}^{\mathbb{N}} \rightarrow \ell^{\infty}(\mathscr{B})$ given by $f(u):=\chi_{\mathscr{B}_{u}}$ is scalarly measurable.
$\ell^{\infty}(\mathscr{B})$ equipped with $\|\cdot\|_{\varphi}$ for some $\varphi:\{0,1\}^{\mathbb{N}} \rightarrow[1, \infty)$
Since $\|f(\cdot)\|_{\varphi}=\varphi$, we conclude:

Sketch of proof of Theorem A

$\{0,1\}^{\mathbb{N}}$ equipped with the (completion of) the usual product probability on $\operatorname{Borel}\left(\{0,1\}^{\mathbb{N}}\right)$

Fact (Edgar, 1979)

$f:\{0,1\}^{\mathbb{N}} \rightarrow \ell^{\infty}(\mathscr{B})$ given by $f(u):=\chi_{\mathscr{B}_{u}}$ is scalarly measurable.
$\ell^{\infty}(\mathscr{B})$ equipped with $\|\cdot\|_{\varphi}$ for some $\varphi:\{0,1\}^{\mathbb{N}} \rightarrow[1, \infty)$

Since $\|f(\cdot)\|_{\varphi}=\varphi$, we conclude:
If φ is non-measurable ...

Sketch of proof of Theorem A

$\{0,1\}^{\mathbb{N}}$ equipped with the (completion of) the usual product probability on $\operatorname{Borel}\left(\{0,1\}^{\mathbb{N}}\right)$

Fact (Edgar, 1979)

$f:\{0,1\}^{\mathbb{N}} \rightarrow \ell^{\infty}(\mathscr{B})$ given by $f(u):=\chi_{\mathscr{B}_{u}}$ is scalarly measurable.
$\ell^{\infty}(\mathscr{B})$ equipped with $\|\cdot\|_{\varphi}$ for some $\varphi:\{0,1\}^{\mathbb{N}} \rightarrow[1, \infty)$

Since $\|f(\cdot)\|_{\varphi}=\varphi$, we conclude:

If φ is non-measurable ...
\ldots then $B\left(\ell^{\infty}(\mathscr{B}),\|\cdot\|_{\varphi}\right)$ does not belong to $\operatorname{Baire}\left(\ell^{\infty}(\mathscr{B})\right.$, weak $)!!$

An application

Question (Musial, 1991)

An application

Question (Musial, 1991)
Let X be a Banach space and $\|\cdot\|$ an equivalent norm on it.

An application

Question (Musial, 1991)

Let X be a Banach space and $\|\cdot\|$ an equivalent norm on it.
Let $f: \Omega \rightarrow X$ be a Pettis integrable function defined on a complete probability space (Ω, Σ, μ).

An application

Question (Musial, 1991)

Let X be a Banach space and $\|\cdot\|$ an equivalent norm on it.
Let $f: \Omega \rightarrow X$ be a Pettis integrable function defined on a complete probability space (Ω, Σ, μ).
Is there a function $g: \Omega \rightarrow X$ such that:

An application

Question (Musial, 1991)

Let X be a Banach space and $\|\cdot\|$ an equivalent norm on it.
Let $f: \Omega \rightarrow X$ be a Pettis integrable function defined on a complete probability space (Ω, Σ, μ).
Is there a function $g: \Omega \rightarrow X$ such that:
(i) $\|g(\cdot)\|$ is measurable and

An application

Question (Musial, 1991)

Let X be a Banach space and $\|\cdot\|$ an equivalent norm on it.
Let $f: \Omega \rightarrow X$ be a Pettis integrable function defined on a complete probability space (Ω, Σ, μ).
Is there a function $g: \Omega \rightarrow X$ such that:
(i) $\|g(\cdot)\|$ is measurable and
(ii) f and g are scalarly equivalent

An application

Question (Musial, 1991)

Let X be a Banach space and $\|\cdot\|$ an equivalent norm on it.
Let $f: \Omega \rightarrow X$ be a Pettis integrable function defined on a complete probability space (Ω, Σ, μ).
Is there a function $g: \Omega \rightarrow X$ such that:
(i) $\|g(\cdot)\|$ is measurable and
(ii) f and g are scalarly equivalent (i.e. $\forall x^{*} \in X^{*}$, we have $x^{*} f=x^{*} g$ a.e.)

An application

Question (Musial, 1991)

Let X be a Banach space and $\|\cdot\|$ an equivalent norm on it.
Let $f: \Omega \rightarrow X$ be a Pettis integrable function defined on a complete probability space (Ω, Σ, μ).
Is there a function $g: \Omega \rightarrow X$ such that:
(i) $\|g(\cdot)\|$ is measurable and
(ii) f and g are scalarly equivalent (i.e. $\forall x^{*} \in X^{*}$, we have $x^{*} f=x^{*} g$ a.e.) ??

An application

Question (Musial, 1991)

Let X be a Banach space and $\|\cdot\|$ an equivalent norm on it. Let $f: \Omega \rightarrow X$ be a Pettis integrable function defined on a complete probability space (Ω, Σ, μ).
Is there a function $g: \Omega \rightarrow X$ such that:
(i) $\|g(\cdot)\|$ is measurable and
(ii) f and g are scalarly equivalent (i.e. $\forall x^{*} \in X^{*}$, we have $x^{*} f=x^{*} g$ a.e.) ??

The answer is affirmative ...

An application

Question (Musial, 1991)

Let X be a Banach space and $\|\cdot\|$ an equivalent norm on it. Let $f: \Omega \rightarrow X$ be a Pettis integrable function defined on a complete probability space (Ω, Σ, μ).
Is there a function $g: \Omega \rightarrow X$ such that:
(i) $\|g(\cdot)\|$ is measurable and
(ii) f and g are scalarly equivalent (i.e. $\forall x^{*} \in X^{*}$, we have $x^{*} f=x^{*} g$ a.e.) ??

The answer is affirmative

... if (X, weak) is measure compact (e.g. Lindelöf).

An application

Question (Musial, 1991)

Let X be a Banach space and $\|\cdot\|$ an equivalent norm on it. Let $f: \Omega \rightarrow X$ be a Pettis integrable function defined on a complete probability space (Ω, Σ, μ).
Is there a function $g: \Omega \rightarrow X$ such that:
(i) $\|g(\cdot)\|$ is measurable and
(ii) f and g are scalarly equivalent (i.e. $\forall x^{*} \in X^{*}$, we have $x^{*} f=x^{*} g$ a.e.) ??

The answer is affirmative

... if (X, weak) is measure compact (e.g. Lindelöf). In this case g can be chosen strongly measurable !! (Edgar, 1979)

An application

Question (Musial, 1991)

Let X be a Banach space and $\|\cdot\|$ an equivalent norm on it. Let $f: \Omega \rightarrow X$ be a Pettis integrable function defined on a complete probability space (Ω, Σ, μ).
Is there a function $g: \Omega \rightarrow X$ such that:
(i) $\|g(\cdot)\|$ is measurable and
(ii) f and g are scalarly equivalent (i.e. $\forall x^{*} \in X^{*}$, we have $x^{*} f=x^{*} g$ a.e.) ??

The answer is affirmative

... if (X, weak) is measure compact (e.g. Lindelöf). In this case g can be chosen strongly measurable !! (Edgar, 1979)

Corollary

The answer is negative in general,

An application

Question (Musial, 1991)

Let X be a Banach space and $\|\cdot\|$ an equivalent norm on it. Let $f: \Omega \rightarrow X$ be a Pettis integrable function defined on a complete probability space (Ω, Σ, μ).
Is there a function $g: \Omega \rightarrow X$ such that:
(i) $\|g(\cdot)\|$ is measurable and
(ii) f and g are scalarly equivalent (i.e. $\forall x^{*} \in X^{*}$, we have $x^{*} f=x^{*} g$ a.e.) ??

The answer is affirmative

... if (X, weak) is measure compact (e.g. Lindelöf). In this case g can be chosen strongly measurable !! (Edgar, 1979)

Corollary

The answer is negative in general, even for Banach spaces with property (C)

An application

Question (Musial, 1991)

Let X be a Banach space and $\|\cdot\|$ an equivalent norm on it. Let $f: \Omega \rightarrow X$ be a Pettis integrable function defined on a complete probability space (Ω, Σ, μ).
Is there a function $g: \Omega \rightarrow X$ such that:
(i) $\|g(\cdot)\|$ is measurable and
(ii) f and g are scalarly equivalent (i.e. $\forall x^{*} \in X^{*}$, we have $x^{*} f=x^{*} g$ a.e.) ??

The answer is affirmative

... if (X, weak) is measure compact (e.g. Lindelöf). In this case g can be chosen strongly measurable !! (Edgar, 1979)

Corollary

The answer is negative in general, even for Banach spaces with property (C) (like $J L_{0}$ and $J L_{2}$).

Sketch of proof of Theorem B

Sketch of proof of Theorem B

Recall ...
Theorem B
There is an equivalent norm $\|\cdot\|$ on $\ell^{\infty}(\mathbb{N})$ such that:

- $B\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|\right)$ belongs to Baire $\left(\ell^{\infty}(\mathbb{N})\right.$, weak).
- $B\left(\ell^{\infty}(\mathbb{N})^{*},\|\cdot\|^{*}\right)$ is not weak ${ }^{*}$-separable.

Sketch of proof of Theorem B

Recall ...
Theorem B
There is an equivalent norm $\|\cdot\|$ on $\ell^{\infty}(\mathbb{N})$ such that:

- $B\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|\right)$ belongs to Baire $\left(\ell^{\infty}(\mathbb{N})\right.$, weak $)$.
- $B\left(\ell^{\infty}(\mathbb{N})^{*},\|\cdot\|^{*}\right)$ is not weak ${ }^{*}$-separable.

The key for the proof...

Sketch of proof of Theorem B

Recall ...

Theorem B

There is an equivalent norm $\|\cdot\|$ on $\ell^{\infty}(\mathbb{N})$ such that:

- $B\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|\right)$ belongs to Baire $\left(\ell^{\infty}(\mathbb{N})\right.$, weak $)$.
- $B\left(\ell^{\infty}(\mathbb{N})^{*},\|\cdot\|^{*}\right)$ is not weak ${ }^{*}$-separable.

The key for the proof...

Proposition

Let $\varphi:\{0,1\}^{\mathbb{N}} \rightarrow[1, \infty)$ be a bounded function. TFAE:

Sketch of proof of Theorem B

Recall ...

Theorem B

There is an equivalent norm $\|\cdot\|$ on $\ell^{\infty}(\mathbb{N})$ such that:

- $B\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|\right)$ belongs to Baire $\left(\ell^{\infty}(\mathbb{N})\right.$, weak $)$.
- $B\left(\ell^{\infty}(\mathbb{N})^{*},\|\cdot\|^{*}\right)$ is not weak*-separable.

The key for the proof...

Proposition

Let $\varphi:\{0,1\}^{\mathbb{N}} \rightarrow[1, \infty)$ be a bounded function. TFAE:
(i) $B\left(\ell^{\infty}(\mathscr{B})^{*},\|\cdot\|_{\varphi}^{*}\right)$ is weak ${ }^{*}$-separable.

Sketch of proof of Theorem B

Recall ...

Theorem B

There is an equivalent norm $\|\cdot\|$ on $\ell^{\infty}(\mathbb{N})$ such that:

- $B\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|\right)$ belongs to Baire $\left(\ell^{\infty}(\mathbb{N})\right.$, weak $)$.
- $B\left(\ell^{\infty}(\mathbb{N})^{*},\|\cdot\|^{*}\right)$ is not weak ${ }^{*}$-separable.

The key for the proof...

Proposition

Let $\varphi:\{0,1\}^{\mathbb{N}} \rightarrow[1, \infty)$ be a bounded function. TFAE:
(i) $B\left(\ell^{\infty}(\mathscr{B})^{*},\|\cdot\|_{\varphi}^{*}\right)$ is weak*-separable.
(ii) $\varphi(u)=1 \quad \forall u \in\{0,1\}^{\mathbb{N}}$

Sketch of proof of Theorem B

Recall ...

Theorem B

There is an equivalent norm $\|\cdot\|$ on $\ell^{\infty}(\mathbb{N})$ such that:

- $B\left(\ell^{\infty}(\mathbb{N}),\|\cdot\|\right)$ belongs to Baire $\left(\ell^{\infty}(\mathbb{N})\right.$, weak $)$.
- $B\left(\ell^{\infty}(\mathbb{N})^{*},\|\cdot\|^{*}\right)$ is not weak*-separable.

The key for the proof...

Proposition

Let $\varphi:\{0,1\}^{\mathbb{N}} \rightarrow[1, \infty)$ be a bounded function. TFAE:
(i) $B\left(\ell^{\infty}(\mathscr{B})^{*},\|\cdot\|_{\varphi}^{*}\right)$ is weak ${ }^{*}$-separable.
(ii) $\varphi(u)=1 \quad \forall u \in\{0,1\}^{\mathbb{N}}$ (i.e. $\|\cdot\|_{\varphi}=\|\cdot\|_{\infty}$).

國 G．A．Edgar，Indiana Univ．Math．J． 26 （1977）．
國 G．A．Edgar，Indiana Univ．Math．J． 28 （1979）．
D．D．H．Fremlin，Hokkaido Math．J． 9 （1980）．
居 A．S．Granero et al．，Studia Math． 157 （2003）．
睩 W．B．Johnson and J．Lindenstrauss，Israel J．Math． 17 （1974）．
國 K．Musial，Rend．Istit．Mat．Univ．Trieste 23 （1991）．
目 M．Talagrand，Indiana Univ．Math．J． 27 （1978）．
囯 M．Talagrand，Mem．Amer．Math．Soc． 51 （1984），no． 307.

Preprint available at

http://www.um.es/docencia/joserr/

