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ABSTRACT
The rapid technological evolution of the last years motivated stu-
dents to develop competencies and capabilities that will prepare
them for an unknown future of the 21st century. In this context,
teachers intend to optimise the process of learning and make it
more dynamic and exciting by introducing gamification. Thus, this
paper focuses on a data-driven assessment of geometry compe-
tencies, which are essential for developing problem-solving and
higher-order thinking skills. We explored them in the domain of
knowledge inference, whose primary goal is to predict or measure
the students’ knowledge over questions as they interact with a
learning platform at a specific time. Hence, the main goal of the
current paper is to compare several well-known algorithms applied
to the data of a geometry game named Shadowspect in order to
predict students’ performance in terms of classifier metrics such as
Area Under Curve (AUC), accuracy, and F1 score. We found Elo to
be the algorithm with the best prediction power. However, the rest
of the algorithms also showed decent results, and, therefore, we
can conclude that all the algorithms hold the potential to measure
and estimate the actual knowledge of students. In turn, this means
that they can be applied in formal education to improve teaching,
learning, organisational efficiency and, as a consequence, this can
serve as a basement for a change in the system.

CCS CONCEPTS
• Applied computing → Education; • Information systems
→ Data mining; •Human-centered computing→ Collaborative
and social computing.
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1 INTRODUCTION
Due to the rapid technological progress in the last years, we see a
considerable change in the way of teaching, learning and personal
development in general. Accordingly, we need to motivate students
to develop competencies and capabilities that will prepare them for
an unknown future. In this way, a lot of schools intend to improve
the process of learning and make it more dynamic and exciting
by introducing technology-mediated environments such as simula-
tions, virtual reality or games. The latter advertised themselves as
an excellent way to digitise and optimise the learning process [3]
and showed significant evidence [2, 11] of benefits of their use
for learning and assessment according to the student’s ability to
become competent in a specific field.

In the modern world, there is no doubt of the importance of
geometry skills and spatial reasoning, which are essential human
abilities contributing to mathematical proficiency. These skills can
be crucial to functioning in twenty-first-century society, especially
in careers associated with Science, Technology, Engineering and
Mathematics (STEM). Concretely, Giofrè et al. explored the rela-
tionship across working memory, intelligence and geometry skills
in children and concluded that working memory is strongly related
to geometrical achievement irrespective of their intelligence [8].
While there are obvious benefits, geometry can lead to both anxiety
in students and teaching difficulties in teachers. Gamification of
the learning process might be a promising solution to these two
issues, increasing the engagement and motivation of students [18].

Taking into account the emerging significance of geometry com-
petencies for developing problem-solving and higher-order think-
ing skills and the proved reliability of game-based assessment
(GBA), in our work, we will focus on Shadowspect1, a game-based
assessment tool that aims to provide metrics related to geometry
content and other behavioural and cognitive constructs. In the
context of games with the ability to educate, we are interested
in knowledge inference, a sequence problem whose primary goal
is to predict or measure the students’ knowledge (or its absence)
over questions as they are interacting with a learning platform at a
specific time. It can be equivalent to monitoring Knowledge Compo-
nents (KCs), which are associated with every problem-solving item.
KCs were defined by Koedinger et al. as acquired units of cognitive
function or structures that can be inferred from performance on a
set of related tasks [9] and they generalise across terms for describ-
ing pieces of cognition or knowledge, including skills, concepts or
facts. Through them, we can improve the knowledge of students,
explore the influence of education and make automatic pedagogi-
cal decisions. Moreover, through knowledge inference algorithms,
based on prediction, we measure how good the learner modelling

1https://shadowspect.org/
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is – the estimation of actual knowledge of students. Ultimately, this
can be used as part of the formative assessment process, where the
data generated by learners hold the potential for being used as part
of such formative assessment process and for adaptive learning,
whose goal is to address the unique needs of each user [10]. In the
paper at hand, we will perform comparative research of BKT, PFA
and Elo algorithms for predicting the performance of learners in
the context of the Shadowspect game. To the best of our knowledge,
the above-mentioned knowledge inference approaches have not
yet been applied in GBA. We believe this is an important novelty
that could transform the educational process significantly.

The remainder of this paper is structured as follows. In Section 2,
we focus on the background of our study and related works. In
Section 3, we present the research methodology. Our findings are
outlined in Section 4. Finally, we draw our conclusions and future
research directions in Section 5.

2 BACKGROUND
As a general rule, it is not a trivial task to measure or predict the
capabilities of users. There are two main reasons why a student’s
performance in a specific task attempt might not mean that the
student has the skill: 1) the student can slip, which means not to
demonstrate the skill despite having it, and 2) the student can guess,
which means to demonstrate the skill without having it. Moreover,
we cannot directly estimate these skills. Even so, we can measure
knowledge inference by looking at the performance of the student
over time. In this way, there is a wide variety of methods that aim
to measure the existing knowledge and forecast the future outputs
of users. The first proposed method for observing students’ past
successes and failures was Bayesian Knowledge Tracing (BKT) [4],
which employs a two-state dynamic Bayesian network estimating
the latent cognitive state from students’ performance where each
KC is either learned or unlearned. An alternative approach for per-
formance prediction is Performance Factors Analysis (PFA) [13],
which uses a logistic regression equation that models changes in
performance in terms of the number of student successes and fail-
ures that have occurred for each skill [19]. Finally, another approach
is the Elo rating system (named after its creator Arpad Elo) [6, 15] –
a variant of Item Response Theory (IRT), whose classical approach
has some key limitations. The main idea of the Elo algorithm is to
continually estimate the difficulty of an item and the ability of a
student, updating both of them every time a student encounters an
item.

The task of solving the knowledge inference problem attracted
many researchers. There are several authors who conducted sur-
veys comparing different variations of the approaches mentioned
above [1]. These works served as a base for others to conduct exper-
iments on real-world data sets. For example, Gervet et al. [7] anal-
ysed the performance of various algorithms such as Deep Knowl-
edge Tracing (DKT) [16], IRT, PFA, and BKT, amongst others, ex-
hibiting two main advantages with respect to other articles: 1) it
explored a wide variety of methods to predict the learner perfor-
mance and 2) the efficiency of the algorithms as mentioned earlier
was proved on nine real-world data sets with different characteris-
tics, i.e., the number of items and KCs they cover, the number of
learners or total interactions they contain. The authors concluded

that DKT leads on data sets of large size or where precise tem-
poral information matters most. In contrast, others can perform
better on data sets of moderate size or containing a vast number of
interactions per student.

From the works mentioned above, we can observe the fact that
the research covered by these areas is currently and constantly in-
creasing. On the other hand, the above-mentioned articles worked
in Intelligent Tutoring Systems (ITS), where it is easier to model
student learning because they have clearly defined tasks. Modelling
learning in games is more challenging because they are more open
environments where students should keep a friendly and motivat-
ing atmosphere all the time. In our case study, the game-based
assessment tool Shadowspect was previously designed for the very
purpose of measuring geometry content standards so that teachers
can use it in their core geometry curriculum.

3 METHODOLOGY
In this section, we will describe our research goals (RGs). Next, we
will characterise the context of the geometry game environment
employed in this work. Finally, wewill give details of the adjustment
of the Shadowspects’ data for BKT, PFA and Elo algorithms, discuss
each of them and the metrics which will explain their performance.

3.1 Research goals
After examining state of the art regarding the knowledge inference
problem, application of its algorithms and the existing relatedworks,
we stated the following research goals:

• RG1. To compare BKT, PFA and Elo algorithms applied to
the data of a geometry game named Shadowspect in order to
predict students’ performance in terms of classifier metrics
such as AUC, accuracy and F1 score.

• RG2. To analyse if the algorithms outperform in predicting
performance in any particular KC.

3.2 Context of the game environment
The game environment Shadowspect was developed at the Mas-
sachusetts Institute of Technology (MIT) Playful Journey Lab, and
it has clearly defined goals, rules, obstacles for the players to over-
come and provides only intrinsic rewards [17]. In the version of
Shadowspect (see Fig. 1) that we used in this case study, there are
nine tutorial levels (teaching the basic functionality of the game,
i.e., how to build different primitives, scale and rotate them), nine
intermediate levels (giving students more freedom so they will not
receive much help to solve the puzzles) and 12 advanced levels
(challenging the students who already proved to gain experience).
When students begin a puzzle, they receive a set of silhouettes from
different views that represent the figure they need to create by
using other primitive shapes (i.e., cubes, pyramids, ramps, cylin-
ders, cones and spheres), which can be scaled, moved and rotated.
Moreover, the students can move the camera to see the figure they
are building from different perspectives and then use the ‘Snapshot’
functionality to generate the silhouette and see how close they are
to the specified goal. Finally, the students can submit the puzzle,
and the system will evaluate the solution and provide feedback.

The KCs in the game environment Shadowspect are the skills
needed to complete a puzzle successfully. Across Shadowspect,
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Figure 1: Two puzzle examples in Shadowspect

experts defined four main KCs, and most of the puzzles have the
representation of three (GMD.4, CO.5 and CO.6) of them:

• MG.1: Use geometric shapes, their measurements and their
properties to describe objects.

• GMD.4: Identify the shapes of the two-dimensional cross
sections of the three-dimensional objects and identify the
three-dimensional objects generated by the rotations of the
two-dimensional objects.

• CO.5: Given a geometrical figure and a rotation, reflection or
translation, draw the transformed figure using, for example,
graph paper, tracing paper or geometry software. Specify a
sequence of transformations that will take one given figure
to another.

• CO.6: Use geometric descriptions of rigid movements to
transform figures and predict the effect of a given rigid move-
ment on a given figure; in the case of two figures, use the
definition of congruence in terms of rigid movements to
decide if they are congruent.

Both puzzles represented in Fig. 1 assume that to solve them,
the student must have the following KCs: GMD.4, CO.5 and CO.6.
It implies that each KC means to have the same proportion (33%)
because there are three KCs in one puzzle. Moreover, most of the
puzzles (90%) reflect the same idea of requiring the same three
KCs while the rest of the puzzles request one more KC, namely
MG.1. In practice, it is not precise because one KC might play a
dominant role. For the reason that it is a complex task to implement

the algorithms taking into account the correct weights of each KC
in a puzzle, in our work, we will assume that all the present KCs
have the same weight.

3.3 Adjusting Shadowspects’ data for the
algorithms

For this paper, we used the data from 322 different students, which
were collected as part of the assessment machinery development.
The complete data collection recorded in an input experiment doc-
ument includes around 428,000 events (an average of 1,320 events
per user). Students were active in the game environment for 260
hours (an average of 0.82 active hours per student), and students
solved a total of 3,802 puzzles (an average of 13 puzzles per student).
All student interactions with the game were stored in a MySQL
database, and we did not collect any identifiable or personal data
from the users except a nickname provided by themselves.

compute computestudent,
timestamp,

puzzle,
event type

BKT PFAElo

MySQL

STUDENTS
algorithms

Student 1 Student n

student puzzle KC correct timestamp

Alice Not Bird CO.6 1
2019-09-09

13:29:30.215461-
04:00

IMPROVE
TEACHING AND

LEARNING

STUDENTS

Predict the students'
performance

1

23

4

Figure 2: Overview of methodology to predict the students’
performance

To be consistent with the common steps, we made the same
data-related assumptions for all the algorithms. The entire method-
ology process to predict the students’ performance is represented in
Figure 2. In the first step, we iterated through the input experiment
document, identifying and storing the types of events (e.g., start
a game, complete a puzzle, create, move, rotate, scale or delete a
shape, exit to the menu, etc.) aligned with each user, the timestamp
and the name of the puzzle in which the events occurred. As the
events of the data are ordered according to time, and the events
of different students are interspersed, we made the separation be-
tween the events of each student. Accordingly, in the second step,
we computed if the student was correct or not in his attempt to solve
the puzzle. At this point, we saw that our data set was imbalanced
because we had many more records of students solving the puzzles
than being incorrect in their attempts. In this way, it is crucial to
describe the puzzle-related assumptions. Firstly, if a student made
one submission of his solution to the puzzle, we considered it as
one attempt. Moreover, if a student already solved the puzzle and
made another attempt to complete it, we discarded the latter. We
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also did not count as an attempt the situations when the student
made no submissions.

In the third step, we implemented BKT, PFA and Elo algorithms
for our case study in order to predict the student’ performance based
on the current modelling of each student. Finally, with this value in
mind, the teacher can know the learner’s ability before making a
formal assessment, intervene to see the cause of strange behaviour
and help the student to improve. Through these measures, we seek
to collaborate both in the students’ evaluation and in adaptive
learning. In addition to the indicators of competence and difficulty,
we obtained a prediction model with the probabilities of future
success.

3.4 Algorithms
In this section, we describe the key approaches for knowledge
inference, namely: BKT, PFA and Elo algorithms.

3.4.1 Bayesian Knowledge Tracing (BKT). BKT [4] estimates the
students’ knowledge from their observed actions – the history of
performance with that skill. This algorithm maintains a continu-
ous evaluation of the probability that a student currently knows
each skill, updating that estimated value based on the student’s
behaviour [5]. In this algorithm, only the first attempt on each item
matters and learning is modelled by a discrete transition from an
unknown to a known state. A fundamental assumption is that the
student does not forget a skill once he knows it.

The advantage of BKT is that it is easy to interpret the parameters
as well as their effects on performance in the model. The standard
BKT model is using the following probabilities:

• 𝑝 (𝐿0) - the probability that the student has prior knowledge
meaning that he knows a KC before practising on any items
associated with the KC;

• 𝑝 (𝑇 ) - the probability of learning, meaning that the student
will learn a KC by practising;

• 𝑝 (𝐺) - probability that the student will guess the item cor-
rectly;

• 𝑝 (𝑆) - probability that the student will slip.
Based on these parameters, the inference is made about the

student’s probability of knowledge at time opportunity 𝑛, 𝑝 (𝐿𝑛).
The parameters and inferred probability of knowledge can also be
used to predict the correctness of a student response. The following
equations are used to predict students’ knowledge from behaviour
in BKT:

𝑃 (𝐿𝑛−1 |𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛) =
𝑃 (𝐿𝑛−1) ∗ (1 − 𝑃 (𝑆))

𝑃 (𝐿𝑛−1) ∗ (1 − 𝑃 (𝑆)) + (1 − 𝑃 (𝐿𝑛−1)) ∗ 𝑃 (𝐺)
(1)

𝑃 (𝐿𝑛 |𝐴𝑐𝑡𝑖𝑜𝑛𝑛) = 𝑃 (𝐿𝑛−1 |𝐴𝑐𝑡𝑖𝑜𝑛𝑛) + ((1−𝑃 (𝐿𝑛−1 |𝐴𝑐𝑡𝑖𝑜𝑛𝑛)) ∗𝑃 (𝑇 )
(2)

3.4.2 Performance Factors Analysis (PFA). The goal of the PFA
model is to measure how much skill a student has while learning.
It has considerable power to fit data and provides the adaptive
flexibility to create the model overlay to be used adaptively by
a tutor [13]. In the standard PFA model, the data about learner
performance are used to compute a skill estimate, and this estimate

is then transformed using a logistic function into the estimate of
the probability of a correct answer. In this way, the model is using
the following parameters:

• 𝛽 - the easiness of the KC;
• 𝑠 - the prior successes for the KC of the student;
• 𝑓 - the prior failures for the KC of the student;
• 𝛾 and 𝜌 - success learning rate and failure learning rate of
each skill, respectively.

Equation 3 reveals how to compute the probability 𝑃 (𝑚) that
the learner 𝑖 will get the item 𝑘 correct wherem is a logit value rep-
resenting the accumulated learning for student i (ability captured
by 𝛾 parameter) using a KC j.

𝑃 (𝑚) = 1
1 + 𝑒−𝑚 (3)

𝑚(𝑖, 𝑘𝜖𝐼𝑡𝑒𝑚𝑠, 𝑠, 𝑓 ) = 𝛽𝑘 + 𝛾𝑠𝑖 + 𝜌 𝑓𝑖 (4)
We find several strengths to be considered for PFA in our en-

vironment: it softens the impact of incorrect answers so that the
created model is more realistic and does not modify as much in
the face of error. Besides, it has an essential advantage over BKT
because it does not consider errors in the exercises as decisive and
implies a more gradual modification. Despite the benefits it brings,
it is a fairly complex algorithm to implement since it takes into
account numerous factors that make it difficult to adapt (e.g., the
difficulty parameter). Moreover, PFA does not take into account the
order in which past successes and failures occurred in.

3.4.3 Elo rating system. Elo [15] is a skill calculation system used,
for example, in chess tournaments. It was developed for the purpose
of measuring players’ strength, but it also was applied in the context
of educational research and was used for measuring both learner
ability and task difficulty [12]. Its basic principle is as follows: a
score is assigned to each player, and then this score is updated
after each game proportionally to how surprising the result of the
game was (if a weak player beats a strong one, the results were
unexpected and therefore the update is big). First, we must obtain
the probability that a student answers correctly a question by using
a logistic function with both the competence of the student 𝜃𝑠 and
the difficulty of the question 𝑑𝑖 while the correctness of an answer
of a student on an item is 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 𝜖 {0,1}:

𝑃 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 = 1) = 1
(1 + 𝑒−(𝜃𝑠−𝑑𝑖 ) )

(5)

Next, we calculate the probability of each student-question con-
frontation. Initial values of 𝜃𝑠 and 𝑑𝑖 parameters are set to 0. The
value of the constant K determines the behaviour of the system (i.e.,
if K is small, the estimation converges too slowly). The following
equations represent updates for both the competence of the student
and the difficulty of the puzzle:

𝜃𝑠 = 𝜃𝑠 + 𝐾 ∗ (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 − 𝑃 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 = 1))) (6)

𝑑𝑖 = 𝑑𝑖 + 𝐾 ∗ (𝑃 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 = 1)) − 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 ) (7)
The implementation and adaptation of the Elo algorithm to the

data are not complicated. The algorithm has few adjustment pa-
rameters, and it is also computationally very simple and fast [20].
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Moreover, it competes in performance with other much more com-
plex algorithms and can be implemented in almost any type of data,
being able to modify it in a straightforward way.

3.5 Classifier Metrics
We will be using each algorithm to obtain a standardised numerical
value between 0 and 1 for the geometry capabilities according to
each KC based on the history of each student’s interactions with
the activity. After exploring the work performed by Pelánek [14],
who made an overview of all commonly used metrics and discussed
their properties, advantages and disadvantages applied to educa-
tional data mining, we decided to rely on the following metrics for
comparing the applied algorithms between each other keeping in
mind that our data set is imbalanced:

• Accuracy - is the total percentage of correctly classified
elements. In other words, accuracy looks at fractions of cor-
rectly assigned positive and negative classes.

• AUC - is a more comprehensive measure of how good the
classifier is at distinguishing between classes. In other words,
AUC is equal to the probability that a classifier will rank a
randomly chosen positive instance higher than a randomly
chosen negative example. This metric is representative but
not discriminative. The higher the AUC, the better the model
is at correct predictions.

• F1 score - is a measure of a test’s accuracy, which is calcu-
lated based on the precision and recall of the test. The recall
is the number of true positive results divided by the number
of all samples that should have been identified as positive.
The classical counterpart to recall is precision which is the
number of true positive results divided by the number of all
positive results, including those not identified correctly.

For our particular case study, we first chose a more traditional
accuracy metric. The overall accuracy depends on the ability of
the classifier to rank patterns and also on its power to select a
threshold in the ranking used to assign patterns to the positive
class if above the threshold and to the negative class if below. The
classifier with the higher AUC metric is likely to also have higher
overall accuracy as the ranking of patterns is beneficial to both AUC
and overall accuracy. However, if one classifier ranks patterns well
but selects the threshold badly, it can have a high AUC but a poor
overall accuracy. On the other hand, both metrics look at fractions
of correctly assigned positive and negative classes. It means that if
our problem is highly imbalanced, we can get high scores by simply
predicting that all observations belong to the majority class. In this
way, the last metric we decided to include is the F1 score that works
well with such cases. We believe that with these three metrics, we
can reasonably conclude the performance of the selected algorithms
taking into consideration all the advantages and disadvantages of
the metrics.

4 RESULTS
In this section, we will highlight our findings following the stated
RGs. First, we will discuss the results obtained by building each al-
gorithm and comparing them with the use of selected metrics. Next,
we will analyse the performance of each algorithm in accordance
with each KC.

4.1 Algorithms comparison (RG1)

AUC Accuracy F1 score
BKT 0.79 0.86 0.92
PFA 0.84 0.86 0.92
Elo 0.85 0.94 0.97

Table 1: Comparison of BKT, PFA and Elo algorithms by
AUC, accuracy and F1 score metrics

FromTable 1, we can observe the fact that all the algorithms show
adequate results in the stated metrics. The accuracy of BKT and PFA
algorithms is identical, while the Elo algorithm outperforms them
by 8%. We also see that no significant difference was detected in the
AUC metric in the comparison of PFA and Elo models, but in this
case, BKT slightly underperforms them. With these values in mind,
we conclude that the models have a very high precision indicating
that the adjustment was carried out correctly. However, we should
always consider an imbalance when looking at the accuracy and the
AUC metrics. Finally, since we have a skewed sample distribution,
in Section 3.5 we decided to use both precision and recall. The
results of the F1 score metric reveal that all the algorithms indicate
outstanding precision and recall. Therefore, we can deduce that
BKT, PFA and Elo algorithms are precise and robust.

The results reveal that all the algorithms show decent outputs. On
average, we see that BKT performs slightly more inferior but still,
we observe reasonable results considering our case study. While
PFA also performs sufficiently well, we see that the Elo algorithm
outperforms others in the most critical metrics AUC and F1 score.
Therefore, we conclude that the most predictive model is Elo, which
outperforms the overall accuracy of BKT and PFA by 8% and F1
score by 5%.

4.2 Algorithms performance per KC (RG2)
For further analysis, we computed the accuracy metric per KC.
The according results are represented in Figure 3. First of all, the
analysis confirmed our findings stating that Elo outperforms the
rest of the algorithms.

Figure 3: Accuracy of each algorithm per KCs

Secondly, we see that we obtain the same results for all the
metrics regarding three KCs (GMD.4, CO.5 and CO.6). This could be
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predicted at the point when we saw how KCs match with each other.
As said in Section 3.2, most of the puzzles have the representation
of these KCs while others additionally have the fourth KC named
MG.1. Accordingly, if a puzzle requires the proper use of KC CO.5,
it means that the student must also apply CO.6 and GMD.4. Since
in this version of the implementation, we have neither dominant
KCs neither according weights assigned to them, the metrics would
show the same outcome. Thus, for more precise results, there is a
need of adding the weights to KCs in future work.

5 CONCLUSIONS AND FUTURE DIRECTIONS
Understanding learners and their contexts has undoubtedly become
one of the most promising educational research topics of the past
decade. Accordingly, every year there are more novel solutions
to promote various educational settings and motivate students. In
this way, gamification proved to be an important way of engaging
students. This work represents a novel analysis and comparison of
three algorithms, namely, BKT, PFA and Elo, applied to a geometry
game environment in order to predict the learning performance of
its users.Wemeasured the efficiency of the algorithms asmentioned
earlier by examining the following metrics: AUC, accuracy and F1
score. We found Elo to be the algorithm with the best prediction
power. However, the rest of the algorithms also showed decent re-
sults and, therefore, we can conclude that they all hold the potential
to measure and estimate the actual knowledge of students. In turn,
this means that all the three analysed algorithms are suitable for
the application in formal education to improve teaching, learning,
organisational efficiency and, as a consequence, this can serve as
a basement for a change in the system. On the other hand, we are
confident that this work could motivate teachers and students to
use gamification for the learning process. Moreover, this experience
could also be transferred into not formal educational settings with
new innovative products.

As far as we are aware, this is the first time the research was con-
ducted on applying and comparing the above-mentioned knowledge
inference models in GBA for predicting the learners’ performance.
Besides, there are several possible extensions to this research. Our
future work will focus on implementing the similar BKT, PFA and
Elo algorithms but considering the weights of KCs in each puzzle.
In this way, the results will be more precise what is essential for
making the difficulty and competencies calculations. Moreover, we
will intend to explore and apply other models, i.e., Deep Knowledge
Tracing.
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