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Patterns of Engagement in an Educational
Massively Multiplayer Online Game:

A Multidimensional View
José A. Ruipérez-Valiente, Member, IEEE, Matthew Gaydos, Louisa Rosenheck, Yoon Jeon Kim, and Eric Klopfer

Abstract—Learning games have great potential to become
an integral part of new classrooms of the future. One of the
key reported benefits is the capacity to keep students deeply
engaged during their learning process. Therefore, it is necessary
to develop models that can measure quantitatively how learners
are engaging with learning games to inform game designers and
educators, and to find ways to maximize learner engagement.
In this work, we present our proposal to multidimensionally
measure engagement in a learning game over four dimensions:
general activity, social, exploration, and quests. We apply metrics
from these dimensions to data from The Radix Endeavor, an
inquiry-based online game for STEM learning that has been
tested in K-12 classrooms as part of a pilot study across numerous
schools. Based on these dimensions, we apply clustering and
report four different engagement profiles that we define as:
“integrally engaged,” “lone achiever,” “social explorer,” and
“non-engaged.” We also use three variables (account type, class
grade, and gender) to perform a cross-sectional analysis finding
interesting, statistically significant differences in engagement. For
example, in-school students and accounts registered to males
engaged socially much more than out-of-school learners or
accounts registered to females, and that older students have better
performance metrics than younger ones.

Index Terms—Engagement, learning games, learning analytics,
K-12 education, game-based assessment.

I. INTRODUCTION

D IGITAL games have great potential to provide alternative
ways to assess learning. As digital games have become

an integral part of daily life for younger generations, activity in
digital games generates rich data across multiple time points
and contexts. With systems designed to collect their digital
footprints, these data then can be used to make inferences
about what they learn and how they learn without interrupting
engagement in digital games. Because digital games often em-
ploy challenging, interesting, and complex problems, they can
be used to generate evidence for 21st century competencies,
which are traditionally difficult to measure using conventional
forms of assessment. By combining the ability to extract rich
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and continuous data in games with the complex and authentic
problems that games present, game-based assessments can
provide a more comprehensive learner profile than traditional
assessment methods. Although game-based learning (GBL)
continues to gain importance as a method to keep students
(especially younger students) engaged in learning [1] and im-
prove learning outcomes [2], measuring engagement remains
a significant challenge [3].

In this paper we present our vision of a multidimensional
approach to engagement in the context of GBL, showing that
some learners can be engaged with certain dimensions of
tasks but not with others. The concept of engagement that
we explore in this study is related to the degree of activity
or attention someone gives to certain tasks over some period
of time [4], which can be linked to their intrinsic interest,
motivation, and learning [5]. The goal of our study is to
provide a more comprehensive look at how player engagement
can be measured through in-game behavior.

We analyze data from a pilot study using The Radix
Endeavor (shortened to Radix), an educational Massively
Multiplayer Online Game (MMOG) based on inquiry learning
for STEM topics targeting middle and high school curricula.
During this pilot, more than 10,000 students participated
and it was tested as part of the curriculum in numerous
states. Previous work has discussed the multifaceted appeal
of MMOGs [6] and also their potential as educational tools
[7]. Therefore, we are motivated to develop a multidimensional
model to see how students are engaging with Radix in different
ways, since the game was designed to engage teachers in
students in multiple ways. More specifically, we establish the
following objectives:

1) Define a series of metrics that provide measures of how
students engaged in different dimensions with Radix.

2) Apply these metrics to the data that have been collected
in the case studies with Radix, exploring the results and
differences across cross-sectional variables.

3) Apply clustering analysis to find the most common
engagement profiles of students and see how these
change based on different cross-sectional variables.

The remainder of the paper is organized as follows. Section
II reviews the background literature on student engagement,
player engagement, and learning. Section III describes our
methods, including a description of the game, Radix, as well
as the data collection process and the context of the case
study. Section IV presents our proposal of metrics in multiple
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dimensions and Section V describes the exploratory analysis
after applying those metrics on Radix data. Then, we apply
clustering analysis to find the most common engagement
profiles in Section VI, eventually finalizing the paper with
discussion and conclusions in Section VIII.

II. BACKGROUND

In this section, we outline the importance of student en-
gagement broadly, previous work on player engagement, and
prior methods used to measure player engagement.

A. Student Engagement and Learning

Student engagement in academic contexts is a broad con-
struct that has been linked to a wide variety of desirable
educational outcomes. Engaged students, for example, show
improved learning, critical thinking, and grades [8] and are
less likely to drop out of school [9]. Despite the importance of
engagement in student learning, its definition is not universally
agreed upon. Instead, there are multiple definitions stemming
from different disciplines, broadly linking engagement to
student motivation [10], and in the context of formal schooling,
to developing relevant competence [11]. Engagement may be
considered, for example, “a collection of mindful goal-directed
states in which motivation arising from positive emotions
serves to grab and sustain the learner’s cognitive and motor
competencies” [12]. It is comprised of three sub-components
(behavioral, cognitive, and affective) [13], [14] or five sub-
components (behavioral, cognitive, motivational, cognitive-
behavioral, and social-behavioral) [10], and individuals may
exhibit five different engagement profiles: highly engaged,
moderately engaged, and minimally engaged; emotionally
disengaged, and cognitively disengaged [15]. Common across
these definitions of engagement is the notion that engagement
may be thought of as enacted motivation, and that clearly
defining engagement as well as reliably and accurately mea-
suring its operationalization remains a challenge, particularly
due to differences in how it manifests across different contexts
[16].

B. Player Engagement

Although there has been plenty of research on the impor-
tance of student engagement in improving learning outcomes
(e.g., [17]), engagement in the context of games inherits the
same challenges of engagement research more broadly. In
particular, Fredricks et al. [5] highlight the need to improve the
measurement of student engagement, especially using rigorous
approaches that account for individual differences, different
contexts, and multiple levels, all of which may change over
time.

Consider, for example, the research on player engagement
tied to Csı́kszentmihályi’s [18] concept of flow, a state of im-
mersion that one experiences when engaged in experiences that
one sees as enjoyable and valuable. Flow’s immersive nature
makes it difficult to study in real time, as interrupting players
with questionnaires can drop them out of the experience
that provided flow in the first place. Perhaps unsurprisingly,

prior work on in-game engagement has tended to develop
survey instruments to gauge students’ self-reported video game
engagement, administered outside the context of game play
(e.g., [2], [19]–[22]). Though in-game data is regularly used
in video game entertainment as a means to retain players and
increase profits, relatively few educational studies have been
published on measures of in-game player activity as a data
source for measuring engagement, either to improve learning
or to improve our understanding of the construct (see [23],
[24] for existing work in this field).

One study that provides insight into how complex the
challenge of linking in-game data to player engagement is by
Martey et al. [4]. Their work reflected the multi-faceted nature
of engagement, combining multiple instruments to capture
different aspects of player engagement, including self-report,
content analysis, electrodermal activity, mouse movement, and
game-click logs. They found that the different means used to
measure engagement captured different aspects of the con-
struct. For example, they found that attention-based engage-
ment measures (i.e., self-report) were unrelated to behavioral
(i.e., mouse-clicks) as well as physiological measures (i.e.,
electro-dermal activity), necessitating the use of multiple data
sources to capture the multiple, distinct dimensions of game
engagement. More recently, Cano, Fernández-Manjón, and
Garcı́a-Tejedor [25] examined student engagement through
a serious game designed to help students with intellectual
disabilities learn to navigate a local subway system. Their
measure of player engagement focused on student in-game
inactivity, confirmed by direct observation. In the context of
game-based learning, measures of engagement have tended
to examine the motivations of play [26], the subjective ex-
periences of players [22], or the physiological responses
accompanying engaged play [27]. Work has begun to pro-
vide theoretically sophisticated measures of engaged player
behavior [23] accompanied by straightforward measures of
engagement such as time on task [24].

In this study, we focus on engagement in terms of in-
dividuals’ attention and activity, measured through in-game
actions (i.e., mouse clicks) associated with the designed game
tasks (e.g., quests). Building on the case study of game-based
engagement by Ke, Xie, and Xie [28], we assume that, in
this context, engagement is an evolving relationship between
the player and game environment and that engagement in the
game content is not something that develops necessarily and
uniformly through game play, but rather may evolve through
reflection on the game activity and may be exhibited in dif-
ferent ways by different players. This reciprocally developing
nature of engagement is supported by prior work looking stu-
dents and teachers interacting in context [29], [30]; however,
these theoretically sophisticated views of engagement have
only minimally been studied in games.

Focusing on the measurement of in-game engagement de-
velopment in the context of a complex massively multi-player
online game environment, we explore different measures’
usefulness in capturing the relational and individual nature
of engagement. The approach taken here thus enables mea-
surements of engagement as they vary by different groups of
players. Directly measuring player activity in order to estimate
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player engagement in large-scale digital educational games
may not only be useful for gauging player engagement as it
changes over time, but also for developing assessments that
take into account individual differences.

III. METHODS

A. The Radix Endeavor

The Radix Endeavor [31] is an inquiry-based, multi-
disciplinary, MMO-style online game for STEM learning that
includes a balance of guided tasks and open-ended exploration.
It is inquiry-based in the sense that in it, players solve
problems by exploring a topic, figuring out what questions
need to be asked, and determining a pathway to answer those
questions. It is an MMOG-style in that it involves players
controlling an avatar in a third person perspective, is set in
a virtual multiplayer world that is open-ended, and includes
set sequences of tasks for players to work through as they
explore the world and build conceptual understanding. It was
developed at the MIT Education Arcade (see videos in the
YouTube channel [32]), was launched in January 2014, and
was free to play.

Radix is aligned with the Next Generation Science Stan-
dards [33] for biology and the Common Core State Standards
[34] for math, incorporates STEM practices, and encourages
students to develop 21st century skills (e.g., critical thinking,
collaboration) inside and outside of the game. It is meant to
be played over the course of a semester and revisited during
each relevant curricular unit.

B. Educational Context

Radix was tested in numerous classrooms across the US and
other countries in a pilot study, which ran from January 2014
through August 2015. During that time, teachers could create
accounts for their students to play and informal marketing and
outreach was done to recruit teachers to participate in the pilot,
including reaching out to local and national teacher networks
to publicize the game, as well as press articles and blog posts
showcasing the project and its opportunities for participation.
Participating teachers were provided with professional devel-
opment opportunities and implementation resources, which in-
cluded in-person sessions, monthly webinars, an online forum,
information on alignment with standards, and suggestions for
bridging curriculum. Teachers were encouraged to tailor their
implementations and use the game as they saw fit in their
classroom; most had their students play relevant quest lines at
the time they were covering a given topic area in their class.
However, we did not have a tight control of the way teachers
implemented Radix in their classes.

Furthermore, outside of the formal school environment, the
game has also been picked up by various after-school groups,
enrichment programs, and the homeschool community who
are using it with a wide variety of ages. Additionally, players
who heard about the game via other channels could create
player accounts not associated with an educational institution.
These players that were not affiliated with any specific school
and teacher, played as much or little as they chose to, working
through quest lines according to their interests. Because of the

differences in control over and information about one cohort
(in-school students) versus the other (out-of-school learners),
we consider these to be distinct cohorts. Radix remained
accessible and available to play on the website through late
2019.

C. Data Collection

In this study, we include all the data collected until the
2nd February 2018 from both in-school students and out-of-
school learners, a total of 26,959 accounts. The inclusion and
exclusion criteria are as follows:

• Teacher, staff, and research accounts were removed, leav-
ing only in-school students and out-of school learner
accounts.

• We eliminated accounts that had not reached a minimum
interaction of two hours, which is the estimation from
designers for learners to getting familiar with Radix game
mechanics.

• We kept only the accounts that had completed the first
three quests of the tutorial, since the two first quests do
not require any specific interaction with the environment–
just speaking with the non-player characters (NPCs)–and
the third task is the first one where they need to use a
tool to correctly finish the quest.

Conducting the analysis only on learners who met a min-
imum level of interaction allows us to be more confident
about the results not being biased by spurious and random
correlations. The final sample size and number of learners
included in the analysis is 5,545. We define two different
cohorts from these accounts:

• In-school students (5,114, 92.23%): These accounts
were created by teachers for use in the classroom.

• Out-of-school learners (431, 7.77%): These accounts
were created by online users and were not affiliated with
a school. We do have access to the demographic variables
for this cohort (see below).

For in-school student accounts, gender and class grade
distributions are reported:

• Gender: Gender was reported for 5114 in-school stu-
dents, with a distribution of 54.97% male and 45.03%
female.

• Class grade: Class grade was reported for 5027 school
learners. The range of class grades in our sample range
from 1st grade to 12th grade. Because the STEM content
focus goes from 6th to 12th grade, we provide further
analysis of students in that grade interval, which repre-
sents a total of 4904 school learners. These learners are
distributed by grade as follows: 20.27% for 6th grade,
23.53% for 7th grade, 17.99% for 8th grade, 19.54% for
9th grade, 12.30% for 10th grade, 3.92% for 11th grade,
and 2.47% for 12th grade. In order to map class grade to
age, we assume that in the US system, students would
normally turn 11 years old during the year of entry in 6th

grade.
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(a) (b)

Fig. 1. Two examples of different ways to engage with Radix: (a) shows a virtual social interaction with other peers in Radix and (b) shows an example of
a quest to breed plants to learn the genetics basis.

IV. PROPOSAL OF ENGAGEMENT METRICS AND
DIMENSIONS

To help students build content knowledge while develop-
ing disciplinary practices and important 21st century skills,
Radix relies on embedded content, inquiry-based pedagogy,
and opportunities for collaboration and discussion. Radix was
designed carefully to align the game mechanics learning objec-
tives and data collected [35]. There are three broad categories
of activity that players engage in while playing Radix. Each
area has its own pedagogical purpose, while some actions are
also designed to overlap in multiple categories:

• Quests: A quest in game environments refers to a task
that a player needs to complete to achieve a reward or
to progress in the game. There are around 120 different
quests, and when players enter the game for the first time,
they begin a sequence of Tutorial quests designed to get
players used to moving around the world, using tools, and
collecting data about their environment. Upon completion
of the tutorial quest line, an array of topical quest
lines is unlocked, including four in biology: Genetics,
Ecology, Evolution, and Human Body Systems; and three
in math: Geometry, Algebra, and Statistics. While the
quests are sequenced within a topic area, players are free
to switch between quest lines according to their interests
throughout their play sessions. Players have a variety of
STEM-related tools available to use in collecting data
and completing quests e.g., the breeding station Genetics,
and the cartogram for mapping Geometry. Proper use of
these tools embodies the skills and practices important
to that discipline, and the tools are necessary to conduct
investigations in the game world.

• Social Interactions: Players have a number of ways to
interact with each other within the game, including public
text chat, private chats, sharing items, and creating and
joining a party, which is coordinated group play with
shared data collection. These interactions are designed
not only to facilitate collaboration on quest tasks, but to
let players feel like part of a community and find support
for problem-solving.

• Exploration: The Radix world and game environment
are designed to foster exploration, both in and outside
of quest tasks. Players can customize their avatars, walk
around the world, and collect specimens from different
biomes. Many of the tools are available regardless of
whether certain quests are unlocked, meaning that players
can, at any point, examine traits, measure objects, breed
species, and much more, if they want to figure out how
the world works.

Ideally, players engage with the Radix world in all three
ways. Of course, that does not mean that every player needs
to engage in all three activities on every quest. Rather, un-
derstanding how players use the game or are engaged by it
was central to this study. In addition to these three qualitative
dimensions, we see the overall general activity as a transverse
dimension. We visually represent this multidimensional view
of the ways students can engage with Radix in Figure 2. We
can naturally interpret the intersections of the Venn diagram
as students who engage with several dimensions of the model.

We present now the process and steps taken to design and
select the final metrics of the model that we present later in
the Section:

1) Formation of a team between Radix designers, learning
analytics researcher and learning scientist, that have deep
knowledge of Radix to understand the dynamics of the
game.

2) Team brainstorm to design metrics that can reflect the
original pedagogical intentions of the Radix designers
for each dimension.

3) Technical implementation of metrics constrained to the
actual data available. Some metrics were not feasible in
practice.

4) Intra-dimension feature selection process within each
one of the categories, removing the most redundant
features. Cross-dimension correlations between metrics
might exist, but are not considered as part of this
selection.

This last stage generated the final selection of dimensions
and metrics that are included in the multidimensional model,
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Fig. 2. Multidimensional view of how students can engage with Radix.

which are described in the following Sections. In addition to
these metrics, we use percentage of correct quest attempts
(p_correct) as a measure of performance or efficiency of
the student solving quests.

A. General Activity Metrics
The general activity of players in terms of time:
• Active time (active_time): Measure of the in-game

active time in minutes with an inactivity cutoff.
• Number of active days (n_active_days): Number

of different days that an account logged into Radix.

B. Social Metrics
These metrics capture different actions that students can do

to socialize and interact with peers within the game:
• Number of zone chats (n_zone_chats): Number

of zone chat messages sent by the avatar. Zone chat
messages can be read by all players within the same zone.
Figure 1a shows an example of learners interacting with
zone chat.

• Number of private chats (n_private_chats): Pri-
vate messages sent to others through party chats (chats
only open to users within the same party) and mail
messages (private messages to a single user). This metric
measures the total number of both of these chat message
types.

• Average number of characters per chat message
(chars_per_chat): This metric is computed by divid-
ing the total number of messages for a player by the total
number of alphanumeric characters of those messages
providing the average length of the chat messages for
a player.

• Number of parties (n_parties): Number of parties
that a student has joined. In Radix, a party is a way of
grouping together with a few other players to enable small
group chat and sharing of in-game data.

C. Exploration Metrics

These metrics indicate the degree of interaction with the
available tools and the world of Radix:

• Percentage of different zones (p_zones): The world
of Radix includes 28 different zones that students can
explore and visit. Each zone contains different NPCs.
There is also a world map available for players to know
how to travel to a desired area. This metric measures the
percentage of different zones visited by a given avatar.

• Percentage of different tool events (p_tools): There
are 19 different tools or actions that a player can experi-
ment within the Radix world in order to solve quests and
learn STEM content. This metric measures the percentage
of tools that the avatar has used.

• Number of tool events (n_tool_events): This metric
n_tool_events provides a summation of all the tool
events triggered by a student that indicates a degree of
experimentation with all of the available tools.

D. Quest Metrics

These metrics describe interactions with the quest system:
• Percentage change quest chain (p_quest_change):

Radix quests do not have to be completed in a single,
linear sequence, and students are free to jump from one
quest chain to another. This item measures the percent
of changed quests relative to how many quests a student
completed.

• Percentage of quest action focus (p_quest_focus):
This measures the percent of events completed that were
quest-related relative to events completed that were not
quest-related, for each solved quest. The interpretation
is that a lower percentage of p_quest_focus might
indicate students experimenting with the different tools
either to find the solution or simply out of interest, or it
could be due to confusion on how to actually reach the
desired outcome.

• Percentage of completed quests (p_completed): This
metric provides a percentage of the number of quests that
have been completed by the student in Radix.

V. EXPLORATORY ANALYSIS OF THE ENGAGEMENT
METRICS

This section explores the results after applying the scripts to
compute the metrics in the data collection reported in Section
III-C. First, we look at the distribution of the metrics by
account type in Section V-A, a cross-sectional analysis of the
demographics in Section V-B, and last some insights about
correlations in Section V-C.

A. Distribution of Metrics by Account Type

Figure 3 shows a graph with a boxplot distribution separated
by account type, which can be used to both depict a global
overview for each metric but also to compare the two cohorts.
We have limited the y-axis to a value of 300 to remove outliers
and facilitate a better visualization, but outliers are included
when generating all reported stats and analysis. The name
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Fig. 3. Boxplot visualization of the distribution of all metrics separated by type of account.

of the metric is on the top of each boxplot and the box
color indicates the type of metric as described in Section IV.
A visual exploration can allow easy detection of differences
in some metrics and a Multivariate Analysis of Variance
(MANOVA) confirms that the metrics of both cohorts have
significantly different means (F = 54.72, p < e−16). A more
in-depth look into the significance of each one of the metrics
using simple one-way ANOVAs reveals the following findings:
for the general activity metrics, the amount of active_time
is significantly different (F = 20.04, p < e−6) with a mean
of 6.1 (in-school) vs 5 (out-of-school) hours invested, and
n_active_days is also significant (F = 140.78, p < e−16),
with a mean of 9 (in-school) vs. 4 (out-of-school) active days.
In-school students and out-of-school learners were active for
a similar amount of time, around 5-6 hours, but in-school
students were active on average twice as many days than out-
of-school learners. Interestingly, this activity difference did
not lead to more exploration as these three metrics do not
show a statistically significant difference between the groups.
Additionally, out-of-school learners had significantly higher
p_completed (F = 9.35, p = 0.002). This difference
in performance could be related to age or prior knowledge,
though such conclusions cannot be drawn with confidence
since we do not know the demographics of out-of-school learn-
ers. Another possibility is that the more frequent quest chain
changes for in-school learners (p_quest_change, F =
138, p < e−16), can have an impact in their p_completed
progress, either diminishing it or suggesting an underlying
problem (e.g., frustration, disinterest) that caused a pattern
of regularly abandoning quest chains to start new ones.
Finally, in-school students were more social, with higher
n_zone_chats (average of 24 vs. 7.3 public messages, F =
5.43, p = 0.019), n_private_chats (average of 5.5 vs. 0.8
private messages, F = 14.7, p = 0.0001), and n_parties
(average of 0.9 vs. 0.3 parties, F = 27.64, p < e−7), but

there was no difference in terms of chars_per_chat. One
surprising finding when facilitating the use of Radix in classes
is that students would frequently use the chatting functionality
of the game to talk with friends, even when they could also
speak to them face-to-face. This translates to much higher
levels of social activity within the cohort of school students.

B. Cross-Sectional Analysis of Demographics

In this section we perform a similar cross-sectional analysis
as before, but using demographic variables to see how gen-
der and class grade influence significant differences in how
students engaged with the game.

First, in terms of gender, a MANOVA test also confirms
differences in the engagement when comparing female and
male students (F = 18.15, p < e−16). If we unpack these
differences (see Figure 4), the most interesting results indicate
that both cohorts invested similar time and completed similar
number of quests (active_time and p_completed), but
female students have an average p_correct of 67.31%
compared to 63.9% for male students (F = 46.89, p < e−12).
Additionally, n_tool_events average is 154 vs. 183 for
female and male students respectively (F = 13.24, p =
0.0002), even though p_tools used are about the same.
So male students performed more tool exploration and had
a lower ratio of correct responses than their female coun-
terparts, despite the fact that both groups invested a sim-
ilar amount of time and completed a similar amount of
quests. Finally, the social activity of the average male stu-
dent in terms of n_zone_chats, n_private_chats,
chars_per_chat, and party_joined doubles the level
of activity of the average female students, being statistically
significant for all metrics except for chars_per_chat.
Previous studies have also found female students to be less
socially active in online learning environments [36].
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Fig. 4. Boxplot visualization of the distribution of all metrics separated by gender.

Fig. 5. Boxplot visualization of distribution of all metrics separated by class grade.

Second, we explore the changes in the engagement metrics
using class grade as a cross-sectional variable (see Figure
5), which is also statistically significant according to the
MANOVA test (F = 32.54, p < e−16). We analyze these
differences in terms of the grade progression, from younger
to older ages, so that we can provide a qualitative meaning to
these differences. We find that all class grades had a similar
active_time but that younger students were active for
more days (n_active_days, F = 89.07, p < e−16). All
class grades have similar p_completed, but older students
have a significantly higher p_correct (F = 9.39, p =
0.002). Accordingly, all class grades reached a similar level of
progress within Radix, but older students did so with a higher

correct ratio and were able to solve quests faster. Finally, all
social metrics are also statistically different, showing a trend
were young students were much more socially active within
Radix than older students.

C. Correlation Analysis

Figure 6 shows a correlation matrix visualization where
the color codifies the value of the correlation. Uncolored
cells mean that the correlation is not significant. Most of
the correlations follow the typical positive pattern where
doing more, means more, i.e., a higher active_time
or n_active_days implies more p_completed or
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Fig. 6. Correlation matrix visualization of engagement metrics.

n_zones. However, there are a few details that are interest-
ing. First, the correlation of general activity metrics with social
metrics is low, which means that the social dimension does not
strongly depend on the time spent within the game environ-
ment, but instead is more related to learner interests. Another
interesting but low correlation is between p_quest_change
and p_correct (-0.18), which would imply that changing
quest chains frequently might have a negative impact on the
performance of students.

VI. CLUSTERING ANALYSIS

The results of Section V showed that there are a number
of variables that have a heavy influence on the type of
engagement shown by students using Radix. In this section, we
want to obtain higher level profiles of engagement by applying
clustering so that we can analyze each cluster separately. We
utilized the following steps:

1) We use k-means as the clustering algorithm, a common
approach when using a set of continuous variables
as input. We use as input all the variables from the
four dimensions: general activity, exploration, social and
quest.

2) One of the issues of k-means is the selection of the
appropriate number of clusters. We run k-means with
k values from 1 to 15 and use the common elbow
technique [37] to make the selection based on the within-
clusters sum of squares change for each k value.

3) Based on the elbow technique, we finally select four
clusters and apply k-means. We qualitatively describe
each of the clusters and perform Pearson’s Chi-squared
test to see if the cross-sectional variables (type of
account, gender, and class grade) have an effect in the
distribution of clusters.

Figure 7 shows the distribution of variables by each cluster.
Next, we perform a qualitative analysis of each one of these
clusters:

• Cluster 1 (9.53%): The smallest cluster in size rep-
resents the cohort of learners with the highest levels
of engagement with all variables related to the gen-
eral activity (average active_time of 14.72 hours
and n_active_days of 18.45 days), exploration, and
quest progress (average p_completed of 38%). They
strongly engaged socially as well, with the highest num-
ber of n_private_chats and n_parties. However,
the number of n_zone_chats is smaller than Cluster
4, so they communicated in a more private way with
their party members. Perhaps it was this strong social
interaction with other peers and numerous parties that
kept them engaged long enough to achieve the high-
est p_completed of all clusters. All of the metrics
are also higher than students in Cluster 2, except for
p_quest_focus, which is slightly lower. Therefore,
we can define this cluster as the “integrally engaged
learners,” that engaged with all the dimensions of Radix.

• Cluster 2 (46.9%): The second cluster of learners is
the largest in size, and thus the most representative.
They have invested a similar amount of effort as Cluster
4 (around an average active_time of 6 hours and
n_active_days of 8 days), higher than Cluster 3 but
lower than Cluster 1. However, they had slightly higher
exploration metrics and they completed more quests (an
average p_completed of 15.5% vs 7%) than Cluster
4. Moreover, the key difference with Cluster 1 and 4 is
that they barely engaged in social activities of any kind.
Therefore, this cluster of learners engaged with the quest
and exploration dimensions, but not socially, thus we can
define them as “lone achievers.”

• Cluster 3 (28.23%): This cluster of learners put in the
lowest effort (around an average active_time of 3.6
hours and n_active_days of 5.6 days). Moreover,
they have the lowest exploration metrics and they did not
engage socially with other peers. Their interaction with
the quest system had very low quest_focus and low
p_completed. Therefore, this cohort of learners put in
the least effort and had the lowest engagement with any
of the dimensions, hence we define them as the “non-
engaged learners.”

• Cluster 4 (15.33%): As we already reported, this Cluster
had similar activity metrics to Cluster 2 but they had
a lower value of p_completed, and they were very
active socially, whereas learners from Cluster 2 did not
engage socially at all. In fact, they have the highest
value of n_zone_chats, so they have been talking
publicly very often. However, the type of social activity
they performed differs from the learners of Cluster 1, in
that learners of Cluster 1 engaged more through parties
and private messaging, while learners from Cluster 4
engaged more through the public chat. This might explain
another key difference in chars_per_chat; the kind
of messaging used by Cluster 4 learners was much
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Fig. 7. Boxplot visualization of distribution of all metrics separated by cluster. The two performance metrics were not used as part of the clustering intput
variables.

shorter in terms of character length, and potentially more
trivial. Moreover, learners from Cluster 4 have the highest
p_quest_change and much lower p_quest_focus
than learners from Clusters 1 and 2, therefore their
interaction with the quest system likely lacked focus and
they were mostly exploring. The last tipping point is
that they have the lowest p_correct of all clusters.
Consequently, learners from Cluster 4 engaged socially
and explored the world of Radix, however, they did not
seriously advance or engage with the quest system, and
we therefore define them as “social explorers.”

Next, we look into how these clusters are distributed among
the three cross-sectional variables that we have explored so
far. We report these results in Table I, where we can see
the positive significance of all of the Chi-squared tests, which
indicates that the cross-sectional variables have an influence in
how clusters are distributed. Each one of the columns contains
the percentage of learners in each cluster for that value; this
allows us to compare the percentage frequency of learners
in each cluster for each cross-sectional variable value. First,
in terms of account type, we can see that the percentage
of out-of-school learners within the non-engaged cluster is
higher by 20% and that the social explorer profile is a more
frequent cluster for in-school students. For gender, as a cross-
sectional variable, the social explorer cluster is more common
for male students while lone achiever is more common for
the female. Finally, for class grade, it is a bit harder to detect
these kinds of qualitative changes, but we can see how the
lone achiever profile is more common from 8th to 10th grade
and that non-engaged learners are most common in 6th, 11th,
and 12th grade. Radix was designed to present players with
multiple entry points and multiple layers of interaction, with

a balance between guided quests and open-ended exploration.
The emergence of these four clusters which are distinct but
also have overlapping characteristics shows that players are in
fact bringing their unique play styles and learning preferences
into the game experience, and that the environment enables
them to demonstrate that.

VII. DISCUSSION

A. Interpretation and Application of Results

This work is motivated by the fact that GBL has been
gaining importance over the last decade and one of its main
virtues is the capacity to keep students deeply engaged with
their learning process. However, relatively few studies have
focused on how to measure the engagement of students
based on in-game metrics in the context of a learning game.
Therefore, our motivation in this work has been to propose
a multidimensional view of engagement, where some learners
might engage with some dimensions and other learners with
others in the context of GBL. We proposed a transverse di-
mension in terms of global activity levels, and then qualitative
dimensions for exploration, social, and quest activity. We argue
that although we have designed the metrics for each dimension
targeting Radix, these dimensions are generic enough that
the model could be applied with some adaptations to other
learning games and that our framework could be adapted in a
different context as follows:

• The general activity would measure the time or effort
invested in the game.

• The exploration dimension measures how many and often
the game activities/features have been used.

• The quest dimension can be mapped to the interaction
with learning activities, content or achievement.
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TABLE I
CLUSTER PERCENTAGE FREQUENCIES BY EACH ONE OF THE CROSS-SECTIONAL VARIABLE VALUES

Cluster
Account type

(X2 = 114, p < e−16)
Gender

(X2 = 46, p < e−16)
Class grade

(X2 = 359, p < e−16)
In-school
student

Out-of-school
learner Male Female 6th 7th 8th 9th 10th 11th 12th

1: Integrally engaged 9.25% 12.92% 9.70% 8.70% 14.11% 8.75% 4.36% 9.75% 7.88% 5.58% 10.57%
2: Lone achiever 47.61% 38.53% 43.99% 52.03% 35.05% 43.31% 48.91% 65.81% 54.18% 37.56% 43.09%
3: Non-engaged 26.76% 45.66% 27.37% 26.01% 37.66% 26.41% 28.00% 15.71% 18.65% 37.06% 29.27%

4: Social explorer 16.38% 2.90% 18.94% 13.26% 13.18% 21.53% 18.74% 8.73% 19.29% 19.80% 17.07%

• The social dimension measures if students socialized with
other peers (and if the game does not contain a social
component, a multimodal approach using audio and video
in classrooms could be attempted).

Some other contexts might offer simpler or more complex
multidimensional models.

We believe that in these new forms of learning and assess-
ment, it is crucially important that we can not only measure
to what extent students are engaging with these open-ended
environments, but also characterize in what ways they are en-
gaging. As education shifts its focus from content knowledge
to skills and competencies, more attention needs to be paid
to how those skills look when applied to authentic contexts,
and how to support different learners in building those skills.
Formative assessment tools that can paint a picture of how
students engage and how their engagement changes over time
can be highly informative for teachers to guide their students,
and for students themselves to reflect on their own affinities
and goals. For example, a student might be categorized as
adopting a lone achiever approach in the first semester of a
biology course, and if some of the learning goals for the year
are collaboration and communication, the teacher might elicit
examples of how other students are collaborating, highlighting
how essential these competencies are in the workplace, and
helping the student reflect on why they may not be as comfort-
able working with classmates. As the school year goes on, the
teacher could get regular progress updates in the form of dy-
namic profile characterizations. If the teacher sees that, after a
certain unit, the student has shifted to a stronger social explorer
profile, the teacher can then recognize the student’s efforts
to leave their comfort zone, build new skills, and help the
student set new goals for continuing to build these and other
competencies. With this richer model of formative assessment,
we are not judging different students as further ahead or falling
behind; rather we can recognize their differences and meet
each learner where they are. Tools for game-based learning
that find patterns in player behavior could be built based on
the methods described in this study, and would enable teachers
to encourage mid-course play-style changes to broaden student
learning, as well as enabling educators to value and support
more abstract competencies and reflection. Combining this
with more traditional data on achievement and content-specific
ability could provide teachers with a much more well-rounded
picture, enabling them to teach the whole learner.

The insights we get from the clustering methods described
can also be valuable for a data-driven design approach. In the
case of Radix, designers wanted the game to feel personal-

izable in a variety of ways. One is that there are different
ways to solve a given quest depending on the tools and
strategies players choose to use, and those pathways have
in fact been observed in player data on genetics quests.
Another area of player choice is in varying goals: players
can choose to complete sequences of quests, or explore the
world according to their own interests. The results of this
study show that is in fact occurring to some degree, and
depending on the pedagogical goals, the game mechanics and
quest designs could then be tweaked to adjust the balance of
these play styles. Beyond Radix, these methods could inform
the design of future learning environments that might have
specific intentions about creating an experience that was very
social and collaborative, or very exploratory for example.
Connecting the interaction design features that facilitate and
motivate players to have certain experiences enables the learn-
ing design community to create more targeted interventions
that build certain types of skills. By the same token, correlating
types of interactions and features with experiences that elicit
relevant behaviors and cognitive processes is of interest to
learning science researchers who want to better understand
how people learn skills and practices that have not been
thoroughly studied. We can see from these examples that the
results of clustering analysis of player actions can be useful
for a wide variety of purposes and for multiple stakeholders,
including game designers, learning scientists, educators, and
learners themselves.

B. Learning and Theoretical Implications

Beyond individual student experiences and reporting and
feedback to stakeholders, this work has implications for
understanding how students learn from and react to game
environments more broadly. Multiple authors have brought up
how badly designed virtual learning environments can trigger
undesired behaviors from students. Cheating using the learning
feedback from the platform in massive open online courses
[38], gaming the system in intelligent tutoring systems [39],
or how extrinsic motivators like badges can make students
be more interested in an external reward than in actually
learning [40] are all examples of off-task behaviors that have
been shown to often lead to poorer performance on learning
outcome measures.

The kind of analysis presented here is important for learning
in at least three ways. First, it is important for the design
of learning environments, as measures of engagement can
allow us to better understand the degree to which the design
of the game is aligned with actual game play and to better
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understand the ways that different learners play the game. As
engagement is important to learning, the design of educational
games can be improved through better adjusting games to
players in order to ensure that it is appropriately engaging
for the target audience. Second, while some of the measures
of player engagement provided here seem to be better than
others, providing a more complex view of player engagement
that accounts for different ways or times that players may
be engaged is necessary for individualizing learning, either
through the design of the game or the implementation model,
which can have a big impact on students’ engagement and their
learning experience. Measures that provide increasing nuance
to player activity can be useful for being more fair regarding
what “counts” as good or engaging game play. Finally, en-
gagement is only one of the constructs that can be assessed
through analysis of in-game play, and other theoretical ap-
proaches using similar methods might yield interesting results.
Attention, for example, has been shown to mediate or improve
in the context of some game-based learning environments (e.g.,
[41]), and further work linking attention to in-game activity
in this way may be helpful for connecting attention to the
learning of content embedded within a game.

In this study, we have found four clear engagement profiles
that we have defined as: “integrally engaged,” “lone achiever,”
“social explorer,” and “non-engaged learners.” Some of these
profiles have similarities with Bartle’s taxonomy [42] for
Multi-User Dungeons (MUDs), where he reported four main
player profiles: achievers, killers, socializers, and explorers.
Bartle’s taxonomy and other studies of player types [26] based
on psychological constructs measured through surveys taken
outside of the context of play have recently been applied to in-
game telemetry measures and learning outcomes. For example,
[43] found that alignment between game players’ preferences
and game type was positively associated with gains in student
interest, supporting the customization of game play to player
preference in education contexts. While Bartle and others have
assumed that these dimensions are independent, our view is
that at a higher level or perhaps as enacted during game
play, we can find profiles of players that engage with multiple
dimensions at the same time. For example, the social explorer
is a player who interacts with the world and other players
simultaneously. This dynamic and multi-layered perspective
on player behavior and player types provides a theoretically
provocative avenue for further study, suggesting that at least
in some cases, a static and singular view of player types fails
to adequately capture how a game is played. It is unsurprising
to think that players may vary between multiple different
play styles throughout game play, especially as they exercise
different preferences or strategies for success.

Further, while more data-intensive studies of differences
in player activity have been carried out in the context of
commercial games, this prior work is largely in pursuit of
commercial aims, including diagnosing design problems [44],
improving player retention [45], or improving the player
experience [46]. Data-driven differences in player engagement
profiles have not yet been well-connected to player learning,
documented in the context of educational games or related
to other measures and profiles of student engagement [15].

This study provides a first and necessary step for creating
this bridge, as differences in game play profiles can be useful
for assessing student progress in ways that accommodate such
differences, for nudging students out of undesired engagement
styles (e.g., disengagement) and modifying the game design
to maximize learning opportunities based on differences in
individual play styles.

Finally, it is worth noting that the engagement profile clus-
ters found in this study can be influenced by the circumstances
under which they played. For example, the time and days
played should be considered relative to students’ contexts, as
parents and teachers likely had significant impact on when
and how often students were able to play the game, and
this might have influenced “integrally engaged” learners. If
teachers encouraged the use of in-game features to commu-
nicate with other peers, that might boost the prevalence of
“social explorer” learners, instead, if teachers recommended
students to be quiet and focused, or to interact with their
peers through talking, this could make the “lone achiever”
profile more common. Finally, if teachers recommended to
use the game only as a supplementary learning environment,
the “non-engaged” profile could be frequent in that class.
Therefore, teachers and parents need to consider how they
present and structure time for game-based learning, and in
this study it is unclear how external factors like time allowed
and directives given influence engagement, or vice-versa. The
measures developed here would enable future studies on Radix
or other games to shed light on the relationship between a
selected implementation model and engagement.

C. Technical Contributions and Technological Implications

On a more granular level, research on learning through
games and classroom implementation of game-based learning
must be supported with specific data analysis methods and
assessment metrics. One challenge of conducting game learn-
ing analytics is being able to find ways to extract meaningful
information from large datasets that sometimes collect all
interactions of players with the game [47]. In this work, we
have defined a number of engagement metrics in different
dimensions that we hope will inspire others grappling with
how exactly to use the oceans of data being collected. Here
we explain the design and selection process that we have gone
through in order to develop the measure of engagement.

Our findings suggest that people engaging in games for
learning might interact differently depending on the charac-
teristics of the game feature. Player differences and prefer-
ences typically accounted for in entertainment game design
should also be taken into account as part of the design and
development of games for learning. One way to do so is
by applying a top down approach using Evidence-Centered
game Design (ECgD) [48], where we can define a number of
dimensions that we want to measure with the game, design
features that can generate evidence of those dimensions, and
then mechanics in the game that will facilitate players to
interact with such features [49]. Based on this research, you
should expect that some players will tend to engage more
naturally with some of the dimensions than others, and so,
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designers could introduce game mechanics to try to balance
that if desired, e.g., in the case of Radix, we could introduce
quests that require players to socialize with other peers to be
completed, or require them to explore the world of Radix.
In this way, we can intertwine several dimensions together.
One typical application to make these indicators available to
instructors is to make dashboards so that they can visualize
what students are doing within a virtual learning environment
in order to adapt their practice or intervene to help an issue,
which is certainly applicable in game-based learning analytics
as well [47]. However, some dashboards show very isolated
measures and teachers struggle to interpret them [50]. In this
direction, a richer multidimensional model is important as it
can help to put together a more accurate and nuanced measure
of student activity and learning. These dimensions can be
helpful for the organization of the interface in different key di-
mensions to facilitate interpretability, e.g., one previous study
on dashboards in online courses organized the interface around
three dimensions, “exercise indicators,” “video indicators,” and
“course activity indicators” [51]. This multidimensional study
based on game trace data can be perfectly complemented
by additional data obtained from other tracking technologies
and processed via multimodal learning analytics approaches.
We believe that there is a lot of potential especially in the
following two directions:

• To improve the quality of the engagement measurements
using additional data sources besides game trace data; for
example, including electrodermal activity [52] or emotion
detection based on gestures [53]. These additional signals
can help validate engagement metrics based on trace data
so that we can develop more robust models. Additionally,
this analysis could discover how biometric and emotion
signals change when players interact with the different
dimensions of the game.

• To extend the type of player interactions that we are able
to capture with data sources from the physical world such
as video and audio. This approach can help to augment in-
game interactions with physical world interactions, so that
we can know if a student is talking to another one, went to
play together with a friend at their desk, and so on. This
can help validate and improve the trace data measures:
for example, it might be the case that some students do
not engage socially within the game because they are
socializing with their peers in the physical world while
they are playing, and we can thus improve the social
dimension engagement measures with these additional
data sources.

The goal in pursuing this type of multimodal data collection
and applying new methods of analysis to game-based learning
is to be able to take advantage of trace data to understand
how both learners in general and individual learners can be
supported in their learning of key competencies and 21st cen-
tury skills. This work necessitates bringing together specific
technical approaches with overarching learning theories, as we
have begun to do in this study.

VIII. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We believe that supporting learning engagement and evalu-
ating learning experiences depends significantly on the ability
to measure learner engagement, which might be especially
challenging in open-ended worlds like Radix. This study
focused on proposing a multidimensional view of engagement,
based on social, quest, and exploration qualitative dimensions,
and a transverse one regarding general activity. We then
explored the results of the implementation based on the main
engagement profiles that we defined as “integrally engaged,”
“lone achiever,” “social explorer,” and “non-engaged learn-
ers.” We concluded by extensively discussing the educational
applications, and the technological, learning, and theoretical
implications. Our findings could be used in the future to
design learning games that are appropriate for each cohort
and combine multiple dimensions, new learning technologies
that can support learner engagement, and new case studies or
theoretical research directions encouraged by our results.

We would also like to acknowledge a number of limitations
of this work, the foremost being that since this is retrospective
exploratory analysis based only on data traces, we cannot
establish any confirmatory reasons of the results that we report,
where more experimental approaches could be more helpful.
In general, we are blind to a number of contextual factors
about how teachers implemented and students used Radix from
class to class, details such as how much in-class time teachers
gave to students, how many different sessions, if they worked
individually or not, or how the game contents where embedded
in the rest of curriculum, are unknown to us; future studies
can aim to understand the impact of how teachers implement
games in the classroom in how students engage with the
game. Additionally, it is worth noting that we used the typical
elbow technique to find the appropriate number of clusters and
limited the number of metrics per cluster, therefore a higher
number of clusters or additional metrics per dimension could
provide more granularity in the engagement profiles that could
be found. And so, for these reasons, our recommendation is
not to focus so much on the exact numbers or statistically
significant results, that could vary from one study to another
due to different factors, but more on the qualitative findings,
where we report on distinct multidimensional engagement
profiles, and how these metrics and profiles change across
a number of cross-sectional variables. We believe that the
lessons learned that we report, can play a significant role in
the implementation of case studies, design of new learning
games and future research, as we extensively described in the
discussion.

As a part of future work, we would like to better connect
in-game metrics with player outcomes such as learning gains
and self-efficacy. Previous work in the area [54] has used
behavioral metrics to predict learning gains and investigate the
individual effect of such metrics in how much a student learns;
we would like to replicate those analyses in a Radix pilot study
by using the pre- and post-tests that many school students
completed. We would also like to investigate the impact of
providing this information to teachers and students, particu-
larly to improve students’ awareness of their own learning
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processes and teachers’ classroom practices. We would also
like to delve into investigating if these game environments,
used in school classes, can help improve the performance of
those students that suffer from anxiety in class, or facilitate the
socialization of shy students with other peers through activity
in the virtual world. Future work should plan on combining
trace data from the game with other external data sources
like tracking wearables, audio, or video. The multimodal
combination of these different data sources can create much
richer and complex models to help understand the interplay
between all these signals, and how to use them to improve
learning within this educational context.
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