
Complex Systems and
Agent-Oriented Software Engineering

Juan Pavón1, Francisco Garijo2, Jorge Gómez Sanz1

1Dep. Ingeniería del Software e Inteligencia Artificial
Universidad Complutense Madrid

2Telefónica I+D

http://grasia.fdi.ucm.es

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 2

Points of discussion

How Agent Oriented Software Engineering (AOSE)
contribute to the development of complex software
systems?

Better than other paradigms?

Do we have examples?

How to measure this?

The gap between academia and industry

How can AOSE get more acceptance?

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 3

Doing software engineering – the Academic way

The scientist
Collects and contrast information

• Journal and conference papers, books, …

Synthesis of papers and experimentation
Results: modeling languages, methodology, examples, some
tools, PAPERS

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 4

Doing software engineering – the Industrial way

The engineer
Analyses, designs, implements, tests

• Systems, services, applications

Synthesis of successful practices
Results: products, recommendations, practices, tools,
reports (almost no papers, scarce dissemination)

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 5

Focus areas

Analysis

Implementation

Project Management

Resources

Design

Testing

Formal

Verification

Versioning

Team work

AOSE

Industrial
practice

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 6

What about other approaches

Component based frameworks (J2EE, .NET, etc.)
Model Driven Software Development
Aspects
Software Product Lines
Service centric systems
…

These should be integrated with AOSE

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 7

Some issues towards AOSE integration

1. The role of MAS in the development of complex systems
2. Agent-based Software Architectures
3. Agents in the Software Process
4. Metrics of Agent-based Software

There are many other issues

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 8

MAS for the development of complex systems

Software engineering as a reaction to the software crisis
(late ’60)

Machines have become several orders of magnitude more
powerful [Dijkstra 1972]
Waterfall process model, formal methods, structured
programming, software metrics, …

Centralized
(monolithic)

I

O

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 9

MAS for the development of complex systems

Evolution to object oriented computing
Networking
Graphical user interfaces

Objects, client-server, interfaces, …

Centralized
(monolithic)

Distributed
(multi-components)

Computers+Communications

I

O

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 10

MAS for the development of complex systems

Evolution of complexity in the environment
From one-to-one interactions to many-to-many interactions

• Many parallel sessions
• Some interactions may depend on others (e.g. negotiation for

best offer)

Partial knowledge of context
• Continously changing, partially observed, partially understood
• Example: Which services are available, how to access them,

what quality of service, …

Bounded rationality
• boundedly rational agents experience limits in formulating and

solving complex problems and in processing (receiving, storing,
retrieving, transmitting) information [Herbert Simon]

Uncertainty
• Resources availability, failures, security risks, …

New opportunities
• More service providers, more clients

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 11

MAS for the development of complex systems

Complex environment requires ability to adapt
Centralized control: Dependent => Objects

• Predefined behaviour, ad-hoc mechanisms
• Subject to communication failures
• Subordination

Distributed control: Autonomy => Agents
• Ability to act locally
• No global knowledge
• Cooperation

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 12

MAS for the development of complex systems

Other important environmental aspect:
the development process perspective

Multi-disciplinary teams

Continous evolution of software products

Customization of products

Organizations

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 13

Agent-based Software Architectures

Patterns
From idioms that shape the use of a particular programming
language to mechanisms that define the collaboration among
societies of objects, components, and other parts
[Booch, Handbook of Software Architecture]

Cumulative experience of software practicioners
Reuse of well-proven solutions

A system architecture enforces the use of a set of patterns
Behaviour principles
System structure
Separation of concerns
Guideline for identification of relevant system features and
application of patterns

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 14

Agent-based Software Architectures

What agent-based architectures?
Micro level: Classical agent architectures

• Reactive, cognitive, hybrid

Macro level: Organization architectures
• Emergent vs. Predefined organizations
• Electronic institutions, Gaia, INGENIAS, TAEMS, AGR, AMAS, …

They have to be usable, replicable, flexible, robust

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 15

Agent-based Software Architectures

Classical examples
[taken from M. Wooldridge,
Intelligent Agents, in G. Weiss
(ed.) Multiagent Systems-A
Modern Approach to Distributed
Artificial Intelligence, MIT Press
1999]

Generic BDI architecture

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 16

Agent-based Software Architectures

Classical examples
[taken from M. Wooldridge, Intelligent Agents, in G. Weiss (ed.) Multiagent
Systems-A Modern Approach to Distributed Artificial Intelligence, MIT Press 1999]

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 17

Agent-based Software Architectures

Examples [taken from this conference]

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 18

Agent-based Software Architectures

Examples [taken from this conference]

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 19

Agent-based Software Architectures

Examples [taken from this conference]

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 20

Agent-based Software Architectures

Examples [taken from this conference]

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 21

Agent-based Software Architectures

An example of pattern application: TID Agent Framework
This is the result of cumulative experience,
implementing several agent-based applications:

• Cooperative working system for network bandwidth negotiation
• Project network management for IN services development
• Flight notification system (MESSAGE project)

• Reactive and cognitive agent architectures
• Communication session mechanisms
• Planning

• Web service personalization
• On-line discussion and decission making

• Scalability of the cognitive agent model
• Agent management

• Voice recognition services
• Refinement

Currently being used in two European projects: SECSE and
MOMOCS

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 22

TID Agent Framework

Basic principle

An organization made up of agents and resources

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 23

TID Agent Framework

Two layers architecture

Control layer: Agents (controller components)
• Managers: service mngt
• Specialists: service functionality

Similar interfaces and structure
But different roles

Resource layer: Resources
• Persistency
• Registry
• Visualization
• Support functionality

Control

Resources

uses

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 24

TID Agent Framework

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 25

TID Agent Framework

Management Patterns (life-cycle, management
organization)

Every component has a management interface
• Developers are forced to make manageable components

Management components (agents) provide a reusable way to
cope with common problems

• Installation
• Configuration
• Monitoring
of agents and resources

The framework takes care of them

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 26

TID Agent Framework

Management Patterns
cd EstructuraOrganizacion

gestores

+ gestorAgentes
+ gestorOrganizacion
+ gestorRecursos
+ GestorAgentes
+ GestorOrganizacion
+ GestorRecursos

infraestructura

+ InterfazGestion
+ PatronAgenteC ognitivo
+ patronAgenteReactivo
+ componentesBasicos
+ configuracion
+ patronRecursoS imple

agentesAplicacion

+ agenteReactivoPrueba
+ E jemploAccesC onC ognitivo

configuracion

+ C onfiguracion
+ configuracionAgentes

(from infraestructura)

dominio

Añadir clases
de dominio

recursos

+ C omunicaciones
+ repositorioInterfaces
+ trazas
+ visualizacionPrueba

Añadir recursos
específicos

Añadir agentes
específicos

Añadir fichero
de
configuración

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 27

RectiveAgentStructure

Reactive Agent

UseInterface ManagementInterface

Perception

ProducerInterface

ConsumerInterface

percepcion
+ ExcepcionSuperadoTiempoLimite
+ ImplPercepcion
+ ItfConsumidorPercepcion
+ ItfProductorPercepcion
+ buzon

EventQueue

UnicastRemoteObject
ImplAgenteReactivo

- serialVersionUID: long = 1L
control: ImplControl
itfGesControl: InterfazGestion
itfConsumidorPercepcion: ItfConsumidorPercepcion
itfProductorPercepcion: ItfProductorPercepcion
perception: ImplPercepcion
nombre: String# estado: int = InterfazGestion...
accionesSemanticas: AccionesSemanticas
DEBUG: boolean = false
+ ImplAgenteReactivo(Object, String, String)
+ aceptaEvento(Object) : void
+ arranca() : void
+ continua() : void
+ monitorizacion() : int
+ para() : void
+ printOutThreadGroups() : void
+ termina() : void
clasificarEvento(Object) : void

Control

ControlUseInterfaceControlManagementInt

buzon
+ Buzon
+ EventoTimeout
+ ExcepcionTimeOutSuperado
+ Timer
+ Itf_ConsumidorBuzonTimeout
+ Itf_ProductorBuzonTimeout

control
+ EventoControl
+ ImplControl
+ ItfGestionControlGestor
+ ItfUsoControlGestor
+ automata

FiniteStateAutomata
automata

+ AccionesSemanticas
+ AutomataControl
+ ConversionDeEventosEnInputs
+ EventoInput
+ funciones
+ Operacion
+ TablaEstadosControl
+ XMLParserTablaEstados
+ ItfUsoAutomata

Configuration
Monitoring

configuracion
+ Configuracion

monitorizacion

+ HebraMonitorizacion

UseInterface

realize realize

ConsumerInterface ProducerInterface

TID Agent Framework

Agent Patterns: Reactive agent pattern

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 28

TID Agent Framework

Agent Patterns: Cognitive agent pattern
id C o m p onent V ie w

P a tronA ge nte C o g nitivo

P ro ce sa d o rC o no c im ie nto

C o ntro lC o g nitivo

ItfC ontro lC o gnitivoC o ntro l

C o n tro lC o gn itivo A b stra c to

Im p

F a cto ria C o n tro lC o gn itivo

M o to rInfe re nc ia

ItfM o to rRe g la sD ro o ls

G e sto rTa re a s

IntfTa skM a na g e r

E ntid a d esB as ica s

G e sto rTa rea s

G es tion

Inte rfa zG e stio n

P e rcep c io n

ItfP e rce p c io nA g e nte

ItfO b te nc io nC re enc ia s

P e rce pc io n

Im p

F acto riaP e rce p c ion A g e n te

P e rce p c ion A g e n te A b strac to

Ta re a sB á s icas

O ye nte M e m o riaTra b a jo

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 29

TID Agent Framework

Agent Patterns: Cognitive agent pattern
ad CicloBasicoFuncionamiento

Goal Resolution Engine

Rule Engine

PerceptionEnvironment

Appl Resource
Send
Event

Communication
Resource

Send
Message

Generate
Evidence Asimilate

Evidence

Check Goal
resolution

Check
Focalization
conditions

Process
Perceived Item

Check TaskExecution
Conditions

Task
Send Event

Filter

Evidence Queue

Decode

Change
Focus

(::)

Execute
Task
(::)

Solve Goal
(::)

Environment
Info Queue

Process New
Evidence

Get
Item

queued
Evidence

Send to Goal
Res Eng

Process
item

queued
item

Get new
Evidence

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 30

TID Agent Framework

Resource Patterns
Encapsulation of computing entities providing services to
agents

• Message oriented middleware
• Transaction monitors
• Security and authentication services
• Information services
• Databases
• Visualization
• Speech recognition and generation

Two interfaces
• Usage
• Management

cd EstructuraPatronRecursoSimple

UnicastRemoteObject
ImplRecursoSimple

- serialVersionUID: long = 1L
itfUsoRepositorioInterfaces: ItfUsoRepositorioInterfaces
estado: int

+ ImplRecursoSimple()
+ arranca() : void
+ para() : void
+ termina() : void
+ continua() : void
+ monitorizacion() : int
+ setItfUsoRepositorioInterfaces(ItfUsoRepositorioInterfaces) : void

InterfazGestion
«interface»

ItfGestionRecursoSimple

::InterfazGestion
+ arranca() : void
+ para() : void
+ termina() : void
+ continua() : void
+ monitorizacion() : int

Remote
«interface»

ItfUsoRecursoSimple

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 31

TID Agent Framework

A component-based MAS architecture
Software entities are categorized either as agents or
resources

• This implies a clear design choice for the developer

Environment is modelled as a set of resources
• Standard patterns and mechanisms to facilitate their access

Relevance of management patterns for agents and resources
• Relieves the developer of a considerable amount of work
• Guarantees that components will be under control
• Enforces a pattern for system initialization

Agents work as autonomous entities and encapsulate their
behaviour (reactive, cognitive, hybrid) behind their interfaces
Interactions can be defined at application level

• Independently of underlying middleware

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 32

Agents and Software Project Management

The basic elements of a software project

Persons
• Difference in skills of team members
• Changes in team composition
• Organization structure
• Corporate culture
• Development strategies and tactics

Process
• Sequential, evolutionary, agile, etc.
• Risk management
• Software quality assurance

Product: the MAS

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 33

Agents and Software Project Management

There is not too much about process management in
AOSE methodologies
But there are implications of the agent paradigm in
project management

Task distribution is easier
• Agents and resources can be developed indenpendently as

interfaces are well defined

Promotes evolutive/incremental/explorative iterations
• It is relatively easy to change the internal processing of the

agent as well as interactions

Conflicts management
• It is easier to locate and delimite responsibilities

Less integration problems
• Great modularization and encapsulation

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 34

Metrics for MAS

How much does it cost the development of a MAS?

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 35

Metrics for MAS

Estimating Costs for Agent Oriented Software, AOSE 2005

Using experience in previous developments
Decomposing the product to be built into smaller pieces and
estimate the cost
Decomposing the development process to be applied into fine
grain activities and estimate the cost for each one

Empirical models: COCOMO II, Putnam
Use several methods and evaluate the difference in the
estimations

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 36

Metrics for MAS

COCOMO II
An empirical estimation model developed by Boehm

PM: Personnel Month
SF: Scale Factor (VL,L,N,H,VH,XH)
EM: Effort Multiplier (VL,L,N,H,VH,XH)
A: a constant to adjust to local domain
Precision: 30 % of actuals 75% of the time

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 37

Metrics for MAS

Three projects
Eurescom P815. Communications Management Process
Integration Using Software Agents (1999-2000)
Eurescom P907. MESSAGE: Methodology for Engineering
Systems of Software AGEnts (2000-2002)
PSI3. Personalized Service Integration Using Software Agents
(2001-2003)

1310220009 7007SLOC Physical lines

9862158435393SLOC Logical lines

5.35.174.09Average methods per class

234531Number of packages

130482172Number of classes

PSI3P815P907Project complexity

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 38

NominalNominalLowProcess Maturity

Very HighVery HighHiTeam Cohesion

NominalExtra HighExtra HighArchitecture/ Risk
resolution

NominalHighHighDevelopment Flexibility

HighHighNominalPrecedentness

PSI3P907P815SF

NominalNominalNominalRequired Development Schedule (SCED)

HighHighNominalFacilities (FCIL)

HighNominalLowPersonnel Experience (PREX)

NominalNominalNominalPersonnel Capability (PERS)

HighVery HighHighPlatform Difficulty (PDIF)

NominalVery HighVery HighReusability (RUSE)

Very HighNominalHighProduct Reliability and Complexity (RCPX)

PSI3P907P815EM

Metrics for MAS

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 39

Metrics for MAS

Measuring P815 cost according to pure COCOMO II
SF and EM were those previously presented.
Early design model

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 40

Metrics for MAS

Adapting to agents
The way we adapted COCOMO II to the agent domain was by
means of the size variable
Following the same approach as with Function Points
estimation, we provided empirical equivalence between agent
concepts and SLOC

Two approaches
Method 1.
Measuring only parts relevant to agent implementation.
(It was facilitated due to the structure of the application:
organized into packages)
Method 2.
Obtaining the average SLOC per Item, just as it is done for
Function Points estimation

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 41

Metrics for MAS

374613Total number of states in every state machine

8105Total number of state machines applied

39971Total number of tasks

3948198Total number of rules

101061Total number of events considered

111915Total number of messages interchanged

453Total number of Interactions with other agents

PSI3P907P815Measurement of agent concepts

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 42

Metrics for MAS

1061Events

46190Rules dedicated to management of mental entities

29135Total number of Goals

3F+29G+10E= 428F+135G+61E= 204Total number of types of mental entities (F=Facts, G=Goals,
E=Events)

P907P815Measurement of BDI concepts

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 43

Metrics for MAS

Recomputing costs for P815. Method 1
Early design model

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 44

Metrics for MAS

Method 2: Obtaining the equivalent in SLOC
We counted how many lines of code were needed for each concept

11.02

233.661048691142State machines

76.17627303520793Task

7.75

845.51101581Goal

18.941366.6610479232130Rule

11.02233.6617286443Event

Average SLOC per
item

Average
SLOC

SLOC PSI3SLOC P907SLOC P815Element

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 45

Metrics for MAS

(A) Measuring as with conventional programs
(B) Measuring only code for tasks, goals, state machines, rules,

events
(C) Measuring average SLOC per task and goal

Statistical data and COCOMO II files are available at
http://grasia.fdi.ucm.es/gschool

7.3 / 6.77.6 / 6.863.7 / 13.469 / 18PSI3

25 / 916.3 / 8.7135.6 / 16.718 / 9P815

6.8 / 6.67.2 / 634.4 / 10.66 / 5P907

(C)
PM/months

(B)
PM/months

(A)
PM/months

Real cost
PM/months

Project

Conclusions: Final results

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 46

Metrics for MAS - Conclusions

More projects are needed. COCOMO II uses 160.
Before this work, there were none available
We do not expect accurate results, since the number of
projects is low
We are applying to more recent projects
We would like to have data from other projects as well

Further work is needed
Determine if there are specialised EM and SF for agent
projects
Calibrate COCOMO II EM and SF according to agent based
results
Gather more data about agent based projects

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 47

Conclusions

The myth of agents being so different…
They are a contribution to distributed computing engineering

Reuse current practices if applicable

What needs to be reviewed when using agents?

Juan Pavón, EEMMAS 2007 Complex systems and AOSE 48

Summary

Agents cope with new types of complexity
There are application areas for agents

Reuse experience in agent-based developments
Architecture
Patterns
Component based frameworks

Most AOSE methodologies consider the production process
but not the management process

What are the implications of using agents in project
management?

Need for metrics
Collect data from agent-based developments
Adapt metrics to agent paradigm

