Complex Systems and
Agent-Oriented Software Engineering

Juan Pavon?, Francisco Garijo?, Jorge GOmez Sanz!
1Dep. Ingenieria del Software e Inteligencia Artificial

Universidad Complutense Madrid

2Telefénica 1+D

G!a http://grasia.fdi.ucm.es

e

Points of discussion

m How Agent Oriented Software Engineering (AOSE)
contribute to the development of complex software

systems?
m Better than other paradigms?
m Do we have examples?

s How to measure this?

m The gap between academia and industry

m How can AOSE get more acceptance?

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

Doing software engineering — the Academic way

m The scientist
m Collects and contrast information
= Journal and conference papers, books, ...
m Synthesis of papers and experimentation

m Results: modeling languages, methodology, examples, some
tools, PAPERS

i

[}

EA

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

Doing software engineering — the Industrial way

m The engineer

m Analyses, designs, implements, tests
= Systems, services, applications

m Synthesis of successful practices

m Results: products, recommendations, practices, tools,
reports (almost no papers, scarce dissemination)

"
et s
/ :.& \
@

Complex systems and AOSE

Juan Pavon, EEMMAS 2007

Focus areas

Verification

ImpJéementation

Versioning

Project Management

Resources ey eyl
ndustrial

practice .

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

What about other approaches

Component based frameworks (J2EE, .NET, etc.)
Model Driven Software Development

Aspects

Software Product Lines

Service centric systems

These should be integrated with AOSE

Juan Pavén, EEMMAS 2007 Complex systems and AOSE 6

Some issues towards AOSE integration

The role of MAS in the development of complex systems
Agent-based Software Architectures

Agents in the Software Process

Metrics of Agent-based Software

pON P

m There are many other issues

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

MAS for the development of complex systems

m Software engineering as a reaction to the software crisis
(late '60)
m Machines have become several orders of magnitude more
powerful [Dijkstra 1972]

m Waterfall process model, formal methods, structured
programming, software metrics, ...

Centralized
(monolithic)

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

MAS for the development of complex systems

m Evolution to object oriented computing
= Networking
m Graphical user interfaces

m Objects, client-server, interfaces, ...
Computers+Communications

! O

O /
& o
i o ®

Centra_hzc_ad Distributed
(monolithic) (multi-components)
Juan Pavén, EEMMAS 2007 Complex systems and AOSE ?

MAS for the development of complex systems

m Evolution of complexity in the environment
m From one-to-one interactions to many-to-many interactions
= Many parallel sessions

e Some interactions may depend on others (e.g. negotiation for
best offer)

Partial knowledge of context
= Continously changing, partially observed, partially understood

e Example: Which services are available, how to access them,
what quality of service, ...

Bounded rationality

= boundedly rational agents experience limits in formulating and
solving complex problems and in processing (receiving, storing,
retrieving, transmitting) information [Herbert Simon]

Uncertainty

» Resources availability, failures, security risks, ...
New opportunities

= More service providers, more clients

Juan Pavén, EEMMAS 2007 Complex systems and AOSE 10

MAS for the development of complex systems

m Complex environment requires ability to adapt
m Centralized control: Dependent => Objects
= Predefined behaviour, ad-hoc mechanisms
e Subject to communication failures
e Subordination
m Distributed control: Autonomy => Agents
= Ability to act locally
< No global knowledge
e Cooperation

Juan Pavén, EEMMAS 2007 Complex systems and AOSE 11

MAS for the development of complex systems

m Other important environmental aspect:
the development process perspective

Multi-disciplinary teams

Continous evolution of software products

Customization of products

Organizations

Juan Pavén, EEMMAS 2007 Complex systems and AOSE 12

Agent-based Software Architectures

m Patterns

m From idioms that shape the use of a particular programming
language to mechanisms that define the collaboration among

societies of objects, components, and other parts
[Booch, Handbook of Software Architecture]

m Cumulative experience of software practicioners
m Reuse of well-proven solutions

m A system architecture enforces the use of a set of patterns
m Behaviour principles
m System structure
m Separation of concerns
|

Guideline for identification of relevant system features and
application of patterns

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

13

Agent-based Software Architectures

m What agent-based architectures?
m Micro level: Classical agent architectures
= Reactive, cognitive, hybrid
m Macro level: Organization architectures

= Emergent vs. Predefined organizations
e Electronic institutions, Gaia, INGENIAS, TAEMS, AGR, AMAS, ...

m They have to be usable, replicable, flexible, robust

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

14

Agent-based Software Architectures

. BETLE T

m Classical examples
[taken from M. Wooldridge,
Intelligent Agents, in G. Weiss
(ed.) Multiagent Systems-A
Modern Approach to Distributed
Artificial Intelligence, MIT Press
1999]

Generic BDI architecture

Figuma 1%

Juan Pavén, EEMMAS 2007

Scham=atic dizgram of a genaric
balinf-desire-inteztion arckitechum.

15

Agent-based Software Architectures

m Classical examples

[taken from M. Wooldridge, Intelligent Agents, in G. Weiss (ed.) Multiagent

Systems-A Modern Approach to Distributed Artificial Intelligence, MIT Press 1999]

A RilHTTET J

)
y

Copbrol mldysicrs

=|

Figuma 1.7

TOUEINGMACHINES: a borizontally luyerad agsst arckiteciurg

Juan Pavén, EEMMAS 2007 Complex systems and AOSE

16

Agent-based Software Architectures

] Examples [taken from this conference]

events.html
Web Browser Web Server
(user XYZ) w Agent Server
’-—’djti/__,:“.:h \ XYZ
————\4— | tracker invocation p———
- user XYZ on -
Interface page events.htmi N Tracker agent: XYZ
Serviet page: events.html
Agent
™~ suggestion request ||[——] | —
— \ user XYZ on e ———
JE— \ page events.html p——
events. html active sessions list
data Suggestion |ig Traces
| Serviet e

Fig. 1. A diagram showing the different components of system architecture and their interactions.

Juan Pavén, EEMMAS 2007 Complex systems and AOSE 17

Agent-based Software Architectures

] Examples [taken from this conference]

" Perceved amurdances

< - .\‘\ "
y N
/ s ' g ! ! K \ \".
/obsarve(x))
“sensor o
notify(Ev1, 5, T1) ————» /f v G -"\‘_ \
. [Mind |Brain'

/ /

aftempt{Ev3, T3} +«—— effector,

attempt{Evd, T4) +—— effector o b A

Agent Body

Fig. 3. The Agent Architecture in GOLEM (adapted from [11]).

Juan Pavén, EEMMAS 2007 Complex systems and AOSE 18

Agent-based Software Architectures

- perception request
» Agent
percept v aaifors Role | KEY
-
rele position advertisament 4 message
role pasition selection ¥
Organization Manager B Repostory
Role Position Pool Y
Action - Role Position (] component
Hensasr M one. E -
k. Positions
P:mpﬂm | 3 —» Data Flow
anager R“d —s
- control message
Read | |- i Update \ Read —— Provided Interfacs
Read/Vvrite
— Comext Orgeriat or:e:t = Rud e R
= zation nter Role
data .":,:',m' one on T Controller W;:_’" Convmudoition b Required Interface
UI Read I (_)I Read 1 Interface
|’ Wirite cortrol ~vwiee || | Software System -
Dirvwt 5 |‘ Bynchronization e e
Perception ¥
[i Y i
dyne message | sy massage e message message
| Inter Node C i °
Lecal Agent Envirenment
p ow-evel y low-evel data ¥ low-level data ¥ low-level message

action

External World

Fig 7. Collaborating Components view of the software architecture for context-driven dynamic organizations.

Juan ravon, EEMIMIAS ZUU /7 R S A e N T o
Agent-based Software Architectures
] Examples [taken from this conference]
v
c
] - Business /
a g Application Layer
I —
@ | ©
@ (]
T |
8 c
9 - Agency Layer
AR
Q -
w 7]
Q
(=]
o
=
» DAEM Layer
Figure 1. Business ecosystem conceptual architecture.
|
Complex systems and AOSE 20

Juan Pavén, EEMMAS 2007

Agent-based Software Architectures

m An example of pattern application: TID Agent Framework

m This is the result of cumulative experience,
implementing several agent-based applications:
e Cooperative working system for network bandwidth negotiation
Project network management for IN services development
Flight notification system (MESSAGE project)
- Reactive and cognitive agent architectures
< Communication session mechanisms
= Planning

Web service personalization

On-line discussion and decission making
= Scalability of the cognitive agent model
= Agent management

Voice recognition services
» Refinement

m Currently being used in two European projects: SECSE and
MOMOCS

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

21

TID Agent Framework

m Basic principle

m An organization made up of agents and resources

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

22

TID Agent Framework

m Two layers architecture

m Control layer: Agents (controller components)
e Managers: service mngt
= Specialists: service functionality

Similar interfaces and structure
But different roles

m Resource layer: Resources

e Persistency

e Registry

= Visualization
e Support functionality

Control

uses

Resources

Juan Pavén, EEMMAS 2007 Complex systems and AOSE 23
cortral J
senice control J service supervision J semvice installation and configuration)
<<component=:> gl <<COmponents=: {I
! Access controller Organization manager <<components:= il
P Installation management
“<component=> il N <<components> {I !
Secretary assistant Controller manager
S - <<component=> il
<z =3 Ry q
EOmPERE il Lo =<component>> {I Configuration management
Technician assistant ! Resource manager
i ! s
resaurtes J : oo Brommmh e
% F . * —
Y EARERERER SN T {I visualization resources)
<<component=> il i
P : Enterprise workforce management <<component== ﬂ
Access Information ' d - Ao
= : 3 Access visualization
L i <<component=> il
<<component== gl Customer information : -5 <<component=s {I
User location by Secretary visualization
g 1 <<component>> {I
: Billing system f: ____ o <<component== ﬂ
; . =
! - T LA Technician visualization
persistency resqurce_r%,’ -~ |registry resource /I
! R L
i <<Ccomponent=> “=Ccomponent=> il
Persistency Registry
24

Juan

TID Agent Framework

m Management Patterns (life-cycle, management
organization)

m Every component has a management interface
= Developers are forced to make manageable components

= Management components (agents) provide a reusable way to
cope with common problems

= Installation

e Configuration

= Monitoring

of agents and resources

The framework takes care of them

Juan Pavén, EEMMAS 2007 Complex systems and AOSE 25

TID Agent Framework

cd EstructuraOrganizacion/

gestores
configuracion

[+ gestorAgentes

e]+ gestorOrganizacion

””””””” [J + gestorRecursos

2 + GestorAgentes

(from inffaestructura) H + GestorOrganizacion
/ H + GestorRecursos

+ Configuracion
[+ configuracionAgentes

Afadir fichero
de

configuracion
|infraestructura

/|E& + InterfazGestion \

[+ PatronAgenteCognitivo [+

[+ patronAgenteReactivo '
+ componentesBasicos

1+ configuracion

[+ patronRecursoSimple

/// v\\ \\
agentesAplicacion l recursos
Aﬁadir_agentes 77777777 [+ agenteReactivoPrueba]+ Comunicaciones | Afiadir recursos
especificos [+ EjemploAccesConCognitivo 3 + repositoriointerfaces || especificos
1+ trazas
[+ visualizacionPrueba

dominio

””””” Afadir clases
de dominio

(92

TID Agent Framework

m Agent Patterns: Reactive agent pattern

RectiveAgentStructure /

UselnlerfaceT

T Managementinterface

Monitoring

[RLIEIITON 2 —)
& + HebraMonitorizacion

v Vv
ComrolManagementlnt? ControlUseInterfac?

realize |

Reactive Agent

Z

realize

mplAgenteReactivo

U

Jbject

serialversionyID: long = 1L
control: ImplControl
itfGesControl: InterfazGestion
orPercepciol
perception: ImplPercepcion
nombre: . Strin
estado: int = InterfazGestion..
accionesSemanti
DEBUG: boolean = false

itfConsumid n:_ltfConsumidorPercepcion
itfProductorPercepcion: ltfProductorPercepcion

cas; AccionesSemanticas

Configuration
=

+ Configuracion

aceptakvento(Objec
arranca(): void
continua() : voi
monitorizacion() : int
aral) : void

prmtOut hreadGroups() : void
lermina) : void
clasificarEvento(Object) : void

) : void

ImplagenteReacivo(Object String, String)

Control

rol

+ EventoControl

ImplControl

E + ItfGestionControlGestor
+ ItfUsoControlGestor

+ automata

Uselnterface

automata

+ AccionesSemanticas
AutomataControl

+ Eventolnput
+funciones
I + operacion
+ TablaEstadosControl
XMLParserTablaEstados
== . IifUsoAutomata

FiniteStateAutomata

+ ConversionDeEventosEninputs

=g |
Consumerlnterface

Perception

| percepcion

& + implPercepcion

E + ItfProductorPercepcion
+ byzon

ExcepcionSuperadoTiempoLimite

+ ItfiConsumidorPercepcion

Consumerlnterfa

Producerlnterface

EventQueue

EventoTimeout

ExcepcionTimeOutSuperado

Timer
Mei + tf_ConsumidorBuzonTimeout
w= + Itf_ProductorBuzonTimeout

TID Agent Framework

m Agent Patterns: Cognitive agent pattern

id Componemview/

Ju

PatronAgenteCognitivo

ProcesadorConocimiento

ControlCognitivo

Control

trolCognitivoAbstracto

|

FactoriaControlCognitiyo

Imp

—O »
tfC ontrolC ognitivo

OyenteMemoriaTrabajo \(1%

Motorinferencia

Drools

O
fWotorReglas

ltfObtencionCreencias

Gestion

Percepcion

Percepcion

ercepcionAgenteAbstracto

FactoriaPercepcionAgente

el =>—10O .
tfP ercepcionAgente

T

N2,
INtfTRS

GestorTareas
GestorTareas

TareasBaésicas

[EntidadesBasicas |
=N

O -
InterfazGestion

28

TID Agent Framework

m Agent Patterns: Cognitive agent pattern

ad CicloBasicoFuncionamiento /

Perception

Appl Resource |

Corunication |
Resource ’

Evidence

Goal Resolution Engine

Rule Engine

TID Agent Framework

m Resource Patterns

m Encapsulation of computing entities providing services to

agents

e Message oriented middleware

e Transaction monitors

e Security and authentication services

e Information services
e Databases
« Visualization

e Speech recognition and generation

m Two interfaces
= Usage
L4 Management

Juan Pavén, EEMMAS 2007

cd EstructuraPatronRecursoSimple /

InterfazGestion
«interface»
ItfGestionRecursoSimple

::InterfazGestion
arranca() : void
para() : void
termina() : void
continua() : void

+ + + + +

monitorizacion() : int

5

Remote
«interface»
ItftUsoRecursoSimple|

UnicastRemoteObject
ImpIRecursoSimple
- serialVersionUID: long = 1L
itfUsoRepositoriolnterfaces: ItfUsoRepositoriolnterfaces
estado: int
+ ImplRecursoSimple()
+ arranca() : void
+ para() : void
+ termina() : void
+ continua() : void
+ monitorizacion() : int
+ setitfUsoRepositoriolnterfaces(ltfUsoRepositoriolnterfaces) : void

Complex systems and AOSE

30

TID Agent Framework

m A component-based MAS architecture
m Software entities are categorized either as agents or
resources
e This implies a clear design choice for the developer
m Environment is modelled as a set of resources
e Standard patterns and mechanisms to facilitate their access
m Relevance of management patterns for agents and resources
« Relieves the developer of a considerable amount of work
e Guarantees that components will be under control
e Enforces a pattern for system initialization
m Agents work as autonomous entities and encapsulate their
behaviour (reactive, cognitive, hybrid) behind their interfaces
m Interactions can be defined at application level
e Independently of underlying middleware

Juan Pavén, EEMMAS 2007 Complex systems and AOSE 31

Agents and Software Project Management

m The basic elements of a software project

m Persons

Difference in skills of team members
Changes in team composition
Organization structure

Corporate culture

Development strategies and tactics

m Process
= Sequential, evolutionary, agile, etc.
e Risk management
= Software quality assurance

® Product: the MAS

Juan Pavén, EEMMAS 2007 Complex systems and AOSE 32

Agents and Software Project Management

m There is not too much about process management in
AOSE methodologies

m But there are implications of the agent paradigm in
project management
m Task distribution is easier

e Agents and resources can be developed indenpendently as
interfaces are well defined

m Promotes evolutive/incremental/explorative iterations

< It is relatively easy to change the internal processing of the
agent as well as interactions

= Conflicts management

* It is easier to locate and delimite responsibilities
m Less integration problems

» Great modularization and encapsulation

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

33

Metrics for MAS

m How much does it cost the development of a MAS?

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

34

Metrics for MAS

Estimating Costs for Agent Oriented Software, AOSE 2005

m Using experience in previous developments
m Decomposing the product to be built into smaller pieces and
estimate the cost
m Decomposing the development process to be applied into fine
grain activities and estimate the cost for each one
m Empirical models: COCOMO II, Putnam

m Use several methods and evaluate the difference in the
estimations

Juan Pavén, EEMMAS 2007 Complex systems and AOSE 35

Metrics for MAS

m COCOMO II
= An empirical estimation model developed by Boehm

PM = A-(Size) 2™ T EM,

PM: Personnel Month

SF: Scale Factor (VL,L,N,H,VH,XH)

EM: Effort Multiplier (VL,L,N,H,VH,XH)

A: a constant to adjust to local domain
Precision: 30 % of actuals 75% of the time

Juan Pavén, EEMMAS 2007 Complex systems and AOSE 36

Metrics for MAS

m Three projects

m Eurescom P815. Communications Management Process
Integration Using Software Agents (1999-2000)

m Eurescom P907. MESSAGE: Methodology for Engineering

Systems of Software AGEnts (2000-2002)
m PSI3. Personalized Service Integration Using Software Agents

(2001-2003)

Project complexity P907 P815 PSI3
Number of classes 172 482 130
Number of packages 31 45 23
Average methods per class 4.09 5.17 5.3
SLOC Logical lines 5393 15843 9862
SLOC Physical lines 7007 20009 13102
Juan Pavén, EEMMAS 2007 Complex systems and AOSE 37
Metrics for MAS
P815 P907 PSI3
SF
Precedentness Nominal High High
Development Flexibility | High High Nominal
Architecture/ Risk Extra High Extra High Nominal
resolution
Team Cohesion Hi Very High Very High
Process Maturity Low Nominal Nominal
P81 P07 PSI
EM 815 90 SI3
Product Reliability and Complexity (RCPX) High Nominal Very High
Reusability (RUSE) Very High Very High Nominal
Platform Difficulty (PDIF) High Very High High
Personnel Capability (PERS) Nominal Nominal Nominal
Personnel Experience (PREX) Low Nominal High
Facilities (FCIL) Nominal High High
Required Development Schedule (SCED) Nominal Nominal Nominal

Juan Pavon, EEMMAS 2007

Complex systems and AOSE

38

Metrics for MAS

m Measuring P815 cost according to pure COCOMO 11
m SF and EM were those previously presented.
= Early design model

Project Name: pS15 Scale Factor | Schedule |

Development Model: Igarly Design v|

AT part(rules)| s:z130 0.00] z.21| AT Shell 7.2 1e.1] 122.5 a.oa a.o 1.0l 0.0/«
00 part 2:15843 0.00] 2.21| Object-Orient] G54.1] 113.5| 132.5 a.o0 a.o 7.2 0.0
Estimated Effort Sched PROD COST INST Staff RISK
Total Lines 17373 Optimistic so0.3| 14.7| 137.8 0.00 0.0 6.2
of Code:
Most Likely | 135.&| 16.7] 132.5 a.oa a.o 2.1 0.0|
Pessimistic | 203.4| 1s5.3] 22.4 0.00 o.0] 1o0.8
Juan Pavén, EEMMAS 2007 Complex systems and AOSE 39

Metrics for MAS

m Adapting to agents
m The way we adapted COCOMO Il to the agent domain was by
means of the size variable

m Following the same approach as with Function Points
estimation, we provided empirical equivalence between agent
concepts and SLOC

m Two approaches

= Method 1.
Measuring only parts relevant to agent implementation.
(It was facilitated due to the structure of the application:
organized into packages)

= Method 2.
Obtaining the average SLOC per Item, just as it is done for
Function Points estimation

Juan Pavon, EEMMAS 2007 Complex systems and AOSE 40

Metrics for MAS

Measurement of agent concepts P815 P907 PSI3
Total number of Interactions with other agents 3 5 4
Total number of messages interchanged 15 19 11
Total number of events considered 61 10 10
Total number of rules 198 48 39
Total number of tasks 71 9 39
Total number of state machines applied 5 10 8
Total number of states in every state machine 13 46 37
Juan Pavén, EEMMAS 2007 Complex systems and AOSE 41
Metrics for MAS
P815 Po07

Measurement of BDI concepts

Total number of types of mental entities (F=Facts, G=Goals,
E=Events)

8F+135G+61E= 204

3F+29G+10E= 42

Total number of Goals 135 29
Rules dedicated to management of mental entities 190 46
Events 61 10

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

42

Metrics for MAS

m Recomputing costs for P815. Method 1
m Early design model

Project Name: |p815 | Scale Factor | Schedule |
Development Model: IEarly Design ‘I
tasks 5:793 0.00| L.00] Object-Orient z.5 z.5] 31lz.6 0.00 0.0 0.2 0.0
goals 3:1581 0.00] 1.00| AT Zhell 5.1 5.1] =1z.6 0.00 0.0 0.6 0.0
state machines 8:14Z 0.00] 1.00] Object-Orient 0.5 o.5] 3lz.& o_oo oo 0.1 oo
rules 3:2130 0.00] 1.00| AT Zhell 5.8 5.8] 3lz.6 0.00 0.0 o.g 0.0
events 5:443 0.00| L.00] Object-Orient 1.4 1.4] 3lz.8 0.00 0.0 n.z 0.0
Estimated Effort Sched PROD COST INST Staff RISK
Total Lines L] Optimistic 0.9 7.7 4658 0.00 0.0 1.4
of Code:
Most Likely 16.3 g.7] 2lz.6 0.00 0.0 1.9 0.0
Pessimistic 244 a.8] zos.4 0.00 0.0 2.5
Juan Pavén, EEMMAS 2007 Complex systems and AOSE 43

Metrics for MAS

m Method 2: Obtaining the equivalent in SLOC
= We counted how many lines of code were needed for each concept

Average
SLOC
Element SLOC P815 | SLOC P07 | SLOC PSI3 Averag?tf'n;OC per
Event 443 86 172 233.66 11.02
Rule 2130 923 1047 1366.66 18.94
Goal 1581 110 845.5
7.75
Task 793 520 303 627 76.17
State machines 142 691 1048 233.66
11.02

Juan Pavon, EEMMAS 2007 Complex systems and AOSE 44

Metrics for MAS

Conclusions: Final results

Project Real cost (A) (B) ©)
PM/months PM/months PM/months PM/months
P907 6/5 34.4/10.6 7216 6.8/6.6
P815 18/9 135.6/16.7 16.3/8.7 25/9
PSI3 69/18 63.7/13.4 76/6.8 7.3/6.7

(A) Measuring as with conventional programs

(B) Measuring only code for tasks, goals, state machines, rules,
events

(C) Measuring average SLOC per task and goal

Statistical data and COCOMO 11 files are available at
http://grasia.fdi.ucm.es/gschool

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

Metrics for MAS - Conclusions

m More projects are needed. COCOMO Il uses 160.
m Before this work, there were none available
m We do not expect accurate results, since the number of
projects is low
m We are applying to more recent projects
= We would like to have data from other projects as well

m Further work is needed
m Determine if there are specialised EM and SF for agent
projects
m Calibrate COCOMO Il EM and SF according to agent based
results
m Gather more data about agent based projects

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

Conclusions

m The myth of agents being so different...
m They are a contribution to distributed computing engineering

m Reuse current practices if applicable

m What needs to be reviewed when using agents?

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

47

Summary

m Agents cope with new types of complexity
m There are application areas for agents
m Reuse experience in agent-based developments
m Architecture
m Patterns
m Component based frameworks
m Most AOSE methodologies consider the production process
but not the management process

m What are the implications of using agents in project
management?

m Need for metrics
m Collect data from agent-based developments
m Adapt metrics to agent paradigm

Juan Pavon, EEMMAS 2007 Complex systems and AOSE

48

