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CHAPTER 1

Introduction

In the following all rings are associative rings. It is not assumed they
have an identity unless it is mentioned explicitly, but they will be idem-
potent (R? = R).

One of the most powerfull techniques that is used in the study of
rings with identity, is to associate to each ring R, its category of unitary
modules Mod-R and relate properties of R with properties of Mod-R
and vice versa. There are a lot of examples of this, but we shall mention
only the following one

DEFINITION 1.1. Let R be aring. R is called von Neumann regular
if and only if for all » € R there exists s € R such that r = rsr.

This definition, in the case of rings with identity, has a well known
characterization

PROPOSITION 1.2. Let R be a ring with identity. The following
conditions are equivalent

1. R 1s von Neumann reqular.
2. All modules in Mod-R are flat.

In the case of rings with identity, a module is flat if and only if it is
a direct limit of projective modules. The definition of projectivity is a
categorical definition and the direct limit is also a categorical concept,
therefore, flat modules are transferd by category equivalences and the
property of being von Neumann regular also.

If we try to generalize this property for rings without identity, we
have several difficulties. First of all, we have to choose a category of
modules for the ring R.

Consider the category of all right R-modules, which we shall denote
MOD-R. This category is the category of unital right R x Z-modules,
where R x Z is the Dorroh’s extension of R (this ring consists of the
pairs (r,z) € R x Z with the sum defined componentwise and the
product given by (r, 2)(r', 2") = (rr' 4+ 2'r+ 21’ z2"), see Theorem 2.20).
This category is not the best choice for this kind of study, because
although R is von Neumann regular, R X Z can never be so (look at
the elements (r, z) with z # 0,1, —1). In the case of rings with identity,
this problem is solved by choosing the full subcategory of MOD-R with
the modules M such that MR = M, i.e. Mod-R. This solution can be
generalized for other rings and this is one of the topics we are going to
study here. We have the following categories for an idempotent ring R

4



1. INTRODUCTION 5

DEFINITION 1.3. Let R be an idempotent ring and A a ring with
identity such that R is a two-sided ideal of it.

1. CMod-R is the full subcategory of Mod-A with the modules M
such that the canonical homomorphism A : M — Homyu (R, M),
(Am(r) = mr), is an isomorphism.

2. Mod-R is the full subcategory of Mod-A with the modules M
such that MR =M and {m € M : mR =0} = 0.

3. DMod-R is the full subcategory of Mod-A with the modules
M such that the canonical homomorphism pu : M ®4 R — M,
(u(m ®@r) = mr), is an isomorphism.

These categories have been considered in several papers, even for
rings without the assumption of being idempotent, see [10, 11, 12, 16],
but in the case of idempotent rings is is proved that they are equivalent.
We give a direct proof of this fact in Theorem 2.45, although this result
is known in more general terms, see [9, Proposition 1.15].

We are going to study many general points of these categories. For
example projectivity, injectivity, generators, monomorphisms, epimor-
phisms, direct and inverse limits, etc. Some of these things are adap-
tations of the concepts that are given in Grothendieck categories and
other are generalizations of concepts given for categories of modules
over a ring with identity.

There are some properties that cannot be extended to these cate-
gories. For instance, it is possible to build an idempotent ring R such
that the category CMod-R (and then the other) has no projective ob-
ject different from 0. This can be found in [8, Example 3.4(i)]. This
has a particular importance in the case of flat modules that cannot be
considered as a direct limit of projective modules.

These problems make necessary to study some particular classes
of idempotent rings that are closer to rings with identity. This will
be done in Chapter 5. If we assume that R and R’ are rings of a
particular type (rings with local units, see Definition 5.7), it is proved
in [4, Proposition 3.1] that if Mod-R and Mod-R’ are equivalent, R is
von Neuman regular if and only if R’ is.

Chapter 4 is going to study the equivalences between the categories
for two idempotent rings R and R'. These results have been proved
in several steps by different people. Apart from the classical case of
Morita Theorems for rings with identity, we can find this study for rings
with local units in [1, 2, 4]. In the more general case of idempotent
rings, our results are taken from [7], although the proofs will not be
exactly the same. There are generalizations for some of these results
for Grothendieck categories in [5, 6].

What is the original part of this work?. First of all, the point
of view. Usually these categories have been considered as categories
related with a Morita context, defined for the trace ideals. We look
at these categories by themselves. We even obtain in Proposition 2.46
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that the definition of these categories is not dependent on the choice of
the ring A. This ring could be chosen, for example, to be the Dorroh’s
extension of R or any other ring with identity such that R is a two-sided
ideal of it.

Secondly, we obtain a general theory of noncommutative localiza-
tion for these categories. This study has been made by several authors
for Grothendieck categories, but there are many results that cannot be
generalized because in Grothendieck categories, the ring disappears.
Using idempotent rings we obtain a generalization of results that hold
for rings with identity.

Another thing we generalize, is the concept of the Picard group of
a ring. We define this group for idempotent rings.

We define a ring to be coclosed if R ®4 R >~ R in the canonical
way. We obtain in Chapter 5 many results for this kind of ring. For
example, we prove that the study of idempotent rings can be reduced
to the study of coclosed rings because the categories for R and R®4 R
are the same and R® 4 R is a coclosed ring. We also generalize for these
rings, facts known for rings with local units and but which cannot be
generalized for idempotent rings.

In Chapter 4 we study the bimodules that define functors between
the categories for idempotent rings R and R’. Using this study we can
simplify some proofs.



CHAPTER 2

Categories of Modules for Rings 1

1. Noncommutative Localization

In this section we shall recall some results about torsion theories
and localization in the category of unitary modules for a ring with
identity A. All these things can be found in [14] and we shall reference
this book for the proofs.

DEFINITION 2.1. A preradical r of Mod-A is a functor r : Mod-A —
Mod-A that assigns to each object M of Mod-A a subobject r(M)
in such way that every morphism f : M — N in Mod-A induces
r(f) : r(M) — r(N) by restriction. In other words, a preradical is a
subfunctor of the identity functor of Mod-A.

A preradical r is called idempotent in case r or = r and it is called
a radical in case r(M/r(M)) =0 for all M € Mod-A.

To a preradical r, one can associate two classes of objects of Mod-A,
namely:

7, . the class of modules M such that r(M) = M.
F . the class of modules M such that r(M) = 0.

DEFINITION 2.2. A torsion theory of Mod-A is a pair (7,F) of
classes of modules of Mod-A such that

1. Homu(T,F)=0forall T € T and F € F.
2. If Homy (M, F) =0 for all F' € F, then M € T.
3. If Homu (T, M) =0 for all T € T, then M € F.

T is called the torsion class and its objects are called torsion objects
while F is called the torsion-free class and its objects, the torsion free
objects.

DEFINITION 2.3. Let C be a class of objects in an abelian category
A. We shall say:

1. C is closed under subobjects if and only if for every M € C and
every monomorphism g : N — M in A, N € C.

2. C is closed under quotient objects if and only if for every M € C
and every epimorphism n: M — N in A, N € C.

3. C is closed under products if and only if for every {M; : i € I}
contained in C if [[,., M; is a product of the family {M; : i € I}
in A, then J],., € C.
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4. C is closed under coproducts if and only if for every {M, : 1 € I}
contained in C if [ [, _, M; is a coproduct of the family {M; : i € I}
in A, then [[,., €C.

5. C is closed under extensions if and only if for every short exact
sequence 0 - L - M — N — 0 in A with L and N in C then,
M is in C.

PROPOSITION 2.4. Let (T ,F) be a torsion theory in Mod-A. Then

1. T is closed under quotient objects, coproducts and extensions.
2. F s closed under subobjects, products and extensions.

PROOF. See [14, Proposition VI.2.1] and [14, Proposition VI.2.2].
U

If 7 is a class of modules in Mod-A closed under quotient objects,
coproducts and extensions, then we can build the corresponding class
F with the property F' € F if and only if Homu(7, F) = 0 for all
T € 7. With this definition (7', F) is a torsion theory. In the other
direction, if F is a class of modules in Mod-A closed under subobjects,
products and extensions, we can define the corresponding class 7 with
the property T' € 7 if and only if Homu4 (7, F) = 0 for all F' € F and
with this definition (7, F) is a torsion theory. These operations are
inverses of each other. Therefore, in order to define a torsion theory,
we need only one of the classes 7 or F.

PRrROPOSITION 2.5. There is a bijective correspondence between tor-
sion theories in Mod-A and idempotent radicals in Mod-A.

PRrOOF. For the proof see [14, Proposition VI.2.3]. We shall only
say how the idempotent radical is built. If (7, F) is a torsion theory
and M is an object in Mod-A, we can define r(M) as the largest sub-
object N of M such that N € 7. Conversely, given an idempotent
radical r, (7., F,) is the corresponding torsion theory. O

DEFINITION 2.6. A torsion theory (7', F) is called hereditary if T
is closed under submodules.

DEFINITION 2.7. A (right) Gabriel topology is a family G of right
ideals of A satisfying the following axioms.

Tl Ifae G, b< Ay and a<b, then b € G.

T2 If a and b belong to G, then anb € G.

T3 Ifae Ganda€ A, then (a:a) €G.

T4 If for some a < Ay there exists a b € G such that (a:0) := {r €
R:are€a} eGforallbeb, thenaeg.

THEOREM 2.8. There is a bijective correspondence between:

1. Right Gabriel topologies on A.
2. Hereditary torsion theories for Mod-A.
3. Left exact radicals of Mod-A.
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PROOF. For the proof see [14, Theorem VI.5.1]. We are going to
give here only the constructions but not the complete proof.

If (7, F) is an hereditary torsion theory in Mod-A, the correspond-
ing right Gabriel topology G on Ais Gis {a < Ay: AJae T}.

Conversely, if G is a Gabriel topology on A, the corresponding tor-
sion theory (7,F) is as follows: M € 7T if and only if r.ann(m) € G
for every m € M. A module M € F if and only if Homy (7, M) = 0
forall T € T.

The correspondence between hereditary torsion theories and left
exact radicals is the same as in Proposition 2.5. 0

DEFINITION 2.9. A torsion class 7 is called a TTF-class (TTF
stands for ”torsion torsion-free”) if it is a torsion class and a torsion-
free class. Therefore we can build a torsion class U/ and a torsion-free
class F such that (U,7) is a torsion theory and (7,F) is another
torsion theory. The triple (U, 7, F) is called a TTF-theory.

PROPOSITION 2.10. A torsion class T is a TTF-class if and only
if there exists an idempotent two-sided ideal I in the corresponding right
Gabriel topology G.

PROOF. For the proof see [14, Proposition VI.6.12] and [14, Propo-
sition VI.8.1]. We shall give here only the definition of I. If 7 is a
TTF-class, [[ocq A/a is a torsion object and then, the kernel of the
canonical homomorphism a : A — [] s A/ais in G. This is the ideal,
I = Ker(a) = Ngega. The class U can be defined to be the class of
modules M such that M1 = M. For this fact see [14, Proposition
VI.8.2]. O

From now on, unless stated otherwise, (7,F) will be a torsion
theory, G will be the corresponding Gabriel topology on A and the left
exact preradical will be denoted by t.

For each module M € F we shall define

a(M) = lim Homy (a, M)
acg

where this direct limit is taken over the downwards directed family
of right ideals G. Every element in a(M) is thus represented by a
homomorphism & : a — M for some a € G, with the understanding
that & represents the same element in a(M) as does ( : b — M if and
only if ¢ and ( coincide on some ¢ € G, such that ¢ Canb.

There is a canonical A-homomorphism ¢, : M — Homu(a, M) given
by

tefm]: a — M
a = ma

The family of A-homomorphisms (¢4)4cg define
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v =limug : M — lim Homy(a, M) = a(M)
acg acg
In the general case, we define

a(M) = a(M/t(M))
and the homomorphisms ¢, are the compositions of the already defined
Lq with the canonical projection M — M/t(M).

DEFINITION 2.11. An A-module M is G-closed if the canonical ho-

momorphisms

ta: M — Homy(a, M)

are isomorphisms for all a € G.

In this case the morphisms ¢ : M — a(M) is an isomorphism. The
converse is also true.

PROPOSITION 2.12. For every A-module M, a(M) is G-closed.
PROOF. See [14, Proposition 1X.1.8]. O

We shall denote by Mod-(A, G) the full subcategory of Mod-A con-
sisting of all G-closed modules. This is called the quotient category of
Mod-A with respect to G (or the torsion theory (7, F)).

PROPOSITION 2.13. The functor a : Mod-A — Mod-(A,G) is a
left adjoint of the inclusion functor i: Mod-(A, G) — Mod-A.

PROOF. See [14, Proposition X.1.11]. O

DEFINITION 2.14. A full subcategory A of Mod-A is reflective if
the inclusion functor i : A — Mod-A has a left adjoint a.

DEFINITION 2.15. A reflective subcategory of Mod-A is called a
Giraud subcategory if the left adjoint of the inclusion functor preserves
kernels.

THEOREM 2.16. The category Mod-(A, G) is a Giraud subcategory
of Mod-A.

PROOF. See [14, Theorem X.1.6]. O

THEOREM 2.17. If A is a Giraud subcategory of Mod-A, then A is
a Grothendieck category, and the left adjoint a : Mod-A — Mod-(A, G)
of i: Mod-(A,G) — Mod-A is an ezact functor.

PROOF. See [14, Theorem X.1.2] and [14, Theorem X.1.3]. O

It is important to notice that the inclusion functor i is, in general,
not exact.
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COROLLARY 2.18. The category Mod-(A, G) is a Grothendieck cat-
egory.

This corollary has a converse in some sense. This is the Gabriel-
Popescu Theorem.

THEOREM 2.19. Let A be a Grothendieck category with a generator
U. Put A = Endy(U,U) and let T : A — Mod-A be the functor
T(C) = Homy(U,C). Then
1. T is full and faithful.
2. T induces an equivalence between A and the category Mod-(A, G)
where G 1s the strongest Gabriel topology on A for which all mod-
ules T(M) are G-closed.

PROOF. See [14, X.4.1]. O

2. The Construction of the Categories

2.1. The Category MOD-R. We shall denote by MOD-R the
category of all right R-modules and R-homomorphisms.

The following theorem is a well known result that states that this
category is in fact a category of unitary modules over a ring with iden-
tity.

THEOREM 2.20. Let R be a ring, and R X Z be the Dorroh’s ez-
tenston of R. Then the category MOD-R 1is equivalent to the category
Mod-R X Z of unitary modules over the ring with identity R X Z.

ProoFr. This result is well known, and we shall only give some
remarks about the proof. First we have to recall the definition of the
Dorroh’s extension of a ring R. The elements of this ring are the pairs
(r,n) € R x Z with the sum defined componentwise and the product
defined as follows:

(r,n)-(s,m) = (rs+mr+ns,nm) Vr,s € RVn,m € Z
The ring R can be identified inside R x Z as the two-sided ideal

Rx0={(r,0) e RxZ:r € R}

The identity of the ring R x Z is the element (0, 1).

We are going to prove that any right R-module is a unitary right
R x Z-module, and conversely.

Let M be aright R-module. We can define an operation m-(r,n) =
m-r+n-mforallme M, r € Randn € Z. We can multiply m by
the elements of Z because of the abelian group structure. With this
operation M is a unitary R X Z-module ( m(0,1) =m0 + 1lm = m).

In the other direction, if M is a unitary R x Z-module, because R
is a two-sided ideal of R x Z, M has an R-module structure and the
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forgetful functor is inverse to the one that we have considered previ-
ously. O

One of our main objectives is the study of different possible cate-
gories that can be associated to a ring in order to relate the properties
of the category with the properties of the ring. The first possibility is
this category, but we are going to give some reasons that show us that
this is not a very good choice.

Consider for instance the following well known statements for a ring
with identity R:

1. R is right noetherian if and only if every direct sum of injective

unitary right R-modules is injective.

2. R is right artinian if and only if every injective unitary right R-

module is a direct sum of injective envelopes of simple modules.

3. R is von Neumann regular if and only if every right unitary R-

module is flat.

If we try to extend these properties for the case of MOD-R we can
see that this is impossible, because R X Z can never be artinian nor
von Neumann regular.

In the case of rings with identity the problem can be easily identi-
fied. Suppose R is a ring with identity and M € MOD-R. If we define
M ={me M :mR =0} and M" = M/M’ then the map

e: M — M xM
m +— (m—m-lg,m-1g+ M)

is an abelian group isomorphism. We have to check some things:

(m—m-1g)-r=m-r—(m-1g)-r=m-r—m-(lgr) =m-r—m-r =20

therefore m —m - 1r € M’'. Suppose €(m) = 0; then m = m - 1z and
m-1g € M'. Therefore m = m-1g = m(-1glg) = (m-1g)-1g =0
because m -1z € M'. To prove that € is surjective, let (my, mq+ M') €
M’ x M"; then (my, mg + M') = €(my + may - 1), because

(m1+m2-1R)—(m1+m2-1R)-1R = m1+m2~1R—m1 . 1R—m2 . 1R' 1R
—— N——

0 ma-1r

:m1+m2'13—m2'1R:m1, and

(my+mo-1g)+M' = my1r+M' = my+M' because (mg —my - 1) € M’

Every R-homomorphism f: M — N can be decomposed into ' =
flar s M"— N and f”: M" — N".

The module M’ is a special module. It is an abelian group having
a trivial multiplication with the elements of R, M’'R = 0. On the other
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hand, M" is a unitary R-module, (m—m-1g+ M’ = 0 for all m € M),
therefore M" € Mod-R.

This proves that, for a ring with identity R, the category MOD-R
is composed of two categories, the category of abelian groups .A4b and
the category of unitary R-modules Mod-R. In fact, the part that give
us the information we are looking for, is Mod-R, i.e. the usual category
that is associated with R when R has an identity, the other part Ab
comes from the factor Z that we have added to form R x Z.

In the general case we can always find the category Ab of abelian
groups with trivial multiplication inside MOD-R, but it is not so easy
to avoid these modules as we have done in the case of rings with identity
because they are in general not direct summands. What we have to do
is to use localization techniques to avoid such modules. This is what
we are going to do now.

2.2. The Category CMod-R. Let R be an idempotent ring. From
now on, A will be a fixed ring with identity such that R is a two-sided
ideal of A. We shall use this ring to construct the categories CMod-R,
DMod-R and Mod-R, but we shall not include this ring A in the nota-
tion because we shall prove that this constructions will be independent
on this choice. This will be proved in the Section 4, Proposition 2.46.
This kind of ring always exists; we could use for instance the Dorroh’s
extension of R.

DEFINITION 2.21. Given M € Mod-A, we shall say that M is tor-
sion if and only if MR = 0. The class of torsion modules will be
denoted by 7.

PROPOSITION 2.22. The class T 1s a TTF-class.

Proor. If M € Tand N < M, then NR C MR = 0 and therefore
N eT.

If M € Tandn: M — N is an epimorphism, then N = M /Ker(n)
and for all m+Ker(n) € N and r € R, (m+Ker(n))r = mr+Ker(n) =
0. This proves that T is closed under quotients.

Let {M; :i € I} be a family of modules in T. If (m;)icr € [[,c; M;
and r € R, (m;)icrr = (myr)ier = 0.

Let {M; : i € I} be a family of modulesin T. As[]
we have that ([[,., M;)R = 0.

Let 0 = K — L — L/K — 0 be a short exact sequence in Mod-A,
with K and L/K inT. If L € Land r,s € R, (I1+ K)r = 0+ K therefore
Ir € K and Irs =0, then LR = LR? = 0. 0

This TTF-class define two new classes, the class U and the class
F, such that (U,T) and (T,F) are torsion theories. We shall give a
description of these classes.

DEFINITION 2.23. Let M € Mod-A. We shall denote by t (M) the
submodule

M; < Hie[ M;

el
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t(M)={meM:mR=0}
If f € Homa(M,N), we shall denote by t(f) the induced A-
homomorphism from t (M) to t (IV) by restriction of f. (If m € t (M),
f(m)r = f(mr) = f(0) = 0Vr € R, therefore f(t (M)) Ct(N)).

PROPOSITION 2.24. t is an idempotent radical in Mod-A, and the
corresponding torsion class for t is 7.

PROOF. A module M is in T if and only if t (M) = M. O
We have therefore a description of the class F. A module M €
Mod-A is in F if and only if t (M) =0, i.e.,

MeTFifand only if Vme M,mR=0=m =0
Let G={a< A :A/acT}={a<As: R<a}

DEFINITION 2.25. The category CMod-R is the quotient category
Mod-(A4, G).

We shall give some other descriptions of this category and the lo-
calization functor. For that we need some more definitions.

DEFINITION 2.26. Let M € Mod-A. We shall say that M is t-

injective if and only if for every short exact sequence in Mod-A

0—-X—-Y—-272—-0

such that Z € T and for every A-homomorphism f : X — M, there
exists an A-homomorphism ¢ : Y — M such that the diagram

6O — X — 'Y — Z — 0

fl/g

M
1s commutative.

PROPOSITION 2.27. Let M € Mod-A. The following conditions
are equivalent:

1. M € CMod-R.

2. The canonical homomorphism

A: M — Homyu(R, M)

1 an isomorphism.
3. M €F and M 1is t-injective.
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PRrROOF. (1 = 2). Let M € CMod-R = Mod-(A,G). Then for all
a €3G, tq: M — Homy(a, M) is an isomorphism. As R € G we deduce
that A = 1 is an isomorphism.

(2 = 3). Note that

Ker(AN)={meM: \,=0t={meM:\,(r)=0Vr € R} =

={meM:mR=0}=t(M).

Therefore, if A is injective, t (M) = 0 and then M € F. In order to
prove that M is t-injective, let 0 - X — Y — Z — 0 be a short exact
sequence in Mod-A with ZR = 0 and f € Homa(X, M).

The condition ZR = 0 implies that for all y € Y, yR C X and we
can define f : Y — Homyu(R, M) as f(y)(r) = f(yr). If we compose f
with A=! we get ¢ = A\~! o f such that the diagram

0 - X — Y — A —_— 0
fl /
g

M

is commutative. For, if x € X and r € R, then

(9(x)=f(@))r = Aga) (r) = f(2)r = A-104() (1) = f(2)r = f(z)r—f(2)r =0,
therefore g(z) — f(x) € t (M) = 0.
(3=1). Letae G, ie. RCa.

Ker(tg) ={meM:ma=0}C{meM - mR=0}=t(M)=0

If a € G the short exact sequence 0 — a — A — A/a — 0 satisfies
AJa € T. If f € Homgu(a, M), we know that there exists g : A —
M that extends f, so that f = 14(g(14)). This proves that ¢4 is an
epimorphism. O

PROPOSITION 2.28. The following functors are equivalent
1. The localization functor

c (M) = lim Hom(a, M/t (M)).

acg

2. The functor M — Homa(R, M/t (M)).
3. The functor M — Homa(R®4 R, M).

PROOF. (1 =2). As R € G, there is a canonical homomorphism
Jr : Homu (R, M/t (M)) — lim Homy (a, M/t (M)).

acg
We have to prove that this is in fact an isomorphism.
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Consider an element in lim Hom4(a, M/t (M)). This element can
acg
be represented as a homomorphism f : a — M/t (M) for some a € G.

We define o(f) = flg : R — M/t (M). We want to prove that ¢
and jr are inverse to each other, but first we have to prove that the
definition of ¢ is not dependent on the choice of f.

Suppose we have f : a — M/t (M) and f : b — M/t (M) such
that they both represent the same element in lim Hom(a, M/t (M));

acg

then there exists ¢ C aNb with ¢ € G, such that f|. = f|.. But,
¢ € G & R Cc, therefore f|gr = f|g. This proves that the definition is
good.

Clearly ¢ o jp = idHom (R, M/t(M . On the other hand, let f :a —
M/t (M) represent an element in ll)n Homu(a, M/t (M)). We have to

acg

prove that f and f|g represents the same element in lim Hom 4 (a, M/t (

acg
but this is clear because R € G.

(2 = 3). We shall use the canonical isomorphism (see [3, Lemma
19.11] )

Hom (R, Homy (R, M)) ~ Homu (R ®4 R, M)

If we define A : M — Homu(R, M) to be the left multiplication,
(Am(r) = mr), then Ker(\) = t (M). Therefore we can define the in-
duced monomorphism A : M/t (M) — Hom (R, M). This monomor-
phism induces

Homy (R, \) : Homyu (R, M/t (M))

f -

I_rIomA(HomA(R, M))
A

o

Moreover

Ker(Homy(R,\)) = {f: R— M/t (M) : Xo f =0}
={f:R— M/t (M): (Ao f)(r)=0Vr € R}
={f:R— M/t (M): \y(s)=0Vr,s € R}

={f:R—> M/t (M): f(r)s=0Vr,s € R}
={f:R—>M/t(M): f(r)y=0Vre R} =0.
To prove that Hom4(R, \) is an epimorphism, consider a homomor-
phism h : R®4 R — M. The kernel of the canonical homomorphism

p: R®s R — Risin 7, therefore h(Ker(y)) € t (M) and we can
induce a homomorphism h : R — M/t (M). Using the isomorphism

Hom (R, Homy (R, M)) ~ Homu(R ®4 R, M)

it is straight forward to prove that h is the inverse image of the corre-
sponding h € Hom (R, Homyu (R, M)). O

M));
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PROPOSITION 2.29. The functor c (M) = Homy (R, M/t (M)) has
the following properties:
1. VM € Mod-A, c (M) € CMod-R.
2. VM € Mod-A, the canonical homomorphism
t: M — c(M)=Homa(R, M/t (M))
m oy
L (1) = mr +t (M)
satisfies Ker(v), Coker(c) € 7.

Suppose € : Mod-A — CMod-R is a functor such that for all
M € Mod-A there exists a natural homomorphism © : M — ¢(M)
with Ker(z), Coker(z) € T. Then € is equivalent to c.

PROOF. The conditions 1 and 2 can be checked directly.

If Im(z) € €¢(M) € CMod-R, then Im(z) is torsion free and then
t (M) C Ker(z). But Ker(z) € T; therefore Ker(z) = t (M). Consider
the following diagram:

(M) c(M) 0

M
0 ~ TaD M/t (M)

‘]

(M)

A\

where 7 is the induced morphism. Using the fact that ¢(M) is t-
injective, we can find a homomorphism ¢ that makes the diagram com-
mutative. This morphism is unique. In the same fashion we can find a
homomorphism f such that the following diagram commutes

(M) oM) 0

|

M
0 —
L/l

c (M)

The homomorphisms f o g and go f fix the elements in M/t (M);
therefore they have to be the identity morphisms in ¢ (M) and ¢(M),
respectively because Coker(c) and Coker(z) are in J. This proves that

N

c (M) ~c(M).
Using the uniqueness of the morphismes, it is not difficult to prove
that this isomorphism is natural. O

ProprosiTIiON 2.30. Let M € CMod-R and let N C M be an A-
submodule. Then M/N is torsion-free if and only if N € CMod-R.

PROOF. Suppose first that M/N is torsion-free and let h: R — N
be an A-homomorphism. If we compose h with the canonical inclusion
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7 : N — M we obtain joh : R — M and using the fact that M €
CMod-R we deduce that there exists m € M such that j(h(r)) = mr
for all » € R, and then h(r) = mr for all r € R. What we have to
prove is that m € N, but this is clear because if mr € N for all r € R,
then (m+ N)R = 0in M /N and applying that M /N is torsion-free we
would obtain m € N.

On the other hand suppose N € CMod-R and let m+N € t (M/N).
Then we define h : R — M by h(r) = mr for allr € R. Asm+ N €
t (M/N) we deduce that in fact Im(h) C N and applying N € CMod-R
we deduce that there exists n € N such that h(r) = nr for all r € R.
But then (m —n)R = 0 and from this we deduce that n = m and
m+ N = 0. 0

2.3. The Category DMod-R. Following the idea of ”eliminating”
the modules with trivial multiplication by elements of R, there are
other ways of proceeding. In this subsection we shall explore another
construction based on properties dual to the previous ones.

DEFINITION 2.31. Let M € Mod-A. We shall denote by u (M)
the following submodule of M

l,l(M) =MR= {Zmﬂ"l tmy; € M,?“i € R}
finite
PROPOSITION 2.32. The functor u is the idempotent radical cor-
responding to the torsion theory (U, T) given above.

ProOOF. The class T is the torsion free class for u because M € T
if and only if u (M) = MR = 0. This property defines completely the
corresponding idempotent radical. O

DEFINITION 2.33. Let M € Mod-A. We shall say that M is uni-
tary if and only if M € U, i.e., MR=u (M) = M.

DEFINITION 2.34. Let M € Mod-A. We shall say that M is u-
codivisible if and only if for every short exact sequence in Mod-A

0—-X—-Y—-272—0

with u (X) = 0 and every homomorphism f : M — Z, there exists a
homomorphism ¢ : M — Y such that the diagram

g
ar
O — X — 'Y — 77 — 0

is commutative.
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PRrROPOSITION 2.35. Let M € Mod-A. The following conditions
are equivalent:

1. The canonical homomorphism

w: M4 R — M
mr — mr
1 an isomorphism.
2. M is unitary and u-codivisible.

A module that satisfies these properties is called coclosed.

PROOF. Suppose first that M is unitary and u-codivisible. The
condition M R = M is equivalent to the surjectivity of . Consider the
diagram given by

1y

g
0 — Ker(p) —MuR— M — 0

If Zle m; ®r; € Ker(p) and r € R,

k k
(Zmi@)ri)?“:Zmin@T:O@T:O.
i=1 i=1

This proves that u (Ker(u)) = Ker(u)R = 0, and using that M is
u-codivisible we can find a homomorphism g : M — M ®4 R such
that g o g = idy. This proves that Ker(u) is a direct summand of
M ®4 R € U. Therefore, Ker(u) € U because it is a quotient of

M ®4 R. Then Ker(u) = Ker(u)R = 0 and p is an isomorphism as we
claimed.

Conversely, suppose p is an isomorphism. Then MR = Im(u) = M.
To prove that M is u-codivisible consider the following diagram

M

| h

6O — X — 'Y — Z — 0

where the row is exact and u (X) = XR = 0. By applying the functor
— ®4 R we get a new commutative diagram with exact rows and with
the canonical morphisms in the columns
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XQUR—Y QQUR—ZQuR— 0

AR |
O — X — 'Y — Z — 0

By our hypothesis about X, we know that f = 0. Hence, g = 0 and
we deduce from this fact that £ factors through Y, giving a monomor-
phism j : Z® R — Y. Now, we get in this way a homomorphism
jo(h®id): M ® R — Y, which, composed with the assumed isomor-
phism p, gives a morphism M — Y that clearly is a lifting of the given
morphism h. U

DEFINITION 2.36. We shall define DMod-R as the full subcategory
of Mod-A that contains all the coclosed modules.

LEMMA 2.37. Let M € Mod-A and D € A-Mod such that RD =
D. Then, for alm et (M) andd € D, m®d=0€ M ®4 D.

Proor. Clear. O
PROPOSITION 2.38. The functord = u (—)®4 R has the following
properties:

1. VM € Mod-A, d (M) € DMod-R.
2. VM € Mod-A, the canonical homomorphism

w: dM)=uM)®sR — M
mr®@s — mrs
satisfies Ker(u), Coker(u) € 7.

Suppose d : Mod-A — DMod-R is a functor such that for all M €
Mod-A there exists a natural homomorphism p : d(M) — M with
Ker(), Coker(iz) € T. Then d is equivalent to d.

PRrROOF. First we shall prove that Ker(u) € 7. Suppose >, m;r; ®
s; € Ker(p), i.e., >, m;r;s; =0, and let t € R.

Also Coker () = M /M R; therefore Coker(p)R = 0.
Consider the short exact sequence given by

0 — Ker(p) -d (M) - MR — 0.
If we apply the tensor functor — ® 4 R we get the exact sequence

Ker(p) 4 R—d(M)®4 R— MR®4 R— 0
=d(M)
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But the kernel of the morphism d (M)®4 R — MR®4 R is formed
with the elements ) . k; ® r; € d (M) ®4 R with k; € Ker(pu) and
r; € R. But k; ® r; = 0 because of the previous lemma; therefore
d(M)®4s R— MR ®4 R is an isomorphism.

If d(M) € DMod-R then d(M)R = d(M) and Im(z2) R = Im(j). If
Coker(ft)R = 0 then MR C Im(i) and therefore MR = Im(f).

Consider the short exact sequence given by

0 — Ker(t) — d(M) — MR — 0.

By applying the tensor functor —® 4 R we obtain the exact sequence

Ker(ji) @4 R —d(M)®s R— MR®4 R — 0
————

=d(M)
Suppose Y" k@ r; € d(M) ®4 R with k; € Ker(n) for all i =
1,---,n. For every r; € R = R? we can find elements sij,ti; € R such

that r; = Z sijti;. Then, using the fact that Ker(fi) R = 0 we obtain

that
Zk'i@'rz Zk ® siiti; = stl]@tmz

This proves that d(M ) ®a R — MR ®4 R is an isomorphism.
Using the fact that d (M) € DMod-R and d(M) € DMod-R (i.e.
d(M)®sR~d(M)and d(M) ®4 R ~d(M)) we conclude

d(M)~d(M)®@sR~d(M)®4s R~d(M)®sR~d(M).

Because of the way we have defined this isomorphism, it is not
difficult to prove that this isomorphism is natural. O

COROLLARY 2.39. The following functors are equivalent

1. U_(—)@AR
2. — @A R®aR

PROOF. For every module M € Mod-A, M ®4 R is unitary and
therefore M ® 4 R ®4 R € DMod-R. The canonical homomorphism

ﬁ: M@AR(X)AR — M
mrxRs — mrs

satisfies Coker(f1) = M/MR € T and it is easy to check that Ker(j) is
also in T. Then, the uniqueness of the previous proposition makes us
deduce our claim. O

For the next result we have to use a technical result about tensor
products.
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LEMMA 2.40. Let A be a ring with identity, {ny : A € A} a gen-
erating set of the module 4N € A-Mod and {m, : A\ € A} a family of
elements in the module My € Mod-A, with {\ € A : my # 0} finite.

Then Y ycama ®@ ny = 0 in M ®4 N if and only if there exist
elements {z, € M :w € Q} and {ay, € A: X € A,w € Q} such that

L {(\w) € AXQ:ay #0} is finite.

2. > en Mwnr =0 for allw € Q.

3. My = cq Aol

PROOF. See [15, Kapitel 2, 12.10]. O

PROPOSITION 2.41. Let M € DMod-R, let K C M be an A-
submodule of M, and let p : M — M/K be the canonical projection.
Then K is unitary if and only if M/K € DMod-R.

PROOF. First suppose M/K € DMod-R. Let us denote by 1y
and 1/ the canonical isomorphisms 7y : M ®@ R — M and ny/k -
M/K® R — M/K. Let k € K. As in particular, & € M we can
find elements m; € M and r; € R such that k =) . m;r;. Ask € K
p(k) = >, p(m;)r; = 0 and using the fact that 7y;/x is an isomorphism,
we obtain that ), p(m;) ®r; = 0, and then ) . m; ®r; € Ker(p ®idg),
i.e. we can find elements k; € K and 7; € R such that >, m; @ r; =
>, kj@7;. But then we deduce k = Y, m;r; = Y. k;7; € KR, an that
KR=K.

On the other hand suppose K is unitary; then M /K is also unitary
because it is a quotient object of a unitary object. What we have to
prove is that the morphism p : M/K®4R — M /K is a monomorphism.
For that, suppose that >  (m; + K)r; = 0. Then >, m;r; € K and
as K is unitary we can find elements m; € K and r; € R with ¢ =
n+1,--- tsuch that 0 = 22:1 m;r;. If we apply that 22:1 m; @r; =0
in M @, R, we are in the situation of Lemma 2.40 but we have to
extend the set {rqy, -+, 7} to a generating set of R over A on the left,
say {r; : i € I}, and we can do it defining m; = 0 for the the values
i€ I\{l,---,t}. Using Lemma 2.40 we can find elements az; € A
with £ = 1,--- [, almost all of them zero, and mq,---,m; € M such
that

LY iesanri=0forallk=1,--- 1.
2. 22:1 mya; = m; for all i € 1.
From this we deduce

n

i=1 icl
! !
ZZ (myag; + K) ®r2—2(mk+K)®Zakm:O.
iel k=1 k=1 i€l
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2.4. The Category Mod-R.

DEFINITION 2.42. We shall define the category Mod-R as the full
subcategory of Mod-A which contains the modules M that satisfy
u(M)=Mand t(M)=0,ie,UNT.

This category can be considered as a category between CMod-R and
DMod-R. This category will be very useful in order to study properties
like finite generatedness.

Given a module M € Mod-A, there are two different ways of defin-
ing a module in Mod-R associated to it; they are MR/t (M R) and
(M/t (M))R. We are going to prove that this modules are equal.

(We shall denote by t~! the functor given by t~'(M) = M/t (M)
for any module M, and defined for morphisms in the natural way).

PROPOSITION 2.43. There exists a natural equivalence between the
functorsuot=! and t~*ou.

PRrROOF. Consider the canonical homomorphism o = u (M) —
M — M/t (M). The kernel of a is u(M) Nt (M) =t (u(M)), this
equality comes from the left exactness of the functor t. The image of
a is a unitary module, because it is a quotient of u (M). Therefore
Im(a) Cu (M/t (M)). We have then the morphism

Ou o w(M)/t(u(M)) — u(M/t(M))
domiry +t (w(M)) = 3 (mi +t (M))r;

We have to prove that (,; is an isomorphism. The injectivity is
clear because Ker(a) = t (u(M)). The surjectivity is also clear, if
we have an element ) (m; +t (M))r;, we can take > m;r; +t (M) €
Bt (o (mi +t (M)r).

In order to prove the naturality of (35, suppose f : M — N and
consider the following diagram:
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N
IV
/
h N
u () 111 ey
M
u (M) Ty
vV By /A 1
u(N) u< N )
t(u(N)) t(N)
I
tu(M) Bt u( M )
(u(M)) t(M)

We have to prove that the square I commutes and we know that
the squares ILIII, IV, V and the pentagons commute. From this we
deduce that the following morphisms are equal

Loy u) ay) N N
W)= Smon = T ) (t(N)) C)

u(M)H%—)“(%> H“(th)) HtEJVV)
u (M)

And using the fact that u (M) — Gz is an epimorphism and

t(N) t(N)
the square I. O

u ( N ) — X is a monomorphism we obtain the commutativity of

DEFINITION 2.44. The functor u o t~! will be denoted by m :
Mod-A — Mod-R. This functor is also t™ o u up to natural isomor-
phism.

3. The Equivalence of the Categories

In this section we shall prove that the three categories that we
consider, are in fact equivalent.
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THEOREM 2.45. Let R be an idempotent ring. Then, the categories
CMod-R, Mod-R and DMod-R are equivalent.

Proor. Consider the following diagram of categories and functors.

CMod-R

DMod-R

The functor m on the modules in CMod-R that are torsion-free is
the same as the functor u, and on the modules in DMod-R that are

unitary is the same as t~!. Because of this we shall use the notation u
and t~! instead of m in these cases.

We have to prove the following facts.
1. CMod-R and Mod-R are equivalent.

(a) For every M € CMod-R there exists a natural isomorphism
between M and c (u (M)).

(b) For every M € Mod-R there exists a natural isomorphism
between M and u (c (M))

2. DMod-R and Mod-R are equivalent.

(a) For every M € DMod-R there exists a natural isomorphism
between M and d (t~1(M)).

(b) For every M € Mod-R there exists a natural isomorphism
between M and t~1(d (M)).

(1) CMod-R and Mod-R are equivalent.

(1.a) For every M € CMod-R there exists a natural isomorphism
between M and c (u (M)).

If M € CMod-R, M is torsion free and then u (M) C M is also tor-
sion free. Therefore ¢ (u (M)) = Homu(R,u (M)). The isomorphism
is defined as follows:

A
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Ker(A) ={me M : )\, =0}
={meM:\,(r)=0Vr € R}
={meM - mR=0}=t(M)=0

Let f: R — u (M) be any homomorphism and let j: u (M) — M
denote the canonical inclusion. As M € CMod-R, for the morphism
jo f: R — M there exists m € M such that (j o f)(r) = mr = j(mr)
for all » € R. If we apply the fact that 5 is a monomorphism, then
f(r) = mr Vr € R and therefore A(m) = \,, = f. This proves that A
is surjective.

In order to prove the naturality, let h : M — N be a homomorphism
with M and N in CMod-R. We have to check that

Homy(R,u (h))oA=Aoh

This is equivalent to the property Anun) = ho A, for all m € M; but
this is true because
M) (1) = h(m)r = h(mr) =
=h(An(r)) =(hoX,)(r)Vr € R

(1.b) For every M € Mod-R there exists a natural isomorphism
between M and u (c (M)).

Let M € Mod-R. Then M is torsion free and therefore ¢ (M) =
Homy (R, M). Consider the homomorphism A : M — Homyu (R, M)
given above. Note that Ker(\) = t (M) = 0. Therefore X is a
monomorphism. The condition M R = M implies Im(A\)R = Im(\),and
therefore Im(A\) C u (c (M)). We can consider the restriction of the
canonical homomorphism A : M — u (c (M)) and we have proved that
A is injective. What we have to prove is that Im(\) = u (c (M)).

Let > . firi € u(c(M)) with r, € R and f; : R — M in ¢ (M).
What we are going to prove is that ), fir; = Ay~ f,¢,) € Im(A). For
any r € R,

Zfﬂ“z‘(T) = Zfi(rﬂ”) = Zfi(n)r = A%, i) (7)
and this proves our claim.

To prove the naturality of the isomorphism, let M, N € Mod-R and
h: M — N. We have to prove that u (Homy(R,h)) o A = Ao h. Let
m € M and r € R then

(u (Hom(R, h))) o A)(m)(r)
=u (Homu (R, h)) (An(r))
= h(mr) = h(m)r = Xy (7).
and therefore (u (Homu (R, h)))oX)(m) = Apgny. Then u (Homa(R, h))o
A = Ao h, that is the naturality condition.
(2) DMod-R and Mod-R are equivalent.



3. THE EQUIVALENCE OF THE CATEGORIES 27

(2.a) For every M € DMod-R there exists a natural isomorphism
between M and d (t~1(M)).

If M € DMod-R, M/t (M) is unitary and then d (M/t (M)) =
M/t (M) ®4 R. Consider the short exact sequence

O—>t(M)—>M—>M/t(M)—>O
and apply the tensor functor — ®4 R to obtain

t(M)@4R— M®s R M/t (M)@4 R —0
H,—/ [

=M :d(t:(M))

The morphism we have to prove an isomorphism is 7. Because of the
definition, 7 is an epimorphism. To prove that 7 is a monomorphism
let k € Ker(n). Then k =) . t;®r, € M @4 R with ¢, € t (M) and
r; € R. But as t;R =0, t; ® r; = 0 for all 7 and therefore k = 0.

To prove the naturality of this isomorphism, let M, N € DMod-R
and h : M — N. Consider

M —— M®,R —— M/t (M)®4 R —— d (t'(M))
hl h®ARl J{t*l(h)®AR ld(t‘l(h))
N 5 N®sR —— N/t(N)®s R —— d(t"}(N))

The commutativity of this diagram proves the naturality of the
isomorphism.

(2.b) For every M € Mod-R there exists a natural isomorphism
between M and t~1(d (M)).

Let M € Mod-R. The condition M R = M implies that d (M) =
M ®4, R. What we are going to prove is that the kernel of p :
M®s R — M, (u(m®r) =mr),is t (M). This would give us the
isomorphism that we are looking for.
t (M ®4 R) 2 Ker(p) | Suppose >, m;®r; € Ker(u). Then Y. m;r
0 and therefore, for all r € R,

(Zmi®7”i)7”22miri®r:0®r:0

t (M ®a R) C Ker(p)| Suppose » ,m; @r; € t (M ®4 R). Then
p(d-,m; @r;) € t (M) =0 and therefore Y . m; ® r; € Ker(u) as we
claimed.

The morphism z induces an isomorphism fi : M@ R/t (M ®4 R) —
M. To prove the naturality, let h : M — N be a homomorphism be-
tween M, N € Mod-R.
Clearly the following diagram commutes
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t(IM@sR) — M®sR —— M

t(h®AR)l h®ARl hl

t(N®4R) — N®sR —— N

And this is equivalent to the naturality of the isomorphism. O

4. The Independence of the Base Ring

In the previous sections we have made several constructions inside
the category Mod-A where A is a ring with identity such that R is
a two-sided ideal of it. We claimed that these constructions are not
dependent on the ring A that we chose. This is not completely true.
The classes T, ¥ and U, and properties like being t-injective or u-
codivisible are dependent on it. Nevertheless, the categories CMod-R,
Mod-R and DMod-R are not dependent on this choice. This is what
we are going to prove in this section.

When we studied the category MOD-R, we mentioned that one pos-
sible choice for the ring A could be the Dorroh’s extension of R, R X Z.
In order to prove the independence of the choice we shall suppose that
we have made the constructions for the ring R x Z and we shall obtain
that if we choose another A, the result is the same.

PROPOSITION 2.46. Let B be the Dorroh’s extension of R, 1i.e.,
B = R xZ. Form the categories CMod-R, Mod-R and DMod-R for
the ring B and suppose that A is a ring with identity such that R is a
two-sided ideal of it. Then

1. CMod-R is the full subcategory of Mod-A formed with the mod-
ules My such that Homa(R, M) ~ M in the canonical way.

2. DMod-R is the full subcategory of Mod-A formed with the mod-
ules My such that M @4 R ~ M in the canonical way.

3. Mod-R is the full subcategory of Mod-A formed with the modules
My such that MR = M and Vm € M, mR=0= m = 0.

And the same holds for the corresponding categories on the left.
The functors ¢, d and m does not depend either on the ring A.

PROOF.

(1) CMod-R is the full subcategory of Mod-A formed with the
modules M4 such that Homy (R, M) ~ M in the canonical way.

Let M € CMod-R. We have to give M an A-module structure. For
that, let m € M and a € A. The ring A is an R-module and therefore
a B-module and (A/R)R = 0. If we consider the diagram
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O — R — A — A/R — 0

)\ml /g

M

There exists an R-homomorphism g : A — M that extends A,
because of the t-injectivity of M. We shall define ma := g(a). This
definition extends the product with elements of R. The definition is not
dependent on the choice of g because g is unique (Homp(A/R, M) = 0).
We have to check the following points:

1. m(a+da') = ma+ md for all m € M and a,d’ € A.

This is true because g is an abelian group homomorphism.

2. m(aad’) = (ma)d’ for all m € M and a,d’ € A. Let r € R,

g: A — M that extends A\, and g : A — M that extends \y).
Then

(m(ad’) — (ma)a’)r = g(ad’)r — g(d')r

= g((ad")r) — g(a'r) = m((aa

= m(a(a'r)) — g(a(a'r)) = m(a(a’
Therefore m(aa’) — (ma)a’ € t (M) = 0.

3. (m+m')a =ma+ m'a for all m,m' € M and a € A.
Let r € R. Then

=
—~

S

=

((m+m"a —ma —m'a)r = ((m+ m')a)r — (ma)r — (m'a)r
= (m+m')(ar) — m(ar) —m'(ar) =0
and using the fact that t (M) = 0, we prove the claim.
4. mly =m. Let r € R. Then
(mly —m)r =mlar —mr =mr—mr=0.
Therefore mly —m € t (M) = 0.

This A-module structure is unique. Suppose there are two multi-
plications o and % such that mor = mxr = mr for all m € M and
r € R. Then

(moa—mx*a)r=(moa)r— (mxa)r=
mo (ar) —m* (ar) = m(ar) — m(ar) = 0.
Therefore moa = m x* a.
We have to prove that with this A-module structure, the module
M satisfies Hom (R, M) ~ M.
Let A : M — Homyu (R, M) be the canonical homomorphism. Then
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Ker(\)={meM:\,=0t={meM:mR=0}=t(M)=0.

This proves that A is a monomorphism. In order to prove that it
is an epimorphism, let f € Homu (R, M). If r € R and (s,n) € B =
R X Z, then

f(r(s,n)) = f(rs +nr) = f(r)s+nf(r) = f(r)(s,n),

and therefore f € Homp(R, M) and there exists m € M such that
f(r) =mr = A\, (r) forall r € R. This proves that A is an epimorphism.

Conversely suppose that M € Mod-A satisfies that A : M —
Hom (R, M) is an isomorphism. Let A : M — Hompg(R, M) be the
canonical homomorphism. We have to prove that A is an isomorphism.
Now

0 = Ker(A\) =t (M) = Ker()),

and therefore \ is injective. To prove the surjectivity suppose f €
Homp(R, M), a € Aand r € R.

f(ra)s = f((ra)s) = f(r(as)) = f(r)(as) = (f(r)a)s Vs € R.

This proves that f(ra) — f(r)a € t (M) = Ker(\) = 0 and that f
is also an A-homomorphism. If we apply the surjectivity of A we can
find m € M such that f(r) = \n(r) = mr = A(r) for all » € R and
this proves the surjectivity of .

We have to prove also that if M, N € CMod-R, then Homg(M, N) =
Homy (M, N). Let f € Homy(M,N), m € M and (r,z) € B= R x Z.
Then

f(m(r,2)) = f(mr +2m) = f(m)r + 2f(m) = f(m)(r, 2).
This proves that Hom (M, N) € Homg(M, N). On the other hand,
suppose f € Homg(M,N), m € M, r € R and a € A. Then

f(ma)r = f((ma)r) = f(m(ar)) = f(m)(ar) = (f(m)a)r Vr € R.

This proves that f(ma) — f(m)a € t(N) = 0 and therefore f €
Homy (M, N).

(2) DMod-R is the full subcategory of Mod-A consisting of the
modules My such that M ®, R ~ M in the canonical way.

Let M € DMod-R. We have to give M an A-module structure.
For that given a € A and m € M = MR, we can find m; € M and
r; € R such that m = ) . m,r;. Therefore ma = ), m;(r;a). The
problem here is that this definition could depend on the choice of the
m; and r;. We have to prove that this is not true, and for that it is
sufficient to prove that ). m;r; = 0 implies ), m;(r;a) = 0 because
Yoy = Y imys; if and only if Y mir; — 37 n;s; = 0. Suppose
that ). m;r; = 0 and a € A. In order to applay Lemma 2.40 we can
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suppose that the elements {r; : i € I} form a generating set of R over
B on the left because, if it is not so, we can add elements m; = 0 as
long as we need.

If >, myr; =0, then >.m; ®r;, = 0 € M ®p R because M €
DMod-R. Using Lemma 2.40 we can find elements wy, -+ ,w, € M
and b;; € B witht =1,--- ,k such that

L {(i,t) e I x{1,--- Kk} : byy # 0} is finite.
2. Zibitri =0forallte {1, ,I{Z}

3. 30wy =m; forallie I,

Then, we deduce that

Z my(ria) = Zwtbit(ma) =
= Z wy(byria) = Zwt(z biri)a = 0.

This proves also that the multiplication we have defined between
elements of M and A is the unique one that extends the multiplication
with the elements of R. We have to check also the following points:

1. m(a+a') = ma+ md for all m € M and a,d" € A.
If m =3, myr;, then

m(a+ad') = Z m;i(ri(a+d')) = Z m;(ra + r;a’)

= Z m;(r;a) + Z m;(r;a’) = ma + ma'.

2. m(aa’) = (ma)d’ for all m € M and a,d’ € A.
If m =5, mr;, then

m(aa’) = Zmi(m(aa/)) = Zmi((na)a’) = (ma)ad’

3. (m+m')a=ma+m'a for all m,m' € M and a € A.

If m =73 mir; and m’ = 3", m/r, then

(m+ma = Z m;(ra) + Z m’;(r;a) = ma + ma'
( J

4. mly =m.
If m =3, myr;, then

mly = Zmi(rilA) = me =m.
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Suppose M € Mod-A and Mod-B such that for all m € M and
r € R, the multiplication between m and r is the same with the A-
module structure and the B-module structure. Let yp: M ®4 R — M
and i : M®p R — M be the canonical homomorphisms. What we have
to prove is that u is an isomorphism if and only if i is an isomorphism.
It is clear that Im(u) = MR = Im(f), so that p is surjective if and
only if i is surjective.

In the following proof, the roles of A and B are interchangable.
Therefore we have to make only one direction.

Suppose [ is an isomorphism. Then y is epimorphism and ji is also
an epimorphism and M = M R. To prove that p is a monomorphism,
let >, m; ® r; € Ker(p) with {r; : ¢ € I} being a generating set of R
over B on the left. Then ) m;r; =0and > ,m; ®r; € Ker(n) = 0. If
we use Lemma 2.40 we can find elements wq,--- ,w, € M and b;; € B
with ¢ = 1,--- , k such that

1. {(i,t) e I x {1,---  k} : by # 0} is finite.

2. Zibitri =0forallte {1, ,k’}

3. S0, wibiy = m; for all i € I.

These elements w; are in M = M R and we can write w, = >, 23S
with 2, € M and s;, € R. We have to prove that > . m; ® 7, = 0 in
M®s R

Zmi XKr; = Zwtbit XKr; =
i it
Z 2 (siabi) @ 1y = Z Zex @ (siabig)r

RPN RPN

E 2xSex @ by = E wy @ byr; =
it

RPN

Zwt@)men:Zwt@O:O
t 7 t

Let M, N € DMod-R. We have to check that Homa (M, N) =
Hompg(M, N), and for that let f € Homg(M,N) and m € M. If
m =Y ,m;r; and a € A, then

— Z f(mi(ria)) = Z f(mg)(ria) = (Z f(mg)ri)a = f(m)a

Thus Homp(M, N) C Homy (M, N). The proof of the reverse in-
clusion is similar.

IHere it is possible to say that z;xs:xbit @ 5 = 24x5ex ® bigr; because — ®p — =
— ®gR —, but if we interchange A and B it is not true that — ®4 — = — ®g —, it
is only true if one of the modules is unitary. As we are trying to make a proof in
which the roles of A and B are interchangable, we use this trick
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(3) Mod-R is the full subcategory of Mod-A consisting of the mod-
ules M4 such that MR = M and Vm € M, mR=0= m = 0.

Suppose M € Mod-R. We have to define a multiplication M x A —
M that extends the multiplication with R. Suppose m € M and a € A.
Then M = MR implies m = ), m;r;, and we define ma =, m;(r;a).
We have to prove that this definition is not dependent on the choice of
the m; and r;, and for that suppose >, m;r; =0, a € A and r € R.
Then

Emzn 7“—EmZ ria
—EmZTZCL’I“ ngﬂ J(ar) =0

Therefore ), ml(n )et(M)=0 and the definition is good. This
definition is the unique that extend the multiplication by R. With this
definition M acquires an A-module structure; the proof is the same as
in the case of DMod-R.

Now what we have to prove is that Homy (M, N) = Homg(M, N)
for all M, N € Mod-R.

Let f € Homg(M,N), m€ M, a € A and r € R. Then

f(ma)r = f((ma)r) = f(m(ar)) = f(m)(ar) = (f(m)a)r,
and therefore f(ma)— f(m)a € t (N) =0. Thus f € Homa (M, N). It
follows that Homp (M, N) C Hom4 (M, N) and similar proof shows that
Homu (M, N) C HomB(M N). Thus Homy (M, N) = Hompg(M, N), as
we claimed.

The condition ” R is a two-sided ideal of A” is left-right symmetric,
and therefore we don’t have to make the proof for the corresponding
categories on the left.

We have to prove also that the functors d, c and m = uot™! =
t ! ou do not depend on the ring A. The last functor clearly does not
depend on it, because in its definition, the ring A does not appear. The
problem is with the functors ¢ and d. Suppose M is a module that has
two structures, an A-module structure and a B-module structure such
that for all m € M and r € R, mr is the same if we compute it with
either of the structures.

For the ring B we have the functors ¢ and d, and for the ring A
denote by € and d the corresponding functors. Associated with these
functors there are mappings fi : d(M) — M and z : M — &(M) such
that Ker(z)R = 0,Coker(g)R = 0 and Ker(z)R = 0, Coker(z) = 0.
These functors satisfy the conditions of the Propositions 2.29 and 2.38
and we deduce that ¢ ~ € and d ~ d. O



CHAPTER 3

Categories of Modules for Rings I1

In this chapter R is an idempotent ring and A a ring with identity such
that R is a two-sided ideal of A.

In the previous chapter, we proved that CMod-R was a Giraud sub-
category of Mod-A and therefore, a Grothendieck category. We proved
also that the categories CMod-R, Mod-R and DMod-R are equivalent,
and therefore all of them are Grothendieck categories. In the following
sections we are going to investigate monomorphisms, epimorphisms,
products, short exact sequences, etc, in these categories. Such results
are rather useful because there are several curious differences between
the case of rings with identity and other idempotent rings.

1. Epimorphisms and Monomorphisms

One of the first things we need to study are the subobjects and
quotient objects of a given object. In order to do that we need to
know the monomorphisms and epimorphisms in our categories. We
shall recall the categorical definitions before doing anything else. These
definitions are for more general categories, although we shall give them
in Grothendieck categories in order to avoid the study of particular
cases we are not interested in.

DEFINITION 3.1. Let G be a Grothendieck category. A morphism
f M — N is called an epimorphism in case for every morphism
h: N — K in G with ho f =0, then h should be 0.

A morphism f: M — N is called a split epimorphism in case there
exists g : N — M such that fog=id.

Every split epimorphism is an epimorphism. The converse of course
is not true. In Grothendieck categories a morphism f: M — N is an
epimorphism if and only if Im(f) = N or if f = f* (the cokernel of
the kernel of f). These categorical notions have the following problem,
namely Im(f) need not to be the same thing, if we calculate it on
our categories or we calculate it in Mod-A. For example, in CMod-R,
Im°(f) = ¢ (Im(f)), nevertheless in DMod-R, Im®”(f) = Im(f). We
shall study this general problem in the following sections generally by
calculating direct and inverse limits in the categories and relating them
with the calculations on Mod-A. To start with this matter, we shall
study the case of monomorphisms and epimorphisms.

34
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PROPOSITION 3.2. Let R be an idempotent ideal of a ring A with
identity.

1. A morphism f: M — N in CMod-R is an epimorphism if and
only if N/Tm(f) € 7.

2. A morphism f : M — N in Mod-R is an epimorphism if and
only if the mapping f is surjective.

3. A morphism f : M — N in DMod-R is an epimorphism if and
only if the mapping f is surjective.

PROOF. 1. The CMod-R case: Suppose N/Im(f) € T and h :
N — K satisfies ho f =0 with n € N such that h(n) # 0. The
element h(n) € K € CMod-R, and therefore h(n) ¢ 0 = t (K)
and we can find an element r € R with A(n)r # 0. But nr €
Im(f) because N/Im(f) € T, and therefore we can find m € M
with f(m) = nr. Now

0 # h(n)r = h(nr) = h(f(m)) = (ho f)(m) =0,
a contradiction.
On the other hand, suppose N/Im(f) ¢ T, and consider K =
¢ (N/Im(f)) and the canonical morphism ¢ : N/Im(f) — K.
This morphism ¢ is not 0 because Ker(:) =t (N/Im(f)), but the
morphism M — N — N/Im(f) — K is0ie. vof=0,¢#0,
and hence f is not an epimorphism.

2. The Mod-R case: If f is surjective, it is clear that f is an epi-
morphism. On the other hand suppose L = N/Im(f) # 0. As
LR = L, L cannot be in T, and then K = L/t (L) # 0 and is
torsion free. This module is also unitary because NR = R. If we
denote p; : N — L and py : L — K the canonical projections,
then py opy o f = 0 and py o p; # 0 shows that f is not an
epimorphism.

3. The DMod-R case: If f is surjective, it is clear that f is an
epimorphism. On the other hand suppose f : M — N is an
epimorphism and that N/Im(f) # 0. This module is unitary,
therefore (N/Im(f)) ®4 R € DMod-R. Consider the exact se-
quence

M®sR— N®sR— (N/Im(f)) ®4 R.

The first morphism is in fact f because M ®4 R = M and
N ®4 R = N and composing with the other epimorphism N ® 4
R — (N/Im(f)) ®4 R, gives the 0 morphism and this is not
possible because (N/Im(f)) ®4 R # 0.

]

The case of split epimorphisms is a bit different. In the three cases,
if f is a split epimorphism then f is a surjective map, because for any
element of n, the element g(n) € M satisfies f(g(n)) = n.
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DEFINITION 3.3. Let G be a Grothendieck category. A morphism
g: N — M is called a monomorphism in case that for every morphism
h: K — N in G with go h = 0, then h should be 0.

A morphism g : N — M is called a split monomorphism in case
there exists f : M — N such that f o g =id.

PROPOSITION 3.4. Let R be an idempotent ideal of a ring A with
identity.

1. A morphism g : N — M in CMod-R is a monomorphism if and
only if the mapping g s injective.

2. A morphism g : N — M in Mod-R is a monomorphism if and
only if g 1s injective.

3. A morphism g : N — M in DMod-R is a monomorphism if and
only if Ker(g) € 7.

PrOOF. 1. The CMod-R case:

It is clear that if ¢ is an injective mapping, ¢ is a monomor-
phism. On the other hand suppose g : N — M is a monomor-
phism.

Suppose « : R — Ker(g) is any A-homomorphism. If we
compose it with the inclusion j : Ker(g) C N, joa: R — N
and there exists n € N such that a(r) = nr for all » € R.
What we want to prove is that n € Ker(g), for that suppose
g(n) € 0 =t (M), then we can find an element r € R such that
g(n)r # 0 and g(nr) # 0, but nr = a(r) € Ker(g) and this is
not possible.

We have proved that for any A-homomorphism o : R —
Ker(g) there exists a n € Ker(g) such that a(r) = nr for all
r € R. The module Ker(g) C N,and therefore , it is also torsion
free and then Ker(g) € CMod-R. Using the fact that g is a
monomorphism we deduce that the canonical inclusion Ker(g) C
N would be the 0 mapping and we obtain Ker(g) = 0.

2. The Mod-R case:

It is clear that if g is an injective mapping, it is a monomor-
phism. On the other hand, let g : N — M be a monomorphism
with Ker(g) # 0. Ker(g) C N, therefore Ker(g) is torsion free,
and then 0 # Ker(g)R € Mod-R. This is not possible because
the canonical inclusion j : Ker(g)R — N composed with ¢ is 0
but 5 # 0.

3. The DMod-R case:

Suppose g : N — M satisfies Ker(g)R = 0, and let h : K —
N be a morphism such that g o h = 0. Then Im(h) C Ker(g).
If for some k € K, h(k) # 0 where k = Y . kir; € K = KR,
then h(k) = >, h(k;)r; # 0. Clearly we can find ¢ € I such that
h(k;)r; # 0. But h(k;)r; € Im(h)R C Ker(g)R = 0, and this is a

contradiction.
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Conversely, let g : N — M be a monomorphism. The module
Ker(g)R ®4 R € DMod-R and the morphism

h: Ker(9p R& R — N
kr®s w— krs

satisfies g o h = 0 and hence h = 0. But Im(h) = Ker(g)R? =
Ker(g)R. Thus Ker(g) € 7.
U

2. Limit and Colimit Calculi

In the previous section we have studied the case of monomorphisms
and epimorphisms. As we are in a Grothendieck category that in par-
ticular is normal and conormal, monomorphisms and kernels are the
same thing and epimorphisms and cokernels are also the same. There-
fore we could consider the results in the previous section as a particular
case of the results we are going to give here, because we are going to
calculate all the inverse and direct limits in the categories CMod-R,
Mod-R and DMod-R with respect to the ones calculated in Mod-A.

We shall adopt the notations and definitions given in [13, Chapter
2.

DEFINITION 3.5. Let I be a quasi-ordered set and G a category. A
direct system in G with index set I is a family of objects {M; : i € I}
and morphisms {¢’ : M; — M; :i < j} such that

1. ¢! M; — M; is the identity morphism for every i € I.
2. If 1 < j <k, there is a commutative diagram

DEFINITION 3.6. Let {M;, '} be a direct system in a category
G. The direct limat of this system, denoted lim M;, is an object and
iel
a family of morphisms a; : M; — lim M; with o; = «; o 903- whenever
iel
1 < j satisfying the following universal mapping problem:
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For every object X and every family of morphisms f; : M; — X with
fi=1; ogoj» whenever ¢ < j, there is a unique morphism £ : lim M; — X
iel
making the following diagram commute.

PROPOSITION 3.7. Let {M;, %} be a direct system in the cate-

gory CMod-R C Mod-A, and { lim M;, a; » be the direct limit cal-
icl
culated in Mod-A. Then, the direct limit calculated in CMod-R is

{C (ll)nMZ> ,C (ai)}.

PRrooF.

Suppose for some X € CMod-R we have morphisms f; : M; — X
such that f; o 902» = f; for all ¢ < j. Therefore, using the universal
property of lim M; we can find a unique 3 such that § o «a; = f; for all

iel
1 € I. Consider the following diagram
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lim M,

el

Then c () oc (o) =c(Boa;) =c(fi)=fi (1 € I) and then c (/)
satisfies the corresponding property for < ¢ ( lim MZ> ,C (ai)}. We only
have to check that this morphism is the unique one that satisfies this
property. For that suppose B:c (lim MZ> — X satisfies foc () = [
for all i € I. We know that ¢ («;) = to«; and then ?owai = f; for all
i € I and the universal property for lim M; implies for = 3 =c (8)o..

Suppose that g # B. Tt follows that for some w € ¢ <1im Mi),
(3 —c(B)(w) € 0 = t(X). Then we can find r € R such that

(B —c(B))(wr) # 0. But Coker(t) € T and therefore wr € Im(¢)
and this contradicts (6 — ¢ (8)) ot = 0. O

PROPOSITION 3.8. Let {M;, 903} be a direct system in the category

Mod-R C Mod-A, and {lg)n Mi,al} be the direct limit calculated in

el

Mod-A. Then, the direct limit calculated in Mod-R is {t_l <1£1 MZ> ) }

el

Proor. Consider the following diagram
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¢ <1im Mi)

All the modules M; are in Mod-R and therefore, they are unitary.
Then lim M; is also unitary because U is closed under coproducts and

quotients. This implies that the module

= <1im MZ-) € Mod-R.
¢ <lim MZ-) —

Suppose that for some X € Mod-R we have morphisms f; : M; — X
such that f; o cpé- = f; for all + < j. Using the universal property of
lim M; we can find § : lim M; — X such that foa; = f; for all i € I.

Then

tTH (@) ot T o) =t (Boa) =t (fi)=fi (iel).
Then t~1(3) satisfies the corresponding property for

{til <hm MZ> ,til(Oéi)} .
We only have to check that this morphism is the unique one that sat-
isfies this property. For that, suppose Gt ! <lim MZ) — X satisfies

@o t (o) = f; for all i € I. We know that t~*(a;) = p o ; and then
Bopoa; = f; for all i € I and the universal property for lim M; implies

fop=p=t"1B)op.
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As X is torsion free, Homy <t (lim Ml) , X ) = 0, and therefore

fop=p3=t"'(3)op factors through p in a unique way, § = t~*(3),
i.e. as we claimed. O

PROPOSITION 3.9. Let {M;, '} be a direct system in the category

DMod-R C Mod-A, and {1&1 M;, ozz} be the direct limit calculated in

i€l

Mod-A. Then liig M;, a; ¢ 1s also in DMod-R and this is also the
iel
direct limit calculated in DMod-R.

PRrROOF. The functor — ®,4 R has a right adjoint!, and therefore, it
commutes with direct limits (see [14, Proposition IV.9.4]) and then

(lim MZ> ®4 R ~1lim(M; ®4 R) ~ lim M,;.
This proves that lim M; € DMod-R O

DEFINITION 3.10. Let I be a quasi-ordered set and G a category.
An idnverse system in G with index set [ is a family {M; : i € I} of
objects in G and a family {¢7 : M; — M; :i < j} such that

1. ¢! M; — M; is the identity morphism for every i € I.

2. If 1 < j < k there is a commutative diagram

Pr
M, - M;

DEFINITION 3.11. Let {M;, 9/} be an inverse system in G. The
inverse limit of this system, denoted by lim M; is an object in G and

1€l
a family of morphisms «; : lim M; — M; with a; = Y] o aj whenever
iel

i < j satisfying the following universal mapping problem:

for every X and morphisms f; : X — M; with ¢/ o f; = f; whenever

i@ < j, there is a unique morphism (3 : X — lim M; making the following
iel

diagram commute.

!The right adjoint is Hom (R, —). This relation can be seen in [?, Lemma
19.11]
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We shall give also the results for the inverse limits in our categories.
The proof of these results are more or less dual to the proofs we have
given in the case of direct limits.

PROPOSITION 3.12. Let {M;, ¢} be an inverse system in the cat-

egory CMod-R C Mod-A, and ¢ lim M;,a; ¢ be the inverse limit cal-
iel
culated in Mod-A. Then, lim M; is in CMod-R and therefore, this is
i€l
the inverse limit calculated in CMod-R.

PROPOSITION 3.13. Let {M;, 0'} be an inverse system in the cat-

egory Mod-R C Mod-A, and {@1 M;, «; p be the inverse limit cal-
iel
culated in Mod-A. Then, the inverse limit calculated in Mod-R is

{u (1&1 Mz) ,ua (Oéz)}

PROPOSITION 3.14. Let {M;, p'} be an inverse system in the cat-

egory DMod-R C Mod-A, and { lim M;, o; ¢ be the inverse limit cal-
iel
culated in Mod-A. Then, the inverse limit calculated in DMod-R is

3. Special Kinds of Limits

We are used to concepts like intersections, inverse images, exact se-
quences, kernels, cokernels, and so on . These concepts are categorical,
and they can be defined in categories that are not the category of mod-
ules over a ring with identity. What we are going to do in this section
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is to recall these categorical definitions and notice the differences that
appear in Mod-A and in the categories CMod-R, Mod-R and DMod-R.

Objects in Grothendieck categories are considered up to isomor-
phisms. This is rather useful when we study limits and colimits, that
are unique up to isomorphisms, and allow us to define concepts like
Ker(f) without ambiguity.

Let M be an object in a Grothendieck category G. A subobject
of M is an object N € G with a monomorphism y : N — M. In
the category CMod-R, the monomorphisms are the same as in Mod-A.
Therefore if M € CMod-R, the subobjects of M are the A-submodules
of M that are also in CMod-R. In the case of Mod-R and DMod-R, it
is different because the monomorphisms are not the same as in Mod-A.
Therefore if M € DMod-R, a subobject of M is an object N € DMod-R
with a morphism p : N — M such that Ker(u)R = 0. The same
happens in Mod-R.

The kernel of a morphism f : M — N is an inverse limit, and
therefore we have the following

1. If f: M — N is a morphism in CMod-R, then Ker(f) calculated
in CMod-R is the same as in Mod-A.

2. If f: M — N is a morphism in Mod-R, then Ker(f) calculated
in Mod-R is Ker(f)R.

3. If f: M — N is a morphism in DMod-R, then Ker(f) calculated
in DMod-R is Ker(f)R ®4 R.

The cokernel of a morphism f : M — N is a direct limit, therefore
we have the following.

1. If f: M — N is a morphism in CMod-R, then Coker(f) calcu-
lated in CMod-R is Homy (R, Im(f)/t (Im(f))).

2. If f: M — N is amorphism in Mod-R, then Coker( f) calculated
in Mod-R is Im(f)/t (Im(f)).

3. If f: M — N is a morphism in DMod-R, then Coker(f) calcu-
lated in DMod-R is the same as in Mod-A.

In the case of exact sequences we have a condition that is similar
for the three cases.
Consider the following sequence in

1. CMod-R
2. Mod-R
3. DMod-R

f

K L -2 M

This sequence is exact at L if and only if go f = 0 and Ker(g)/Im(f) €
J.
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We have to be careful with this. We shall give a list here some
categorical definitions and remarks?

DEFINITION 3.15. Let G be a Grothendieck category.

1. Every kernel is a monomorphism. Every monomorphism is the
kernel of its cokernel (G is normal).

2. Every cokernel is an epimorphism. Every epimorphism is the
cokernel of its kernel (G is conormal).

3. The tmage of a morphism f : M — N is the kernel of the cokernel
f¢: N — Coker(f).

4. The coimage of a morphism f : M — N is the cokernel of the
kernel f*: Ker(f) — M.

Note that every morphism f : M — N, can be decomposed
as f = fF o f* where ff = (f)* and f* = (f*)°. (First
Isomorphism Theorem).

5. Let pu; : M; — M be a family of subobjects of M, the sum
of these objects in M is the image of the induced morphism
[T TIM; — M.

6. An object GG is a generator in G if for every object M there exists
an epimorphism in G, GYY) — M, for some index set 1.

7. Let f: M — N be a morphism and p : K — N be a subobject of
N, the inverse image of N is the subobject of ji : f~1(K) — M
defined by the following pull-back diagram

M LN
R
fUE) — K
8. Consider the following sequence in G
f

K L —— M.
We shall say that this sequence is eract at L if f* = ¢ ( or
equivalently if f¢ = g*).

4. The Exactness of Functors ¢, d and m

DEFINITION 3.16. We shall define

ic: CMod-R — Mod-A
iMm: Mod-R — Mod-A
ip: DMod-R — Mod-A
as the canonical inclusions of the categories CMod-R, Mod-R and
DMod-R in Mod-A.

2We consider as known the categorical definitions of kernels, cokernels, prod-
ucts, coproducts and pull-backs. In case of doubt see [14, Sections IV.2, IV.3 and
IV.5]
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ProPOSITION 3.17. Consider the following diagram of categories
and functors:

CMod-R

lc COiM
C moiC
m

_— >

Mod-A Mod-R

im
clmoiD
iD dOiM

DMod-R

Then we have the following relations:

1. mo iC = uo iC
2.moiD:tfloiD

3. mo iC ocCco iM = idMod—R
4. co iM om o ic = idCMod—R
5 mo iD odo iM = idMod—R
6. do iM om o iD = idDMod—R
7. co ic = idCMod—R

& mo lM = idMod-R

9. do iD = idDMod-R

10. c is a left adjoint of ic
11. d s a right adjoint of ip
12. moicoc=m

13. colpyom =c¢

14. moipod =m

15. doipyom =d

16. ¢ is an exact functor

17. m is an exact functor
18. d s an exact functor

PROOF. Some of these facts are already known, but here we have
made a list with all we are going to use.

The first two claims are true because the modules in CMod-R are
torsion-free and in DMod-R are unitary.

Claims (3),(4),(5) and (6) are the category equivalences between
CMod-R, Mod-R and DMod-R.
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Claims (7),(8) and (9) are true because c leaves unchanged the
modules in CMod-R as well as m does in Mod-R and d in DMod-R.
Claim (10) is a well known fact about the localization functors.

Claim (11). Let M € DMod-R and N € Mod-A. We have to prove
that there exists a natural isomorphism

Ny - Homa(ip(M), N) — Homa(M,d (N))

Let f : M — N be a morphism. Im(f) is a unitary module,
therefore Im(f) € NR. Then consider the following diagram

M

"

(')‘ck
0 — Ker(§) — d(N) — NR — 0

The morphism ¢ : d (N) — N is canonical, and 6* : d (N) — NR
is the induced epimorphism. We can define 7,y (f) in this way because
M is u-codivisible and if there are two morphisms ¢;, g2 : M — d (N)
such that 6% o g; = f then 6* o (g1 — ¢g2) = 0 and g, — g fac-
tors through (0*)* = 6*. But this proves that g — go» = 0 be-
cause Homy (M, Ker(d)) = 0. The inverse of this homomorphism is
Hom 4 (M, §°); this can be proved using the uniqueness. This proves
also the naturality of this isomorphism in the variable M because
Hom 4 (M, 6°%) is natural in this variable. To prove the naturality in
the other variable let h : N — N be a homomorphism, and consider
the following diagram:
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5ck
0 — Ker(d) — d(N) ~NR— 0
nun(f)
f
11
d(h) IV M I u(h)
111 u(h)o f
mn(u(h)o f)
0 — Ker(d) — d(N) ~NR—— 0
gck

We know the commutativity of the triangles I, IT and III and the
big square, and we have to prove the commutativity of the triangle IV,
i.e. d(h)onyun(f)=mnyx(a(h)o f). Because of the commutativity
relations we obtain that 6% o (d (k) o nyn(f) — nyx(a (k) o f)) = 0,

therefore d (R)onan (f)—naw (u (h)of) factors through ()% = §* and
then d (h)onyn(f)—nun (u (h)of) = 0 because Hom 4 (M, Ker(d)) = 0.
Claim (12). Let M € Mod-A. We have to prove that (m o
ic o ¢)(M) is naturally isomorphic to m (M). The first module is
Homa (R, M/t (M))R and the second is (M/t (M))R. It is clear that
if we prove it for torsion-free modules, we have proved for all of them
because we only have to apply the result to M/t (M) and then suppose
M torsion-free. We have to prove that Homu(R, M)R = MR. As M
is torsion free there is a canonical monomorphism M C Homy (R, M)
and then MR C Homu (R, M)R. On the other hand suppose Y fir; €
Homu (R, M)R with f; : R — M and r; € R. As R is idempotent
we can find elements s;;,t;; € R such that r; = Zj siti;. Then
Yo firi = Zij fisijti;. With the identification we are making, i.e. M C
}]\140‘;114(]%’ M), fisij = fz(sm) € M and then Zz firi = Zij fz(sm)tz] €
Claim (13). This is a consequence of Claim 12 and Claim 4.
Claim (14). Let M € Mod-A. We have to prove that (m o ip o
d)(M) = m (M). The first module is (MR ®4 R)/t (MR ®4 R) and
the second is M R/t (M R). If we prove it for unitary modules, we have
proved it for all of them because we only have to apply the result to

M R and then suppose M is unitary. We have to prove that t(]\]@%;%
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M/t (M). Consider the canonical epimorphism

: M®aR
n- t(M%:R) — M/t (M)

mer+t(M®aR) — mr+t(M)

(It is well defined because M/t (M) is torsion free and therefore t (M ®4 R) C
Ker(M @4 R — M/t (M)))
We have to prove that it is a monomorphism. Suppose ), m; ®
ri +t (M ®4 R) € Ker(n). Then >, m;r; € t (M). Let s,t € R. Then
>, mir;s =0 and

(Zmi®ri+t(M®AR))st:Zmiris®t+t(M®AR) =0

HG_/
This proves our claim.
Claim (15). This is a consequence of Claim 4 and Claim 6.
Claims (16),(17) and (18).
c is a left adjoint of ic because of claim 10.
m o ic is a left adjoint of ¢ o iy because of the equivalence.
d oy is a left adjoint of m o ip because of the equivalence.
Then m = moigoc is a left adjoint of icocoiy and d = doipjom
is a left adjoint of ic o c oipf o m o ip.
We have proved that ¢, m and d are left adjoints, therefore they
are left exact.
d is a right adjoint of ip because of claim 11.
m o ip is a right adjoint of d o iy because of the equivalence.
c o iy is a right adjoint of m o i¢ because of the equivalence.
Then m = moipod is a right adjoint of ipod oip and ¢ = coiypjom
is a right adjoint of ip od ocipfom oic.
This proves that ¢, m and d are right adjoints and therefore they
are right exact.
O

5. The functors Hom(—,—) and — ®4 —

PROPOSITION 3.18. Let M be a module in CMod-R. Then the
functor Homa(—, M) : CMod-R — Ab is left exact.

PROOF. Suppose

X Sy 2.7 9

is an exact sequence in CMod-R. If we consider this sequence in Mod- A,
it satisfies

1. Tm(f) € Ker(g) and Ker(g)/Im(f) € 7.
2. Z/Im(g) € T.
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If we apply the functor Hom4(—, M) we get the sequence

HomA(g7M) HomA(f’M)
_— _—

0 —— Homu(Z, M) Homy (Y, M)

We have to show that this sequence is exact in Ab.

Suppose h : Z — M belongs to Ker(Homy(g, M)), i.e. hog = 0. We
have to prove that h = 0, but this is true because g is a monomorphism
in CMod-R.

Suppose h : Y — M belongs to Ker(Homu(f, M)), i.e. ho f =0.
We have to find a homomorphism h : Z — M such that h = ho g.

Let k € Ker(g) such that h(k) ¢ 0 =t (M). Then we can find an
element r € R such that h(k)r # 0. But kr € Ker(g)R C Im(f) and
then h(kr) = 0 because h o f = 0. This proves that h(Ker(g)) = 0.

Then consider the exact sequence in Mod-A

Hom (X, M)

k ck

0 — Ker(g) +— v -2
The composition h o g* = 0, so we can find A’ : Im(g) — M such
that b’ o g% = h.
Then if we consider the diagram
kc

g
0 — Im(g) — 2z —Z/Im(g)— 0

ol

M

Im(g) —— 0

using that M is t-injective and (Z/Im(g))R = 0, we can find a mor-
phism h such that h o g*¢ = h’. Then

ﬁog:ﬁogkcong:h'ong:h.
This proves that the sequence

HomA(g,M) HOmA(f,M)
_— _—

0 —— Homa(Z, M) Homa (Y, M) Hom 4 (X, M)
is exact in Ab. O]
We are going to prove that the functor
Homu(—, M) : CMod-R — Ab

is left exact when M € CMod-R. We would like to prove that this
functor is also exact when it maps from the categories DMod-R and
Mod-R to Ab. In order to prove this we need the following lemma.

LEMMA 3.19. Let M € CMod-R, X,Y € Mod-A and f: X — Y
with Ker(f), Coker(f) € T. Then

Homa(f, M) : Homa(Y, M) — Homy (X, M)
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18 an isomorphism.

PROOF. Let h: Y — M belong to Ker(Homu(f, M)), i.e. hof =0.
Suppose that for some y € Y, h(y) € 0 = t (M). Then we can find
r € R such that h(y)r # 0. Now

Y/Im(f) € T=yr € Im(f) = yr = f(z) for some z € X
And hence 0= (ho f)(z) = h(f(z)) = h(yr) = h(y)r #0,
the contradiction we were looking for.

On the other hand let ¢ : X — M. We have to find h : Y — M
such that ho f = ¢g. As Ker(f) € T, Homy(Ker(f), M) = 0 and we
can find the induced map g : X/Ker(f) = Im(f) — M, ie. g = go f°*.
Then consider the diagram

0 — Im(f) —= Y ——Y/In(f)— 0
il

M

The condition Y/Im(f) € T and the t-injectivity of M, let us find
a homomorphism h : Y — M such that h o f* = g. Then

gzgoka:hOkaOka:hOf.
This proves the surjectivity of Homu(f, M). O
PROPOSITION 3.20. Let M € CMod-R. Then Homa(—, M) is a

left exact functor from the categories CMod-R, Mod-R and DMod-R
to Ab.

Proor. Consider an exact sequence in any of the categories. If we
apply the equivalence functors, we can find short exact sequences in
the other categories. The diagram is as follows

X14’X24’X34’ 0

l1 ) I L3 I

Yi — Y, - Y3 - 0

M1 2 I M3 I

214’224’234’0

The objects of the first row are in CMod-R, the objects of the
second are in Mod-R and the objects of the third are in DMod-R.
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If we have any exact sequence X; — Xy — X3 — 0 in CMod-R we
define Y; = m (X;) and Z; = d (X;) with the canonical morphisms. The
same happens if we start with an exact sequence Y7 — Y, — Y3 — 0
in Mod-R, we define X; = ¢ (Y;) and Z; = d (Y;). Therefore if we
start with a exact sequence in any of the categories we can always
build a diagram like the previous one in which the morphisms x; and ¢;
satisfy Ker(¢;), Coker(s;), Ker(p;), Coker(u;) € T for all ¢ = 1,2,3 and
the sequences are exact in the corresponding category.

If we apply the functor Hom4(—, M) we obtain the following dia-
gram

0 —— Homu(Xs, M) — Homa(Xs, M) — Homa(X1, M)
Homy (¢4, M) l Hom (12, M) l Homa(e3, M) l
0 — Homy(Y3, M) — Homu (Y5, M) — Homy(Y, M)

Hom 4 (1, M l Hom (g2, M l Homy (ps, M) l
0 — Homu(Z3, M) — Homa(Zy, M) — Homy(Z;, M)

The first row is exact because of Proposition 3.18 and the mor-
phisms on the columns are isomorphisms because of Lemma 3.19, from
that we deduce that all the rows are exact. O

LEmMMA 3.21. Let M € R-DMod and f : X — Y € Homu(X,Y)
for some X, Y € Mod-A with Ker(f), Coker(f) € T. Then

f@AM: X®@sM—Y @4 M
18 an isomorphism.

ProOOF. We shall use several times Lemma 2.40.

To prove the surjectivity, let > . y; @ m; € Y ®4 M. We can write
m; = Zj rijm;; with r;; € R and m;; € M. The elements y;r;; € YR C
Im(f), therefore we can find elements x;; € X such that y;r;; = f(x;;)
and then

D yi@m =Y yri@mi =Y flry)@my = (feaM)(>_ zyemi;)
(] ,] (2%} (2%}

To prove the injectivity, suppose ) . z; @ m; € Ker(f ®4 M). We
can suppose that the set {m; : i € I} is a generator set of M over A if
we add elements x; = 0 whenever necessary.

Because >, z; ® m; € Ker(f ®4 M), then >, f(x;) ® m; = 0 in
Y ®4 M and therefore we can find elements y, € Y and a;, € A such
that
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Z yrag, = f(z;) Vi
%

For the elements m; € M = RM we can find elements r;; € R such
that m; = Zj riym;, and then Z” arijm; = 0 for all k and using
the fact that R ®4 M ~ M we deduce that >_;(>_; aixri;) @ m; =0 in
R®4 M for all k. Therefore we can find elements a;i; € A and 7y € R
such that

E QigTij = E TriQjg V1, J
: I

Z&jklmj =0 VJ,Z
J

The elements yx7 € YR C Im(f) and we can find elements Iy, €
X such that YTkl = f(xkl) Vk, [. Then

Z f(fUi)Tij = Z YkQikTij = Z Z/kfkl&jkl = Z f(l’kl)&jkz
i ik k,l k,l

and therefore ), z;ri; — >, T, € Ker(f) € T.
The element Z ikl&jkl@)mj = me@Zj QjplMy; = 0. Therefore, if
Jiksl k1l
we prove that Y Zya ®@m; = > a1 @m; for all j we have finished
kil
because we would obtain ) . x; ® m; = ) x;7; ® m; = 0. Hence

Z?J
As m; € M = RM we know that m; =, rjymy.

innj — kal&jkl € Ker(f) e T=
i kL

O wiry =Y wdu)ry = 0V, t
i ol

so that
E TriQk @ my; = E Tl QspT ¢ Q My =
k,l k,l,t
= E xirijrjt X my = E .Tﬂ“ij X mj
it i
This proves our claim. O

LEMMA 3.22. Let M € DMod-R and f € Homu(X,Y) for some
X,Y € Mod-A with Ker(f),Coker(f) € T. Then

Homu (M, f) : Homy (M, X) — Homu(M,Y')

18 an isomorphism.
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PROOF. Let h: M — X belong to Ker(Homy (M, f)), i.e. foh =0.
Then Im(h) C Ker(f). The module Im(h) = M /Ker(h) is unitary, and
therefore Im(h) = Im(h)R C Ker(f)R = 0 so that Im(h) = 0 and
h = 0.

On the other hand, let g : M — Y. We have to find a homomor-
phism h : M — X such that foh = g. The module Y/Im(f) € T
and MR = M, therefore Homs(M,Y/Im(f)) = 0 and we can find
g: M — Im(f) such that f*og=g.

Consider the sequence

0— Ker(f) - X - Im(f) =0

and the morphism g : M — Im(f). Using the fact that Ker(f)R =0
and M is u-codivisible, we can find a homomorphism A : M — X such
that f**oh =g. Then g = f%*o0g = f%*o f*oh = foh. This proves
the surjectivity of Hom (M, f). O]

We want to prove the exactness of the functors Homy (M, —) and
M ® 4 — for a module M 4. This could be done in a direct way, as we
have done for Homu(—, M), but we are not going to do it like that
now. Rather we are going to use the adjoint properties.

PROPOSITION 3.23. Let R be an idempotent ring, A and A’ rings
with identity such that R is a two-sided ideal of A. Let 4 Ma be a
bimodule. Then the functor Homy (M, —) : CMod-R — Mod-A" has a
left adjoint, and therefore it is left exact.

Proor. Consider the following diagram of categories and functors:

iC I‘IOHIA(]\/[7 —)

CMod-R Mod-A

Mod-A’

CMod-R Mod-A

C _®A’M

Mod-A’

with ic : CMod-R — Mod-A the canonical inclusion. The functor c is
a left adjoint of ic and — ® 4/ P is a left adjoint of Hom (P, —). Then
co— ®u P is aleft adjoint of Hom (P, —) 0. O

PROPOSITION 3.24. Let R’ be an idempotent ring, A and A" rings
with identity such that R’ is a two-sided ideal on A’. Let oM, be a
bimodule. Then the functor —® 4 M : DMod-R' — Mod-A has a right
adjoint, and therefore it is right ezxact.

Proor. Consider the following diagram of categories and functors:
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ip —Q@a M
Mod-A’

DMod-R' Mod-A

DMod-R’ Mod-A’ Mod-A

d HOIHA(M, —)

The functor ip is a left adjoint of d and — ®4 M is left adjoint
of Homy (M, —), therefore — ® 4 M : DMod-R'" — Mod-A has a right
adjoint and is right exact. O

REMARK 3.25. Let R be an idempotent ideal of a ring with identity
A and A" another ring with identity, then using Lemma 3.22 we can
deduce that if M € CMod-R, the functor Homa (M, —) is left exact
from CMod-R, Mod-R and DMod-R to Mod-A'.

On the other hand, let R’ be an idempotent ideal of a ring A" and
A other ring with identity, then using Lemma 3.21 we can deduce that
if M € R'-DMod, the functor — @4 M is right exact from CMod-R’,
Mod-R' and DMod-R' to Mod-A.

6. Generators

The module ¢ (R) is a generator of CMod-R. In order to find gen-
erators in the other categories, we only have to apply the equivalence
functors. Therefore the module u (¢ (R)) is a generator of Mod-R. This
module is R/t (R). The generator of DMod-R is d (c (R)) ~ R®4 R.

In this section we want to study objects that are finitely gener-
ated. The best category to study this kind of property is the category
Mod-R, because for a module M € Mod-R, the submodules are the
A-submodules N of M such that NR = N, and the sum of a family of
submodules is the same if we calculate it in Mod-R or in Mod-A.

The definition of finitely generated object is as follows

DEFINITION 3.26. An object M of a Grothendieck category G is
called finitely generated if for every directed family of subobjects of M,
{M; i e}, if Y ,., My = M then there exists an iy € I such that
Mio — M

PROPOSITION 3.27. Let M be a module in Mod-R. M is finitely
generated if and only if we can find elements my,--- ,my € M such

PROOF. Let F be a finite subset of M, we denote Mp =3 _.mR.
The modules mR are unitary because R? = R and torsion free because
they are submodules of M and therefore mR € Mod-R and Mp €
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Mod-R. It is clear that >~ pcq (ny) Mr = M where Po(M) denote the
class of finite subsets of M. If M is finitely generated, we can find
Fy € Po(M) such that Mg, = M, and then M = > mR as we
claimed.

On the other hand suppose M = m;R + --- + mpR for some
my, -+ ,my € M. Let {M; :i € I} be a directed family of submodules
of M such that M = .., M;. The elements my € M = >, M;,
therefore for every ¢ € {1,---  k}, there exists i, € I such that m; €
M;,, if we have an ig greater than the {iy,--- it} then m; € M;, C M,
for all t and then

meFy

Then M,, = M and M is finitely generated. O

7. Projective and Injective Modules

DEFINITION 3.28. Let E be a module in CMod-R. We shall say
that E is injective if for every monomorphism p: M — N in CMod-R
and every morphism f : M — F, there exists a morphism h: N — E
such that hopu = f.

DEFINITION 3.29. Let P be a module in DMod-R. We shall say
that P is projective if for every epimorphism n : N — M in DMod-R
and every morphism f : P — N, there exists a morphism h : P — M
such that noh = f

ProprosiTION 3.30. Let E € CMod-R. Then E is injective in
CMod-R if and only if E is injective in Mod-A.
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PROOF. If F is injective in Mod-A, then it is injective in CMod-R
because every monomorphism in CMod-R is also a monomorphism in
Mod-A.

On the other hand, suppose E is injective in CMod-R and pu: M —
N is a monomorphism in Mod-A. The functor c is left exact and then
c (u) is a monomorphism and we have the following diagram:

0
0 —— M — N

Using the fact that £ is injective in CMod-R we can find a mor-
phism i : ¢ (N) — E such that hoc (u) = ¢ (f). If we define h := houy,
then

hOM:ilOLNOIu:ilOC(,U,)OLM:C(f)OLM:f.

ProproSITION 3.31. Let P be a module in DMod-R. Then P 1is
projective in DMod-R if and only if P is projective in Mod-A.

PROOF. (<«=). This is clear because each epimorphism in DMod-R
is an epimorphism in Mod-A.

(=). Let n : M — N be an epimorphism in Mod-A, and f : P — N
a homomorphism. If we apply the functor d (N) = NR ®4 R we get
that, if Y ns; ® s; € d(N) and n; = n(m;) so that > nor; @ s; =
d (n) (O myr; ® s;). Therefore d (n) is an epimorphism. We have the
following diagram:
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(0 : MR®4 R — M and 6y : NR®4 R — N are the canonical ones)

Using the fact that P is projective in DMod-R we can find a mor-
phism h : P — d (M) such that d (f) = d (n)oh. If we define h = dps0h
we get

noh=mnodyoh=2dyod(f)=f
U

PROPOSITION 3.32. Every module in CMod-R is a submodule of
an injective module in CMod-R.

PROOF. Suppose M € CMod-R. Let E(M) denote the injective
envelope of M in Mod-A. This module is clearly t-injective. We only
have to prove that it is torsion free in order to prove that E(M) €
CMod-R. The module t (E(M)) is torsion and t (F(M))NM is torsion.
But M is torsion free, then t (E(M)) N M = 0 and then t (E(M)) =
0. O

It is not possible to dualize this result for projective modules. It
is even possible to find an example in which the categories CMod-R,
Mod-R and DMod-R have no nonzero projectives, see [8, Example
3.4.1].

8. Noncommutative Localization

Most of the results about noncommutative localization given for
the category of unitary modules Mod-A, for a ring with identity A,
are true in a Grothendieck category, and therefore they are true in
our categories. We shall recall some of them, but we shall also give
something more, because in our case we can generalize the concept
of Gabriel filter for the ring R, and this is in general impossible for
Grothendieck categories.

In this section we are going to fix the ring A as the Dorroh’s ex-
tension of R. We could use another ring, but in this case, the filter
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would have right A-submodules of R and not right ideals (i.e. right
R x Z-submodules).

DEFINITION 3.33. Let G be a Grothendieck category. A preradical
r of G assigns to each object X a subobject pux : r(X) — X in such a
way that every morphism f: X — Y induces r(f) : r(X) — r(Y) by
restriction.

x L. vy

x| &

r(X) —— r(Y)
r(f)
(ie. p : 7 — id is a natural transformation such that px is a
monomorphism for all X € G).

DEFINITION 3.34. A preradical r is idempotent if r or = r and it
is called a radical if (X /r(X)) =0 for all X.

To a preradical r one can associate two classes of objects of G,
namely

T, ={X € G : px is an isomorphism}

F, ={X € G : uy is the morphism 0}

DEFINITION 3.35. A class C is called a pretorsion class if it is
closed under quotient objects and coproducts, and it is a pretorsion-
free class if it is closed under subobjects and products.

PROPOSITION 3.36. Let r be a preradical in a Grothendieck cate-
gory G. Then the class T, is a pretorsion class and F, is a pretorsion-
free class.

PROOF. See [14, Section VI.1]. O

ProproOSITION 3.37. Let G be a Grothendieck category. Then there
1 a bijective correspondence between idempotent preradicals of G and
pretorsion classes of objects of G. Dually, there is a bijective corre-
spondence between radicals of G and pretorsion-free classes of objects

of G.

PROOF. See [14, Proposition VI.1.4]. We are going to give here
merely the definition of the bijection. If r is an idempotent preradical
of G, the pretorsion class that is assigned is T, and the pretorsion-free
class is IF,.. If T is a pretorsion class, then the preradical that is assigned
is defined as follows: if M € G, r(M) is the largest subobject of M
that belongs to T. If IF is a pretorsion-free class, then the corresponding
preradical is defined for an object M € G as the largest subobject N
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of M such that M/N € F. (This object is the sum of all the the
subobjects C' of M with the property of M/C € F. Using the fact that
the category is locally small, i.e. the class of subobjects of M is a set,
we deduce that this maximal subobject exists). O

PrRoPOSITION 3.38. The following assertions are equivalent for a
preradical T :

1. r is a left exact functor.
2. If N is a subobject of M, r(N)=r(M)NN.
3. r is idempotent and T, s closed under subobjects.

PROOF. See [14, Proposition VI.1.7]. O

DEFINITION 3.39. A pretorsion class is called hereditary if it is
closed under subobjects.

COROLLARY 3.40. There is a bijective correspondence between left
exact preradicals and hereditary pretorsion classes.

PROOF. See [14, Section VI.1]. O

DEFINITION 3.41. A torsion theory for G is a pair (T, F) of classes
of objects of G such that

1. Hom(T,F)=0foral T € T and F € F.

2. If Hom(M, F) =0 for all F € F, then M € T.

3. If Hom(7T, M) =0 for all T' € T, then M € F.

T is called a torsion class and its objects are torsion objects, while
F is a torsion-free class consisting of torsion-free objects.

Any given class C of objects generates a torsion theory in the fol-
lowing way

F:={F € G: Hom(C, F) =0 for all C € C}

T:={T € G:Hom(T,F)=0for all F € F}
This pair (T,F) is a torsion theory and T is the smallest torsion
class containing C.
Dually, any given class C of objects cogenerates a torsion theory in
the following way

T:={T € G :Hom(T,C) =0 for all C € C}

F:={F e€G:Hom(T,F)=0forall T € T}
This pair (T, F) is a torsion theory and F is the smallest torsion-free
class containing C.

PROPOSITION 3.42. The following properties of a class T of objects
of G are equivalent:
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1. T is a torsion class for some torsion theory.
2. T s closed under quotient objects, coproducts and extensions.

PROOF. See [14, Proposition VI.2.1]. O

PROPOSITION 3.43. The following properties of a class F of objects
of G are equivalent:

1. F is a torsion-free class for some torsion theory.
2. F is closed under subobjects, products and extensions.

PROOF. See [14, Proposition VI.2.2]. O

PROPOSITION 3.44. There is a bijective correspondence between
torsion theories and idempotent radicals.

PROOF. See [14, Proposition VI.2.3]. The idempotent radical is
defined as in Proposition 3.37. O

We are going to start working with the categories CMod-R, DMod-R
and Mod-R for an idempotent ring R.

REMARK 3.45. There is a bijective correspondence between torsion
theories in CMod-R, DMod-R and Mod-R.

PROOF. The definitions we have given are categorical and therefore,
the category equivalences give the bijections between the torsion and
torsion-free classes. O

A torsion theory (T,F) is called hereditary if T is closed under
subobjects. If we combine Corollary 3.40 and Proposition 3.44 we
obtain

PROPOSITION 3.46. There is a bijective correspondence between
hereditary torsion theories and left exact radicals.

DEFINITION 3.47. Let R be an idempotent ring. A right Gabriel
topology on R is a non-empty set & of right ideals on R such that

T1. If a €  and b < Rp with a < b, then b € &.

T2. If a and b belong to &, then anb € &.

T3. fae ®andr € R, then (a:r):={se€ R:rs€a} € &.

T4. If a is a right ideal on R and there exists b € & such that
(a:b) € & forall b€ b, then a € 6.

DEFINITION 3.48. Let & be a right Gabriel topology on R. We
shall say that a module M is &-discrete if for allm € M, r.ann(m) € .

LEMMA 3.49. Let & be a right Gabriel topology on R. Then

1. Re &.
2. Ifa and b are in &, then ab € &.
3. If a € & then aR € &.
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PROOF. The statement (1) is trivial because of T1. The statement
(3) is a consequence of (1) and (2). In order to prove (2), let a € a.
Then (ab : a) D b, therefore (ab : a) € & because of T1, and then if
we apply T4, we obtain our claim. O

PROPOSITION 3.50. Let & be a right Gabriel topology on R. Let
M € Mod-A. Then the following conditions are equivalent:

1. ¢ (M) is &-discrete in CMod-R.
2. u(M/t (M) =u(M)/t(u(M)) is &-discrete in Mod-R.
3. d (M) is &-discrete in DMod-R.

PROOF. (1 = 2). Suppose ¢ (M) is &-discrete in CMod-R. Then
forall f: R— M/t (M), r.ann(f) € &, ie.

Ker(f)={reR: f(r)=0t={reR: fr=0} =rann(f) € &

Let =) .(m; +t (M))r; € u(M/t (M)). For all 7, let f; : R —
M/t (M) be the morphism defined by f;(r) = m;r +t (M). Then a =
> fi(ri). The element ). fir; € ¢ (M), and hence Ker (), fir;) € .
But

Ker(z fir)={reR: Z firir) =0} ={reR: Z fi(ri)r = 0}

= r.ann(z mr; +t (M)) = r.ann(a)

Hence r.ann(a) € &.

(2 = 3). Suppose u (M) /t (u (M)) is B-discrete, and let ). m;r;®
s; € d(M). Let a = rann(d_ mrs; +t(u(M))) € &, and let b =
r.ann()_, m;r; ® s;). We are going to prove that aR C b and applying
the previous lemma and T1, we would obtain b € &.

Let @ € a and 7,5 € R. Then > ,m;r;s;a € t(u(M)), so that
> myris;ar = 0. Now

(Z mr; @ 8;)ars = Z m;ris;ar @ § =0,
and ars € b. This proves that b D aR? = aR and that b € &.

(3 = 1). Suppose d (M) is &-discrete, and let f: R — M/t (M).
We have to prove that Ker(f) € &. Let r € R, » = >, 1;s;t; where
i, Si,t; € R. Let m; € M be elements such that f(r;) = m; + t (M).
Then

(Ker(f):r)={a€e R:racKer(f)} ={a€ R: f(r)a=0}
={aeR: Zmirisia €t(M)}
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D{aeR: mesia =0}
D{aeR: (me@si)a: 0}

= r.ann(z mri ® 8;) € B.
This proves that (Ker(f) :r) € & for all » € R, and then using T4
we deduce that Ker(f) € &. O
PROPOSITION 3.51. There is a bijective correspondence between:

(1

Right Gabriel topologies on R.

)

(2) Hereditary torsion theories for CMod-R.
(*2) Hereditary torsion theories for Mod-R.
(**2) Hereditary torsion theories for DMod-R.

(3) Left exact radicals for CMod-R.
(*3) Left exact radicals for Mod-R.
(**3) Left exact radicals for DMod-R.

PRroor. If we find the bijective correspondence between (1.), (2.)
and (3.), then we can find all the other ones. If & is a Gabriel topol-
ogy on R, the corresponding torsion class is the class of &-discrete
modules, and this class of modules is well behaved with respect to the
equivalences between the categories because of the previous proposi-
tion. The equivalence between (2.) and (3.) has already been proved
in Proposition 3.46.

Now we only have to find the bijective correspondence between (1.)
and (%2.). Suppose & is a Gabriel topology on R, and let T be the
class of &-discrete modules on Mod-R.

Let M; € T. We have to prove that [[ M; € T. Consider the module
[ M;. This module is the same if we calculate it on Mod-R or in Mod-A
because if all M; € Mod-R, then [[M; calculated in Mod-A is in
Mod-R. Let (m;)icr € [1;c; M; and define Iy = {i € I : m; # 0}. This
set is finite, r.ann((m;)ier) = Niegor.ann(m;). The ideal r.ann(m;) € &
because M; € T, so that N;cg,r.ann(m;) € & using condition T2 several
times. Thus [[,., M; € T.

Let M € T and n: M — N be an epimorphism, i.e. Coker(n) € 7.
Let n € N and r € R and note that (r.annn : 7) = {s € R : rs €
rannn} = {s € R : nrs = 0}. The element nr € NR C Im(n) and
therefore we can find m € M such that n(m) = nr. If ms = 0 for some
s € R, then n(m)s = nrs = 0, therefore r.ann(m) C (r.annn : r), and
this is true for all » € R. Then using T4 and that R € & we deduce
that r.annn € &. Thus N € T.

Let M € T and N be a submodule of M. Then N is a submodule
in the category Mod-A and then N is a subset of M. If n € N C M,
then r.ann(n) € & because M € T.
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Consider the following short exact sequence in Mod-R:

0O —— L " M 123 N —50

with L, N € T. Then Ker(n)/Im(u) € T and N/Im(n) € T. Let m €
M, we have to prove that r.ann(m) € &. The right ideal r.ann(n(m)) €
®, then b := r.ann(n(m))R € &. For all b € b, b = > a;r; with
a; € r.ann(n(m)) and r; € R, hence mb = > ma;r;. The element ma; €
Ker(n) and therefore ma;r; € Im(u) and we can find an element [ € L
such that > ma;r; = p(l). The ideal r.annmb = r.ann(u(l)) = r.ann(()
because p is a monomorphism. Then (r.ann(m) : b) = r.ann(mb) =
r.ann(l) € &. We have proved that for allb € b, (r.ann(m) : b) € & and
using T4, that r.ann(m) € &. Thus T is a torsion class for a hereditary
torsion theory.
Conversely, let (7, F) be a torsion theory in Mod-R. We define

® = {a < R:Homg(R/a,F)=0 VF €F}.

We are going to see first that a € & if and only if ; e T. We
shall use both characterlzatlons whenever necessary.

If a € &, suppose t(R/ ¢ T. Then there ex1sts h : t(R/) — F

(F € F and h # 0). If we consider ¢ : R/a — m, then hot =0

and this means that we have a morphism & : Coker(t) — F. But
Coker(t) = 0 and F' € Mod-R. This proves that h = 0 and therefore
h = 0.

Conversely, if R/a € T, let h: R/a — F be a R-homomorphism
with F' € F. h(t (R/a)) = 0 because h(t (R/a))R =0 and F' € Mod-R,

and therefore h induces h : Im(¢) — F. But h : % — F has to be

the 0 morphism, then h = 0 and therefore h = 0 as we claimed.
We have to check that & is a right Gabriel Topology for R.

R/a

T1 Suppose a € & and a < b, then there exists an epimorphism
p: R/a — R/b. If we have h : R/b — F with h # 0, F € F,
then hop: R/a — F is not 0 because p is an epimorphism, a
contradiction. Thus b € &.

T2 Suppose a and b belong to &, and consider the canonical monomor-
phism j: R/anb — R/a® R/b,

[y

alxf?

~—
o+

—~
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R R
The morphism t () is a monomorphism, and @ & t(bﬂ) €
a b

T. Then tﬁ) cTandanb € &
anb

T3 Suppose a € & and that r € R. The left multiplication by r
induces an exact sequence in Mod-A = MOD-R,

0—(a:7)— R— R/a,

and then R/(a : r) < R/a, this means that t'(R/(a : r)) <
% € T and using that T is closed under subobjects, t (R /(a :
r)) € T and (a:r) € & as we claimed.

T4 Suppose a is a right ideal such that (a:b) € & for all b € b for

some b € &. We consider the exact sequence
0—b/anb— R/a— R/(a+b) —0

We are going to check that m (b/anb) and m (R/(a+ b)) =
t"'(R/(a + b)) are in T. If this holds, applying that m is an
exact functor®, then the sequence

0—m(b/anb) -t (R/a) — t ' (R/(a+b)) — 0

is exact (in Mod-R ) and as T is closed under extensions, % €
T and a € &. Then let us prove the claim.
t '(R/a+b) is in T because b < a+ b and T1.
b

Suppose h :m (b/(aNb)) — F, F€F, and ¢: % — t(ﬁ)
anb

is the projection. We are going to prove that for all » € R and
beb, h(t(br +anb)) =0. Suppose that this does not happen
for some b € b and r € R. Then consider the morphism induced
by left multiplication by b, R — b/(aNb). The kernel of this
morphism is (aNb : b) = (a : b) € &, and then we have a
R-monomorphism p : R/(a : b) — b/(anb). The composition
hovow: R/(a:b) — F carries r to h(t(p(r))) = h(e(rb +an
b)) # 0. But this is a contradiction because (a : b) € &. Then
h(e((b/(anb))R)) = 0 and therefore h(c(b/anb))R C t (F) = 0.
This proves that hot = 0. Let z € t71(b/anb) and r € R.
Then zr € b/anNb and h(xr) = 0. As this can be done for all
r € R, h(z) € t (F) = 0 for every z. This proves h = 0, as we
claimed.

0

3In this proof we use the functor t ! instead of m everytime that the module
considered is unitary. For this kind of modules both functors coincide.



CHAPTER 4

Morita Theory

We shall fix the following notation for the whole chapter. R and R’
will be idempotent rings, A and A’ rings with identity such that R is
a two-sided ideal of A and R’ is a two sided ideal of A’.

1. Functors Between the Categories
PROPOSITION 4.1. Let 4 Pa, 4 P4 be bimodules and p: P — Pa
bimodule homomorphism. Then the following conditions are equivalent:

1. Homy(p, —) is a natural equivalence between the functors Hom4 (P, —)
and Homy (P, —) from CMod-R to Ab.

2. p®a— 15 a natural equivalence between the functors P®4 — and
P ®4 — from R-DMod to Ab.

3. Ker(p) and Coker(yp) are in 7.

PrOOF. The condition (3) implies the conditions (1) because of
Lemma 3.19 and the condition (2) because of Lemma 3.21.
Suppose condition (1) holds. Then for all M € CMod-R,

Hom (i, M) : Hom (P, M) — Hom 4 (P, M)

is an isomorphism. Now

Ker(Homa(p, M)) ={f: P'— M : fop =0} = Homu(Coker(p), M)

If Hom 4 (Coker(y), M) = 0 for all M € CMod-R, then Hom 4(Coker(p), c (Coker(y)) =
0 and then c (Coker(¢)) = 0 and Coker(y) € T.
Consider the following diagram:

0 — Ker(p) P Im(¢) —— 0

Using the surjectivity of Hom(y,c (P)) we can find a morphism
hp : P — ¢ (P) such that hpop = 1p, and then 0 = hpopop* = 1poy*

65
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and then c (gpk) O lker(p) = 0. But ¢ (gpk) is a monomorphism. Then
tker(p) = 0. But this is true if and only if Ker(y) € 7.

Suppose now that (2) holds, then for all M € R-DMod, the mor-
phism

CRAM PRy M— PRy M
is an isomorphism. The condition p® 4 M epimorphism implies P/Im(¢)® 4
M = 0. If we apply this to R ®4 R, then P/Im(p) @4 R®4 R =0
and then (P/Im(yp))R = 0 and Coker(¢) = P/Im(yp) € T. Suppose
Ker(¢) ¢ T. Then d (Ker(p)) # 0. But we know that d (Ker(y)) =
Ker(¢) ®4 R ®4 R and

Ker(¢®@sR®AR) = {Z Pi®Ti®s; € POARRAR : Zgo(pi)@)n@si =0}

Y pi®r,®s; €d(Ker(e))\ {0} then ). p;®@r;®s; € Ker(p®a
R®4 R)\ {0} and this is not possible, because R®4 R € R-DMod and
¢ ®4 R®4 R is an isomorphism. 0

In the next two corollaries we shall deduce that if we chose the
bimodules inside the categories CMod-R and DMod- R, then they have
a certain uniqueness property.

COROLLARY 4.2. Let P and P be (A', A)-bimodules such that Py, Py €
DMod-R, and let ¢ : P — P be a bimodule homomorphism. Then the
following conditions are equivalent:

1. Homy(p, —) is a natural equivalence between the functors Hom4 (P, —)
and Homy (P, —) from CMod-R to Ab.

2. ¢ ®a— 15 a natural equivalence between the functors P®4 — and
P ®4 — from R-DMod to Ab.

3. @ is an isomorphism.

PROOF. These conditions are equivalent to Ker(y) and Coker(y) in
T. But both are unitary modules using Proposition 2.41 and Ker(y) =
0 and Coker(yp) = 0. O

COROLLARY 4.3. Let P and P be (A', A)-bimodules such that Py, Py €
CMod-R, and let o : P — P be a bimodule homomorphism. Then the
following conditions are equivalent:

1. Homy(p, —) is a natural equivalence between the functors Hom4 (P, —)
and Hom (P, —) from CMod-R to Ab.

2. p®4— 18 a natural equivalence between the functors P® 4 — and
P ®4 — from R-DMod to Ab.

3. @ 1s an isomorphism.

PROOF. These conditions are equivalent to Ker(yp) and Coker(y)
in J. But both are torsion-free modules using Proposition 2.30 and
Ker(¢) = 0 and Coker(y) = 0. O



1. FUNCTORS BETWEEN THE CATEGORIES 67

COROLLARY 4.4. Let P be a (A’, A)-bimodule. Then the following
functors are equivalent:

Homa(c (P),—) ~ Homy (P, —) ~ Homu(d (P), —)
C(P)®s—~2PR,y~d(P)®@a—

ProoFr. We only have to apply the fact that the canonical homo-
morphisms d (P) — P and P — ¢ (P) given in Proposition 2.29 and
Proposition 2.38 are bimodule homomorphisms and have torsion kernel
and cokernel. O

PROPOSITION 4.5. Let 4+P4 be a bimodule and let

o R X ar P —- P
rep — r'p
Then the following conditions are equivalent:

1. Homu(P, —) is a functor between CMod-R and CMod-R'.
2. P®4 — is a functor between R-DMod and R'-DMod.
3. Ker(u) and Coker(u) are in 7.

ProoF. Condition (1) is equivalent to the following condition,
VM € CMod-R, Homy (P, M) € CMod-R' &
VM € CMod-R, Hom 4 (R, Hom4 (P, M)) ~ Homu (P, M) <
VM € CMod-R,Homu(R' @4 P, M) ~ Homa(P, M) &
VM € CMod-R, Hom4(p, M) : Homa (P, M) — Homu(R' @4 P, M)
is an isomorphism

and using Proposition 4.1, this is equivalent to Ker(u) and Coker(u)
in 7J.
The condition (2) is equivalent to the following condition,

VM € R-DMod, P ®4 M € R-DMod <

VM € R-DMod, R @4 PRs M ~P R, M &
VM € R-DMod, u®@s M : R @4 P4 M — P®4 M is an isomorphism

and using Proposition 4.1, this is equivalent to Ker(u) and Coker(u)
in 7. 0

COROLLARY 4.6. Let 4Py be a bimodule such that p: R' @4 P —
P has Ker(p) and Coker(u) in T. Then

1. Homy (i, —) is a natural equivalence between the functors Homy (P, —) :
CMod-R — CMod-R' and Homa(R' ®4 P,—) : CMod-R —
CMod-R'.

2. 4t ®a — is a natural equivalence between the functors P @4 — :

R-DMod — R'-DMod and R'® 4 P®4— : R-DMod — R'-DMod.
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2. Morita Contexts and Equivalences

In this chapter we want to study the equivalences between the cat-
egories CMod-R and CMod-R’' (or equivalently Mod-R ~ Mod-R’ or
DMod-R ~ DMod-R’) for two idempotent rings R and R'. For these
category equivalences we are going to find bimodules 4 P4 and 2@ 4
such that the following functors are equivalences:

Homy (P, —) : CMod-R — CMod-R' Homu/(Q, —) : CMod-R' — CMod-R

P ®4 —: R-DMod — R'-DMod Q @4 — : R'-DMod — R-DMod
Homa/ (P, —) : R-CMod — R-CMod Homy (@, —) : R-CMod — R'-CMod
— ®u P : DMod-R' — DMod-R — ®4 @ : DMod-R — DMod-R’

If the bimodules have to satisfy all these properties, we can choose
the bimodule that P € DMod-R and R-DMod, and the bimodule
(Q € DMod-R’' and R-DMod. This is the reason we are going to add
this conditions to the definition of a Morita context.

PROPOSITION 4.7. Let 4Q a1, Pa bimodules such that Q4 € DMod-R’, 4Q) €
R-DMod, P4 € DMod-R and o P € R'-DMod. Let (—,—): @Q x P —

R, [-,—] : P x Q@ — R’ be mappings. Then the following conditions
are equivalent:
R @ . : : .
1. p R ) 8 aring with the sum defined componentwise and

the product

Qi ra g2\ _ [ mirat(q,p2) T+ @'y
p1 p2 1o pira+7r'ip2 1, go] + 111

2. [—,—] is A’-bilinear A-balanced, (—, —) is A-bilinear A’-balanced
and the following associativity conditions hold:

(¢,p)q = q[p, q [p, q)p = p(q, D)
forall p,p in P and q,q in Q.
PROOF. Note first that

(CESRGESICFIE
ol [ ; A
P1 T P2 T2 b r
(ri+r)f+ (1 +q2,0) (11 +r2)q+ (@1 + g2)7
(p1 +p2)7 + ("1 +172)7 [p1 +p2,ql + ("1 +172)D

On the other hand

(o 2 )G ) () (G2 ) -

P
( (r1 +12)7 + (q1,P) + (92, D) (r1+72)q + (1 + q2)7" )
+

<

(1 +p)T + (o4 72)p [P @+ [p2, @+ (P + 1)
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Then, the distributivity of multiplication over addition on the right
is equivalent to the additivity of (—, —) and [—, —] in their first vari-
ables. The other distributivity law is equivalent to the additivity in
the second variables.

If we apply the definition of the multiplication to the equalities
given by the associativity of the multiplication

G T2 Q2 rs g3 _
p1 T " P2 T ' D3 s

™ G T2 Q2 3 g3
o pa T’y ps 1’3

we obtain the following relations

(q1,p2)rs + (11q2,p3) + (172, p3) = 71(q2, p3) + (q1, P2rs) + (q1,7"2p3)
(q1,p2)a3 = q1[p2, g3]
[p1, 2]ps = p1(q2, p3)

[p172, @3] + [1'1p2, 3] + [p1, @2]7's = [p1, 72p3] + [p1, gor’s] + 71 [p2, 3]

These conditions are satisfied if (2) holds. Now if we suppose that
the previous conditions hold and we apply the additivity of (—, —) and
[—, —] we can make for example in the first relation p, = 0 and ¢ = 0
and we obtain (¢17'2,p3) = (q1,7'2p3). In this way we can find all the
following relations:

(¢,pr) = (¢, p)r (rq,p) =1(q,p)

p.ar']=Ip.gr" [r'p.al = r'[p.d]
(¢',p) = (¢,;7'p)  [pr.al = [p.,7d]
(4, )P = alp, D] [p,dla = p(¢,q)
This relations prove that [—, —] is R'-bilinear R-balanced and (—, —)

is R-bilinear R'-balanced. In order to prove that they satisfy this prop-
erties for A and A’, but this is clear using that P and () are unitary
on both sides. O

If the equivalent conditions of Proposition 4.7 hold, then the map-
pings (—,—) and [—, —] (called the pairings) define bimodule homo-
morphisms ¢ : Q ®4 P— Rand ¢y : P®4Q — R'.

DEFINITION 4.8. A Morita context is a six-tuple (R, R, P, Q, ¢, 1)
satisfying the conditions given in proposition 4.7. The associated ring
R Q
P R
and (P ® @) are called the trace ideals of the context.

) is called the Morita ring of the context. The ideals p(Q®P)
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REMARK 4.9. Let (R, R, P,Q, p,%) be a Morita context. Then the
trace ideals are two sided ideals of R and R'.

PROOF. The trace ideals are two sided ideals because ) ® P and
P ® @ are bimodules and ¢, 1 are bimodule homomorphisms. O

Associated with any Morita context (R, R/, P, Q, ¢, 1) are eight nat-
ural maps:

[x,—] :P — Homa/ (Q, R) (x,—) :Q — Homu (P, R)

p~ [p,—] ¢ (¢,-)

[—, %] :QQ — Homa/ (P, R') (=, ) :P — Homu(Q, R)
g [-.q p—=(=p)
R — End 4 (Q) R — Endy (P)
r— (q+— rq) 7= (ppr)
R — End,(P) R — End(Q)
s+ (p+ sp) s+ (g gs)

We are specially interested in the contexts for which ¢ and v are
epimorphisms. This contexts have several "beautiful” properties, and
we are going to give one of them.

PROPOSITION 4.10. Let (R, R, P,Q, v, %) be a Morita context. Then
the bimodules P ®4 Q and QQ @4 P satisfy P @4 Q ®a R ~ P ®4 Q
and QQ Qa4 P R4 R~ Q ®a P.

If o and ¥ are epimorphisms, then the morphisms p @4 R : Q ® ar
P—-R®sRandy @4 R : P®4Q — R ® R are isomorphisms.

PrRoOF. The first part is clear because P ~ P ®4 R and ) ~
Qa4 R.

In the second part, the proof is symmetric, and we only have to
prove it for ¢.

As R is unitary, the functor — ®4 R is the same as the functor
d. This functor preserves epimorphisms, and therefore ¢ ® 4 R is an
epimorphism. Note that Q ® 4+ P € DMod-R and R ®4 R € DMod-R,
so if we apply Proposition 2.41 we obtain that Ker(¢ ®4 R) is unitary.
Let > kir; € Ker(p®4 R) with k; € Ker(p®4 R) for all i. The elements
r; € R =1Im(p), and therefore we can find elements p;; € P and ¢;; € Q
such that r; = Zj ©(gij @ pij). For the elements kKer(p ®4 R) =
Ker(¢p ®4 R)R we can find also g; € Q, py; € P and 7 € R such that

ki = Z Git @ pury  and

t

Z O(git @ pit) @i = (p ®a R)(Z ©(git ® pit) @ i) = 0.
¢

t
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Therefore, if we apply the canonical epimorphism R ®4 R — R we
deduce ), ¢(git ® pi)rie = 0. Then

Z kir; = Z Git @ Pt (qij @ pij)
ijit
= Z Git @ V(Purie @ Gij)pij
irjit
= Z G (Durit ® qij) @ pij
irjit
= Z ©(Git @ Parit)qi; @ pij = 0
it
This proves that Ker(p ®4 R) = 0 as we claimed. O
We are going to define the composition of contexts.

ProproOSITION 4.11. Let R,R' and R" be idempotent rings, A,A’
and A" rings with identity such that R is a two sided ideal of A, R of
A" and R" of A”.

Given two Morita contexts'

(—,—):QxP—R [-,-]:PxQ— R

and

the new pairings

(= =) (@@ V)x(U®s P) =R (q®@v,u®p):=(q (v,u)p)
and

[—, =] : (U®a P)x (Q®4 V)= R" [u®p,q®v]:=u,|p,q]v]

define a new context between the rings R and R". If

0:Q®Ry P— R Y:P®,40Q — R
E: VU — R C:U®xpV — R
0:(URn P)@a(QeaV)—=R" ¢:(Q@a V)@ (Ua P)— R

are the induced pairings, then the trace ideals are

Im(0) = C(U®a (P04 Q)V) Im(e) = p(Q @ (V @ar U)P).

'With the additional properties that we are assuming for all Morita contexts
given in Proposition 4.7, i.e.

Qo4 R ~Q R4Q~=Q
PRaR~P R @4 P~P
Ua R ~U R'®@aU~U
Var R~V R@uV=V
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Furthermore, if the first two contexts satisfy that p,2), & and ¢ are
epimorphisms, then 0 and € are epimorphisms.

PROOF. The bimodules Q ® 4 V and U ® 4/ P satisfy

Q®A1V®A//R”2Q®A/V R®AQ®A’V2Q®A/V
U®A’P®AR2U®A’P R”®A//U®A’P2U®A’P

because of the associativity of tensor products.

To prove that the new context satisfy the other properties of Propo-
sition 4.7 it can be checked directly as can the computation of Im(e)
and Im(9).

The last claim is also clear because all the modules are unitary. O

PROPOSITION 4.12. The property "R is related with R’ if and only
if there exists a Morita context between R and R’ with epimorphisms”,
18 an equivalence relation.

ProOOF. Let R be an idempotent ring. Thus taking P = @ =
R ®4 R and the pairings

p=1: (RRAR)®a(R®aR) — R
(res)®(teu) — rstu
define a Morita context between R and R.

If (R,R,P,Q,¢,v) is a Morita context with epimorphisms, then
(R',R,Q, P,, ) is a Morita context with epimorphisms.

If (R,R',P,Q,p,v)and (R',R",U,V,(, &) are Morita contexts with
epimorphisms, then the composition defined in the previous proposition
(R,R",U ®a P,Q ®a: V,0,¢€) is a Morita context with epimorphisms
between R and R’. O]

PROPOSITION 4.13. Let (R, R, P,Q, v, ) be a Morita context. Then
the following conditions are equivalent:

1. The functors

Homu(P,—): CMod-R — CMod-R'
Homa/ (@, —): CMod-R* — CMod-R
are inverse category equivalences.
2. The functors
Homu/ (P, —): R'-CMod — R-CMod
Homu(@,—): R-CMod — R'-CMod

are inverse category equivalences.
3. The functors

P®s—: R-DMod — R'-DMod
Q®u —: R-DMod — R-DMod

are inverse category equivalences.
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4. The functors

—®A/PZ DMod-R’ — DMod-R
—®2Q: DMod-R — DMod-R'

are inverse cateqory equivalences.
5. ¢ and Y are epimorphisms.

PROOF. First we are going to prove that (5) implies all the other
conditions. Suppose (5) holds and let Y. ¢; ® p; € Ker(y), r € R.
For this element r we can find elements p; € P and ¢; € @) such that

= o(5, 4 ), and hence

Z%@)pz r=>q®pe(q®p;)

(2]

—Zqzéwpz@q] Zqzwn@q])@p]

_ZSOQZ@])Z QJ®pj_ Zqz®pz Zq]@)p]—o

i,
On the other hand we also have T(ZZ ¢; ®p;) = 0. This proves that
Ker(p)R = 0 = RKer(y). For v the proof is similar, and we obtain
Ker(y)R' = R'Ker(y) = 0.
Using the fact that Ker(y), Coker(y), Ker(y)) and Coker(¢)) are
torsion on both sides, we can apply Proposition 4.1 and its dual to
deduce

1.1
Hom4 (P, —)oHoma/(Q, —) = Homa/(P®4Q, —) : CMod-R" — CMod-R'

is equivalent to the functor Homy/ (R, —) = idcmoea.rr by the
natural equivalence Hom 4/ (¢, —).
1.2

Hom 4/ (Q, —)oHom (P, —) = Homa(Q®4 P, —) : CMod-R — CMod-R

is equivalent to the functor Hom (R, —) = idomoda.g by the nat-
ural equivalence Homy(p, —).
2.1

Hom 4/ (P, —)oHom(Q, —) = Homa(Q®4 P, —) : R-CMod — R-CMod

is equivalent to the functor Homy (R, —) = idr.cmoa by the nat-
ural equivalence Hom 4 (p, —).
2.2

Homa(Q, —)oHomy (P, —) = Homa (P®4Q, —) : R'-CMod — R’-CMod

is equivalent to the functor Homu/ (R, —) = idp.cmeqa by the
natural equivalence Hom (g, —).
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3.1
(P®4—)o(Q®4 —)=P®s QR4 —: R-DMod — R'-DMod

is equivalent to the functor R’ ® » — = idg..pmoa by the natural
equivalence ¢ ® 41 —.
3.2

(Q®x4 —)o(P®4—)=Q®x P®4—: R-DMod — R-DMod

is equivalent to the functor R ® 4 — = idg.pmoa by the natural
equivalence ¢ ® 4 —.
4.1

(— @4 P)o(—®4Q) =—®x P®4Q : DMod-R' — DMod-R’

is equivalent to the functor — ® 4» R’ = idpymoa.g by the natural
equivalence — ® 4/ 1.
4.2

(—®4Q)o(— R4 P)=—®4 QR4 P:DMod-R — DMod-R

is equivalent to the functor — ® 4 R = idpmoa-g by the natural
equivalence — ®4 ¢.

On the other hand, suppose (1) holds, then we have (1.1) and (1.2)
and this is equivalent to Ker(y), Coker(p), Ker(¢)) and Coker (1)) tor-
sion. But Coker(y) and Coker(7)) are unitary, and if they are torsion,
they have to be 0 and this is the condition (5).

With the others, the proof is similar. We have to use Proposition
4.1 and its dual and deduce that Coker(¢) and Coker(z)) are torsion

on one side or the other, and use that both are left and right unitary
to conclude that they have to be 0. O

This proposition and Proposition 2.45 say that the categories Mod-R

and Mod-R' are also equivalent, but there are several posibilities for
finding this equivalence. We can go through CMod-R — CMod-R’ or
through DMod-R — DMod-R’. We have the following commutative

diagrams:
m’ o i; o Homy(P,—)ocoiym
Mod-R Mod-R'
coiym c oiy
CMod-R CMod-R’

HOIIIA(P, —)
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m’ o iz o Homu(P,—)ocoiym

Mod-R Mod-R’
moic m’ o i
CMod-R CMod-R’
Homyu (P, —)

m' oipo(—®4Q)odoiym

Mod-R Mod-R’
doiy d' oijy
DMod-R DMod-R’
—®a4Q

m' oipo(—®4Q)odoiym

Mod-R Mod-R/
m o ip m'’ o if,
DMod-R DMod-R’
—®a4Q

And something similar on the left. What we are going to prove is
that it is the same if we go through CMod-R — CMod-R’ or DMod-R —
DMod-R'.

PROPOSITION 4.14. Let R, R’ be idempotent rings, and let (R, R', P, Q, v, )
be a Morita context with ¢ and v epimorphisms. Then the functors
m’ oipo(—®4Q)odoiy and m’ oig o Homy(P,—) ocoiy are
equivalent.

Proor. We have to find for all M € Mod-R an isomorphism

ny :m' oipo(—®4Q)odoiy(M) — m'oigoHomy (P, —)ocoiyv(M)

natural in M. First we are going to calculate these modules.
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m' oipo(—®4Q)odoimy(M)=m'(d(M)®4Q).
Using Lemma 3.21 and that ) € R-DMod, we deduce that d (M)®4
Q =M ®4Q, and using that Q € DMod-R', M ®4 Q is in U, we have

m' (d(M)®4Q)=m' (M ®,4Q)=(M®4Q)/t'(M®4Q)

Using similar arguments we deduce that

m’ oig o Homu(P,—)ocoiy(M) =u' (Homu(P, M)).
Let us define §: M x Q — Homyu (P, M) by

B(m,q): P — M
p — mp(q@p)
It is staightforward to check that 3(m,q) € Homy (P, M) and that
[ is A’-bilinear and A-balanced. Then we have a homomorphism

ex: M ®4Q — Homy (P, M)
We are going to prove that Ker(ey ) = t' (M ®4 Q) and that Im(ep,) =
u’ (Homy (P, M)).
Im(eps) C u' (Homy (P, M))|Let mr € M = MR and ¢ € Q. As ¢
is an epimorphism we can find elements ¢; € @) and p; € P such that
r=73.9(¢ ® p;) and then

en(mr @ q) = eu(m@rq) = Z enr(m ® (g ® pi)q)

7

= ZGM(m®%¢(pi®Q)) = ZGM(W@J%W(M@C]) € Homg(P, M)R’

%

Im(eps) O u' (Homy (P, M))| Let f : P — M and ' € R'. As ¢
is an epimorphism we can find elements p; € P and ¢; € ) such that
=3, U(pi®¢q). We are going to prove that fr' = en (>, f(pi) ®¢):

fr'(p) = f(r'p) = f(z (ps @ q:)p) = f(Zpiso(qi ®p))

= Z f(p)e( @p) = GM(Z f(pi) ® qi)(p)

for all p € P.

Ker(ep) Dt/ (M ®4 Q)| Let Yo, m; ® q; € ' (M ®4 Q). We have
to prove that ey (>, m; ® ¢;) = 0 and for that let v € R. Now
em(D;m @ q)r' = en(D,mi @ gir’) = 0. As t' (Homa(P, M)) = 0
(because P € R-DMod), then ey (>, m; ® ¢;) = 0 as we claimed.
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Ker(ep) Ct' (M ®4 Q)| Let >, m; ® ¢ € Ker(ey) and r' € R
such that ), m; ® ¢7" # 0. As ¢ is an epimorphism we can find
elements p; € P and ¢; € @ such that v = ij/)(ﬁj ® Gj). Then
> Mip(4:®p;)®q; # 0 and then for at least one j we have na (>, mi®
¢)(P;) = >, mip(q; ® p;j) # 0 and this is a contradiction.

All these facts let us define

M ®aQ
(M ®4Q)
and prove that it is an isomorphism. The naturality of n;, can be easily
verified.

v —u (Homy (P, M))

O

3. Building Morita Contexts from Equivalences

Let R and R’ be idempotent rings. In this section we shall try to
build Morita contexts with epimorphisms from equivalences between
the categories we have already built for R and R’. We know that the
categories

CMod-R < Mod-R < DMod-R

are equivalent, and the same happens for R’. Therefore, if we want to
study the equivalence between, for instance, DMod-R and DMod-R/,
we can study the equivalence between the categories CMod-R and
CMod-R' or between Mod-R and Mod-R'.

In the case of idempotent rings it is better to consider the equiva-
lence between the categories CMod-R and CMod-R’ because localiza-
tion techniques and the fact that these categories are quotient cate-
gories will be very helpful.

In this section we are going to use the following notation:

1. R and R’ are idempotent rings.

2. A and A’ are rings with identity such that R is a two-sided ideal
of A and R’ of A’

3. R=R/t(R) and R' = R'/t' (R)) .

4. B=c(R) and B'=c' (R).

5. F : CMod-R — CMod-R' and G : CMod-R' — CMod-R are

inverse category equivalences.

LEMMA 4.15. B = End(R).
PROOF. We know that B = Homy(R, R). But R is torsion-free so

that Hom(t (R), R) = 0. Then Homy (R, R) = Hom(R/t (R), R).
0

The ring R can be considered to be inside B via the canonical
monomorphism R = R/t (R) — c(R) = B, and with this it is true
that br = b(7). We shall use many times this inclusion. All modules in
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CMod-R are R-modules, R-modules and B-modules, and we could have
some problems when we talk about morphisms, because they could be
R-homomorphisms, R-homomorphisms or B-homomorphisms. What
we are going to do in the next lemma is to prove that they are the
same in the cases we are interested in.

LEMMA 4.16. Let X,Y € Mod-B with Y € F. Then

Hom(X,Y) = Homp(X,Y) = Homz(X,Y) = Homp(X,Y)

ProOOF. The proof of the fact that the first three sets are equal
and Homz(X,Y) O Hompg(X,Y) can be verified directly. The only
problem is with the inclusion Homg(X,Y) € Homp(X,Y). In order

to prove that, let f : X — Y be an R-homomorphism and let b € B.
Then for all x € X,

(f(xb) — f(z)b)r = f(xbr) — f(z)br =
f(ab(r)) = f(2)b(r) = f(xb(r)) — f(zb(r)) =0
and this is true for all # € R. Using the fact that Y is torsion-free we
deduce that f(xb) = f(x)b. O

We know that the category CMod-R is a quotient category of
Mod-A. We are going to see now that this category can also be seen
as a quotient category of Mod-B.

PROPOSITION 4.17. RB is a two sided ideal of B, which is torsion
free and idempotent as a ring that contains R. If we denote G = {I <
Bp : RB C I}, then this is a Gabriel topology on B and CMod-R =
Mod-(B, G).

PROOF. As we have seen previously, BR C R (br = b(7)) and then
B(RB) C RB. This proves that RB is a two-sided ideal of B.

To see that RB contains R we only have to notice that idg = 15 €
B and then R = Rl C RB.

To see that RB is idempotent, we know that R C RB and then
BR C BRB and RBR C (RB)?. This proves that R = R?> C (RB)?
and then RB C (RB)2.

The ring B is torsion-free because R is.

To see that G is a Gabriel topology, conditions T1 and T2 are
immediate. If I € G and b € B, then R C (I : b) because bR C R C [
and using the fact that I is a right ideal of B we deduce that RB C I.
This proves T3. To prove T4 suppose [ is a right ideal of B such that
for some J € G, it is true that Vo € J, (I : ) € G. Then using the
fact that R C J we deduce that R C (I : 7) for all # € R and then
R=(R?CI.

It is clear that CMod-R C Mod-B. To see that CMod-R = Mod-(B, G)
we only have to see that for a module M € Mod-B, Homa(R, M) = M
if and only if VI € G, Homp(I, M) = M.
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For that we shall adopt the following notations. For all m € M,
Am 1 R — M in Homy (R, M) is defined as A, (r) = mr. On the other
hand X/, : I — M in Homp (I, M) is defined also as X/, (b) = mb. Define
A: M — Homa(R, M) and X' : M — Homp(I, M) by A(m) = \,,, and
N(m) = X, forall m € M. We have to prove that A is an isomorphism
if and only if X’ is an isomorphism for all I € G.

(=). Suppose that for some m € M we have X/ = 0. Then
mR = 0 because R C I and then mR = 0. But thls implies that
Am = 0 and m = 0 because A is an isomorphism. If f: I — M belongs

to Homp (I, M), then f is an A-homomorphism (M is torsion-free) and
we can compose with the inclusion j : R — I and with the projection
p: R — Rtoobtain fojop: R — M which belongs to Homu(R, M).
We deduce that there exists an m € M such that (f o jop)(r) = mr
for all 7 € R and then f(7) = m7 for all 7 € R. Suppose that for some
x € I we have f(z) # max. Then f(z) — mz € t (M) because for all
r € R, (f(x) —ma)r = f(xr) —mar =0 (zr € R for all r € R and
b € B), then f(z) = X, (z) for all z € I. This proves that A\ is an
isomorphism.

(«<). Suppose \,, = 0 for some m € M. Then R < r.anng(m) € G
and this is not possible unless m = 0 because Homg(r.anng(m), M) =
M. To see that A is surjective let f : R — M belong to Homu (R, M).
For allb: R — R in B we define f : RB — M in Hompg(RB, M) by
f((r +t(R))b) := f(r)b. The morphism f is well defined because if
r €t (R) then f(r)bet (M) =0.

For this f we can find m € M such that f(7b) = m#b for all ¥b € RB
and then f(r) = mr for all r € R. O

~ LemMA 4.18. P = G(B') and Q = F(B) are bimodules such that
Pa and Qa are generators of the categories CMod-R and CMod-R'
and the functors F' and G are, up to natural isomorphisms, F =~

Homa (P, —) and G ~ Homa/(Q, —).

ProOF. Using the category equivalence we see that B’ = End(Pp)
and B = Endp (Qp/). This gives the bimodule structure for P and Q.
They are generators because B and B’ are.

Let M € CMod-R. Then F(M) = Homp (B', F(M)) = Homp(G(B'), G(F(M))) =
Homp (P, M), and the same holds for G. O

LEMMA 4.19. For all X € Mod-B, if Homg(P, X) = 0 then XRB =
0.

PROOF. Suppose XRB # 0 and Homp(P,X) = 0. As B €
CMod-R and Pg is a generator of CMod-R we can find an epimor-
phism (in CMod-R) ¢ : PV — B, i.e, Coker(q)RB = 0. Let x € X
and 7 € R such that 27 # 0 and consider A\, : B — X (\,(b) = xb).
As Coker(q)RB = 0, 7 = 1p7 € Im(q) and we can find elements
(Vi)ier € PO such that q((Yi)ier) = 7. Then (A; 0 q)((4i)ier) = 27 # 0
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and we have found a nonzero morphism A; o q : PU — X but this is
a contradiction to Hompg(P, X) = 0. O

~ LeEmmA 4.20. G = {I < Bp: QR C IQ} and G' = {J < B, :
PR C JP}.

PROOF. Let us denote 1 : CMod-R — Mod-B be the canonical
inclusion.
The functor

Hom 4/ (Q, —) oi: CMod-R' — Mod-B

has two left adjoints

co(—®4Q):Mod-B — CMod-R'
and

Homy (P, —) o c : Mod-B — CMod-R’

The first is a left adjoint because c is a left adjoint of i and — ®4 Q
is a left adjoint of Hom (Q, —). The second is a left adjoint because
of the equivalence.

Using the uniqueness of the adjunction, we deduce that for all
X € Mod-B, Homy(P,c (X)) ~ ¢ (X ®4 Q) and then we claim that
XRB =0 if and only if (X ®4 Q)R'B’ = 0.

To see why this is the case, suppose (X ®4 Q)R'B’ = 0. Then
Hom(P,c (X)) = 0 and using the previous lemma we deduce that
c(X)RB =0 and then ¢ (X) =0 and XRB = 0.

On the other hand suppose XRB = 0. Then c(X) = 0 and
Homyu(P,c (X)) = 0. Hence ¢ (X ®4Q) = 0 and hence (X ®4
Q)R'B' = 0.

If we apply this fact to compute the Gabriel topology, we obtain

G={Izg<Bp:(B/I)RB=0}={I:((B/I)®Q)R'B =0}
={1:(Q/IQ)R'B' =0} ={I: QR CIQ}

as we have claimed. The result for G’ is obtained because of the sym-
metry. 0
COROLLARY 4.21. PR C R'P and QR' C RQ.
ProoOF. By Lemma 4.20. U

The bimodules P and @ are going to be used to build the Morita
context, but they are not exactly the modules that appear. We are
going to build a context between the rings B and B’ with identity and
from this we shall find one for R and R'.
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PROPOSITION 4.22. The bimodules P and Q establish a Morita
context between the rings B and B', namely (B, B', P,Q,9,v), such
that R C Im(p) and R’ C Im().

PRrOOF. Using Lemma 4.18 we know that F' ~ Hompg(P, —), and
then Q = F(B) ~ Homp(P, B). We also have the same fact in the
case of G, Q = Homp(P, B). With this we can define (¢ ® p) = ¢(p)
and ¢(p®q) = p(g). Using this definition it is straightforward to prove
that (B, B', P, Q, , 1) is a Morita context. Therefore we only have to
prove the last conditions.

As P is a generator in CMod-R, we can find an epimorphism h :
PY) — B in CMod-R (i.e. (B/Im(h))R = Coker(h)R = 0). Then
for all 7 € R there exists (p;)ic; € PY) such that 7 = h((p;)icr). If we
denote by j; : P — P the canonical inclusions, then hoj; : P — B are
elements in Q and 7 = >, ¢(h o j; ® p;). This proves that R C Im(p).
The proof for v is similar. O

PROPOSITION 4.23. Consider the canonical homomorphisms

n: R,®A/R,®A/p®AR®AR — P
r’rRspsr — 1r's'psr

€: R@AR®AP®A/R/®A/R/ — P
rospes @r — rsps'r’
Then Ker(n), Coker(n) € T and Ker(e), Coker(e) € T".

PROOF. Let p € P, t,r,s € R. The element pt € }5{% C RP =
R?P and we can find elements ., € R and p; € P such that
pt=>_; sirip;. Then

ptrs = Z siTipTS = Zn(s; Rr;@per®s) e Im(n)
j j

This proves that Coker(n)R = Coker(n)R? = 0.

In order to prove that Ker(n) € T, we shall make some abuse of
the language in the following sense: if we consider an element of the
form p(g)r's’, this element is in R', but we would like to consider it in
R’, and for that we would have to assign a unique element of R’. The
element ¢(p)r’ = w' 4+ t (R') for some w’ € R'. The element that we
assign to p(q)r's’ is w's’. We have to prove that this element is not
dependent on the element w’. Suppose w' +t (R') = v+t (R’). Then
(w' —v")s’ =0 and w's’ = v's’. The same holds for R.

Let ). st @7 @p®@r; ®s; € Ker(n). Then ), sirip;ris; = 0. We
have to prove that for all 7 € R, Y . s/ ®@ri@p, ®@r;, ® s;r = 0. If
we prove this for certain elements in R such that any element in R is
a finite sum of elements of this type, it is clear that we would have
obtained what we need. The special type of elements are the elements
of the form tuvwz with t,u,v,w,z € R and t + t (R) = ¢"(u/v'w'p")
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with ¢ € Q, p* € P, v/,v',w' € R'. We have to prove first that all

the elements in R are a finite sum of elements of this type. But this

is clear, first because R is idempotent, and then R is sum of products

titsuvwr with t, 1, u,v,w € R, and second because the condition

t; +t(R) € R C Im(p) gives that ¢, is a finite sum of elements of the

form g(p), and the element pt, € PR C R'P = R’ P so that tit,+t (R)
P o s

is a sum of elements of the form g(u'v'w'p).
Let t,u,v,w,z € R with t + t (R) = ¢*(v/v'w'p*). Then

O si@reperes)twwws =Y s @r® pristuw @w @ 1.

3 K3

The module P is a B-module, and therefore its R-module structure
comes from the identification of R C B and it is the same to multiply
by t or by t +t (R). Thus we have

S si@r@prstwower =Y si@r@prst+t (R)wowes
= Z S @1 @ Pirisiq (Wv'W'p uv @ w R x

= Z s @i @ pi(risi " )u'v'w'pfur @ w R w.

The element p;(r;5;q*)u’ € R’ ;then we can find an element 2} € R/
such that p;(r;s;¢")u’ = x} + t (R'), and then

Z St @1 @ Pi(risig ) u'v'w'pruv @ w @ & =
Y osienedvuiwewer=y sz ou weowes

= Z(S%ﬁz‘ﬁsi)(@*)u'v' Ru @ pur@w®r=0.

The proof for 1 is similar. O

THEOREM 4.24. Let R and R’ be idempotent rings and F' : CMod-R —
CMod-R’, G : CMod-R' — CMod-R inverse category equivalences.
Then there exists a Morita context (R, R, P,Q,¢,v) with p,¢ epi-
morphisms such that F' ~ Homa (P, —) and G ~ Homux/(Q, —). This
contexs induce the following equivalences

CMod-R ~ CMod-R' R-CMod ~ R'-CMod
Mod-R ~ Mod-R’ R-Mod ~ R'-Mod
DMod-R ~ DMod-R’ R-DMod ~ R'-DMod
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PROOF. The modules that we have to use are P = R’ @4 R Q@u
Po,R4Rand Q = R4 R4Q @4 R' ®4 R'. These modules define
the same functors as P and () because of the previous proposition,
Proposition 4.1 and its dual. The pairings are defined in the natural
way with the composition

(RIRQPRIR®R)®(RIR®QOR QR) - PoQ —2 R
and similarly for .

Then using Propositions 4.13 and 4.14 we deduce that the pairings
are epimorphisms and all the categories are equivalent. O

4. Some Consequences of the Morita Theorems

PROPOSITION 4.25. Let R and R’ be idempotent rings and (R, R', P, Q, p, )
a Morita context with epimorphisms. Then Cen(c (R)) = Cen(c’ (R'))
and also with the functors on the left.

PROOF. See [7, Proposition 3.1]. O

LEMMA 4.26. Let R be an idempotent commutative ring. Then
c (R) is commutative.

PROOF. Let f: R — R/t (R) in ¢ (R) and let r, s € R. Then

(rf)s =rf(s) = f(s)r = f(sr) = f(r)s = (fr)s.
Using the fact that ¢ (R) is torsion-free, we deduce that rf = fr.
This proves that R/t (R) is a two-sided ideal of ¢ (R) that is inside its
center. Let f,g € ¢ (R) and s € R. Then

(f9)s = f(gs) = f(g(s)) = g(s)f = (95).f = g(sf) = (9)s.
Using again the fact that ¢ (R) is torsion-free we deduce that ¢gf =
fg forall f.g € c(R). O

PROPOSITION 4.27. Let R and R’ be commutative and idempotent
rings such that there exists a Morita context (R, R', P,Q, p, 1) with ¢
and v epimorphisms. Then

1. ¢(R) and c' (R') are isomorphic commutative rings with identity.

2. m (R) and m’ (R') are isomorphic commutative and idempotent
TIngs.

3. d(R) and d' (R') are isomorphic commutative and idempotent
rings.

The same holds for the functors on the other side.

PROOF. Because of the previous lemma, ¢ (R) and ¢’ (R') are com-
mutative rings with identity. The ringsm (R) = R/t (R) and m’ (R') =
R'/t' (R') are clearly commutative idempotent rings and d (R) = R®4
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R and d' (R') = R' ® 4 R’ are also commutative and idempotent rings
with the multiplication (r ® s)(x ® y) = rsz ® y.

Because of Proposition 4.25 we obtain ¢ (R) = ¢’ (R’). The second
isomorphism is proved in [7, Proposition 3.2]. The third one comes
from the previous one because

R®sR~ R/t (R)®a R/t (R) ~ R//t/ (R/) QA R//t/ (R/) ~R @u R
U

PROPOSITION 4.28. Let R and R’ be Morita equivalent idempotent
rings and let Lr denote the lattice {I C R : I is an ideal of R, RIR =
I} and similarly for L. Then there is an isomorphism between Lpr
and L which may be given by I — ¢(QI @ P) and J — Y(PJ ® Q).

PROOF. See [7, Proposition 3.5] O

5. The Picard Group of an Idempotent Ring

In this section we are going to generalize the concept of the Picard
group of a ring. This group could be defined as the group of equiv-
alences CMod-R — CMod-R (or with any other of the categories on
the right or on the left). The problem with this definition is that we
cannot deduce directly that it is a group because this might not be a
set. We are going to prove that this is a group from the results given
in this chapter.

We would deduce that the equivalences CMod-R — CMod-R con-
titute a group if we prove that, up to natural isomorphisms, they lie
inside a set. Every equivalence CMod-R — CMod-R is given by a
Morita context (R, R, P, Q, ¢, ) with ¢ and 1 epimorphisms because
of Theorem 4.24.

Let {z) € R: X € A} be a generator set of R. Using the fact that
¢ is an isomorphism we can find elements p} € P and ¢} € Q such
that z) = (3.1, ¢ ®p}). We define p} = 0 and ¢} = 0 for all i > n,.
Using these notations we obtain

LEMMA 4.29. The following morphism, is an epimorphism
n: RAN) . p
(rd) = X

PROOF. Let p € P. As P = PR, there exists an element (p,) €
P®W such that p = Y rea Pazy. Then

p=Y D= Y DHelgep)

A€A (Ai)eAXN
= Y w(E©q)p) € m(y).
(A i)eAXN
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The set RA*N) i not dependent on the equivalence. Thus we have
proved that for every equivalence F' : CMod-R — CMod- R, there exists
P such that F' ~ Homy (P, —) and P is a quotient of RN As the
quotient modules of RN constitute a set, we have found an injection
between the equivalences CMod-R — CMod-R and a set. Therefore,
the equivalences CMod-R — CMod-R constitute a set.

Once we have proved that this is a set, it is clear that Pic(R) =
{F : CMod-R — CMod-R|F is an equivalence} is a group.



CHAPTER 5

Special Properties for Special Rings

1. Coclosed Rings

DEFINITION 5.1. Let R be an idempotent ring and A be a ring
with identity such that R is a two sided ideal of it. We shall say that R
is coclosed if the canonical morphism R ® 4 R — R is an isomorphism.

PROPOSITION 5.2. This definition does not depend on the ring A.

ProoOF. This condition is equivalent to the condition R € DMod-R,
and we proved that the objects that are in this category are not de-
pendent on the ring A (see Proposition 2.46). O

PROPOSITION 5.3. Let R be an idempotent two sided ideal of a ring
A with identity. Then

1. S:= R®a R is a coclosed ring.

2. The definition of S does not depend on the choice of A.

3. The following categories for the ring R are the same as for S,
namely

CMod-R ~ CMod-S R-CMod ~ S§-CMod
Mod-R ~ Mod-S R-Mod ~ S-Mod
DMod-R ~ DMod-S R-DMod ~ S-DMod

PRrOOF. Using Proposition 2.46 we deduce that S = d (R), and
therefore is independent of the ring A. If A and A’ are rings with iden-
tity such that R is a two sided ideal on each and for all r, s € R, the
multiplication in A is the same as in A’, then there exists an isomor-
phism 0 : R®4 R — R ®4 R. This isomorphism is an A-isomorphism
and A’-isomorphism, and what we have to prove is that it is a ring
isomorphism. But this is true because the definition is o(r®s) = r®s
and this definitions preserves the multiplication. The structure of S
comes with the sum defined as a module and the multiplication given
by (re@r)(tet) =r'"ett.

Consider the epimorphism p : S — R with K = Ker(u), R ~ S/K,
and let B be the Dorroh’s extension of S. The morphism g is an
A-homomorphisms but also a B-homomorphism. Therefore K is a
two-sided ideal of B and R is anideal of A’ := B/K. If Y .r;®ri € K
and ). t; ®t; € S then

86
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Q_ri@r)Q_tet) =) raie)y tit;=0.
i J i j

We know that S ~ R®4 R and S € DMod-R, and therefore

S~RR4 Ry R~¥~RR®y R4 ROy R~ S®y S ~S®pS.

The last isomorphism comes because KS = 0 = SK and the B-
module structure of S is the same as the B/K-structure. This proves
that S is coclosed.

Because of the symmetry of the condition we only have to prove
that the categories are the same on the right.

| CMod-R ~ CMod-S |

Let M € CMod-R, then Homu/ (R, M) = M. The A’-module
M has a B-module structure by the epimorphism B — A’, then
Homp(S, M) = Homa/ (S, M) and

HOIIlB(S, M) = HOIIlA/(S, M) = HOIIlA/(R X A R, M)
=1 HOHIA/(R, HOHIA/(R, M)) =M

This proves that M € CMod-S. On the other hand suppose M &
CMod-S. If we want to give M an A’-module structure, we have to
prove that MK = 0. Let m € M and k € K. We know that £S = 0
and therefore mkS = 0. But M is torsion-free with respect to S, and
then mk = 0. With this A’-module structure we have to prove that M
is torsion-free and t-injective with respect to R.

For every m € M, m(r ® s) = mrs, and then mR = 0 if and only
if m(R ®4 R) = 0. But this happens if and only if m = 0. Let

0= X—-Y—-272—0

be a short exact sequence in Mod-A’ with ZR =0 and let f : X — M.
This short exact sequence is also a short exact sequence in Mod-B
with the B-module structures that come from the epimorphism B —
A’. The A’-homomorphism f is also a B-homomorphism and because
ZR = 0 then ZS = 0. Then we can find an B-homomorphism g :
M — 'Y such that the following diagram commutes:

0 - X — Y — A —_— 0
fl /
g

M

1See [14, Lemma 19.11] for this identification.
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The B-homomorphism ¢ is also an A’-homomorphism. We have
proved that M is t-injective and M € CMod-R.

| Mod-R ~Mod-S |

Let M € Mod-R. Bacause of the construction, the category Mod-R
is a full subcategory of Mod-A" and then M is an A’-module. With
the epimorphism B — A’ we can give B-module structure to M (see
the comments before [?, Proposition 2.11] for this possibility). The
multiplication is defined as m(r ® r') = mrr’ for all m € M, r,r" € R.
As MR = M, then MS = M(R ®x R) = MR* = MR = M, then
M is unitary with respect to S. Let m € M such that mS = 0.
Then 0 = m(R ®a4 R) = mR?> = mR and m = 0. This proves that
M € Mod-S.

On the other hand, suppose M € Mod-S. We have to prove that
MK = 0. But this is true since MK C t (M) = 0 because KR = 0.
Then M has a B-module structure. As MS = M, then MR = MR? =
M(R®a R)=MS =M. If mR =0, then mS =0 and m = 0.

| DMod-R ~ DMod-S |

Let M € DMod-R. The A-module M has a B-module structure
with the epimorphism B — A’ and the multiplication m(r&r") = mrr’.

MRgS=M®syS=M®yRuR=M
On the other hand, suppose M € DMod-S. We have to prove that
MK = 0. But this is clear because MK = (MS)K = M (SK) = 0.
pnd
The module M satisfies MR = M(S/K) = MS = M and it is u-
codivisible with a proof dual to the one we have made for CMod-R.
O

This proves that the study of idempotent rings could be reduced to
the study of coclosed rings because with respect to the categories we
are studying, the rings R and R ®4 R are the same.

The coclosed rings have nice properties with respect to the functors
d and c.

PROPOSITION 5.4. Let R be a coclosed ring. Then
1. ¢ ~ Homy(R, —).

2.d~—®4R.
PROOF. As pt: R®4 R — R is an isomorphism, ¢ ~ Hom(R ® 4
R,—) ~Homuy(R,—) andd ~ —®4 R®4 R~ —®4 R. O

PROPOSITION 5.5. Let R and R’ be coclosed rings and (R, R', P, Q, ¢, )
be a Morita context with ¢ and v epimorphisms. Then ¢ and i) are
1somorphisms.

Proor. This is a consequence of Proposition 4.10 O
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PROPOSITION 5.6. Let R and R’ be commutative coclosed and Morita
equivalent rings. Then they are isomorphic.

Proor. This is a consequence of Proposition 4.27. O

2. Rings With Local Units

DEFINITION 5.7. Let R be a ring. We shall say that R is a ring
with local units if there exists a set £ C R of commuting idempotents
of R such that for every finite subset of elements in R, {ry,---,7,}
there exists e € E such that r;, =r;e=er; fori=1,--- ,n.

PROPOSITION 5.8. Let R be a ring with a set of local units E.
Then R is coclosed.

PROOF. Let A be any ring with identity such that R is a two-sided
ideal of it. We have to prove that R®4 R ~ R. Let r € R. We can find
an element e € E' C R such that re = r, and then u(r ® e) = re = r.
This proves that y: R®4 R — R is an epimorphism and therefore R
is idempotent.

Suppose > r; ® s; € Ker(u). Then we can find an e € E such
that er; = r; foralli =1,--- . n, and then

n n

Zn@si:Zen@si:e@imsi

i=1 i=1 i=1

:e®u(2n®si):e®0:0.
i=1

O

PROPOSITION 5.9. Let R be a ring with a set of local units E, A a
ring with identity such that R is an ideal of it. Let M € Mod-A. Then
the following conditions are equivalent.

1. M € Mod-R.
2. M € DMod-R.
3. MR =M.

PROOF. It is clear that conditions (1) or (2) imply (3).

Suppose (3) holds and let m € t (M). For m we can find elements
m; and r; with ¢ = 1,- -+ ,n such that m = > | m;r;. For the elements
r; we can find an e € E such that r, =r;e fort =1,--- ,n. Then

n n
0=me= g m;rie = g m;T; = m.
i=1 i=1

Suppose (3) holds and let  : M ®4 R — M be the canonical
epimorphism with "7 m; @ r; € Ker(u). Again we can find e € F
such that r; = r;e for all ¢ and then
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zn:mi@)m:imm@e:u(zﬂ:mi@n)@e:O®e=0.
=1

=1 i=1

O

COROLLARY 5.10. The categories DMod-R and Mod-R are equal
and the functors d o iy and m o ip are the identity functors.

PROOF. Because of the previous proposition, a module M € Mod-A
is in Mod-R if and only if M € DMod-R. The modules of DMod-R
are torsion free and the modules of Mod-R are coclosed, therefore the
functors d o ipy and m o ip are the identity functors over the modules
and over the morphisms. O

In the study of rings with local units and Morita equivalences, the
traditional category that it is used is Mod-R = DMod-R, and therefore
we are going to write the Morita theorem for this case.

THEOREM 5.11. Let R and R’ be rings with local units. Let
F : Mod-R — Mod-R' G : Mod-R' — Mod-R

be inverse category equivalences. Then, there exists a Morita context
(R, R, P,Q, p, ) with ¢ and v isomorphisms such that F and G are,
up to natural isomorphisms F ~ — ®@p Q) ~ u’ o Homg(P, —) and G ~
—®p P ~uoHompg (Q,—). This context establishes also equivalences
for the categories on the left.

Proor. This is an immediate consequence of Theorem 4.24 and
Proposition 4.14. ]

Probably the biggest difference between the idempotent or coclosed
rings and the rings with local units, is the general existence of projective
modules.

PROPOSITION 5.12. Let R be a ring with a set E of local units.
Let e € E. Then the module eR is finitely generated and projective.

PRrOOF. Suppose M; < eR with ¢ € I, are submodules such that
> M; = eR. The element e = e* € eR = Y M; and therefore we can
find a finite subset I, C I such that e = Ziejo m; with m; € M;. Then
eR = Zie[o M;.

Let n: M — N be an epimorphism and f : eR — N. Because the
element f(e) € N we can find m € M such that n(m) = f(e). If we
define h : eR — M by h(er) = mr, we obtain no h = f. O

PROPOSITION 5.13. Let R be a ring with a set E of local units and
P be a module in DMod-R. The module P is projective if and only if
it is a direct summand of a module of the form @eeE(eR)(Ie).
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PROOF. Any module @, ,(eR)!) is a direct sum of projectives,
therefore projective, and any direct summand is projective. On the
other hand suppose P is projective. As )" _,eR = R we can find an
epimorphism 7 : @, p(eR)U9) — P for some sets I.. This epimorphism
is a split epimorphism because P is projective and then P is a direct
summand of @, (eR)!). O

REMARK 5.14. The module @, 5 eR is a projective generator of
DMod-R.

With respect to the Morita theorems, the case of rings with local
units introduces the concept of progenerator. To this end let us define
the following relation in the set of local units.

DEFINITION 5.15. Let R be a ring with a set of local units E, and
let e, f € E. We define

e < fif and only if ef = e(= fe)?

Let R and R’ be rings with local units E and E’ and (R, R/, P, Q, ¢, 1)
be a Morita context with ¢ and 1 epimorphisms (and then isomor-
phisms).

Let us define the following homomorphisms for e < f € E and
¢ < f/ cE

ppe : €P — f'P eyt f'P — €P
€p — [ep=ep o= efp
ffe: Pe — Pf eef: Pf — Pe
pe — pef = pe pf — bpfe
Hre: €Q — fQ € fQ — eQ
eq — feq=eq fa — efq
Wt Q€ — QFf eyt QfF — Qe
qe’ — qe'f' = qe qf — qf'e

PROPOSITION 5.16. With the previous notations
1. For all ¢ € E/, fheter = €grer = iderp
2. Foralled < f' <
Iug/f/ (o] :Uflel = Iug/e/
Ee/f/ (@] Gf/g/ = 6619/
3. For all e S f/, Ee'f1 O [grer = ide/p
4. Forall g > ¢, [,
/,Lg/e/ @) Ee/g/ (@] ,[,Lg/f/ @) Ef/g/ = ,[,Lg/f/ [e) Ef/g/ (@] ’[,Lg/e/ @) Ee/g/
The modules €' P are finitely generated and projective.

6. lim e'P is a generator of Mod-R.
e'er’

o

2F is a set of commuting idempotents
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PROOF. Almost all this properties can be checked directly. We

shall prove only the last two ones.
O

This fact make us give the following definition

DEFINITION 5.17. Let R be a ring with a set of local units E. Let
E’ be a partially ordered set, {P., : ¢ € E'} be a family of right R-
modules in Mod-R such that for all €/, f' € E’ there exists ¢’ > ¢/, f’
in £'. Let (/Lf/e/ : Pe/ — Pf/)e/gf/ and (Ge/f/ : Pf/ — Pe’)e/gf/ be families
of R-homomorphisms such that

1. For all ¢ € E/, Mele! = €glet = idpe,

2. Foralle < f/ < ¢

Iug/f/ (] :Uflel = Iug/e/

Ge/f/ (@] Ef/g/ = Ee/g/
3. Forall ¢ < f', €crpr o pprer = idp,
4. For all ¢’ > €, f',

/,Lg/e/ @) Ee/g/ (@] ,[,Lg/f/ @) Ef/g/ = ,[,Lg/f/ @) Ef/g/ (@] ’[,Lg/e/ @) Ee/g/

5. The modules P. are finitely generated and projective.

6. lim P is a generator of Mod-R.
e'eE’

We shall call
({Pe/ . 6/ - El}, (/,Lf/e/ . Pe/ — Pf/)e/gf/, (Ge/f/ . Pf’ — Pe/)e/gf/)

a progenerator in Mod-R.

PROPOSITION 5.18. With the previous notations

L ({¢P ¢ € B (g P — F'Plucp, (eap s f'P — € P)ocp) i
a progenerator in Mod-R

2. ({eQ re € By, (W, 1 eQ — fQ)e<y, (el 1 fQ — eQ)eSf) is a pro-
generator in Mod-R'

3. ({Pe:e€ E}, (g : Pe — Pe)e<y, (€ : Pf — Pe)c<y) is a pro-
generator in R'-Mod

4 ({Qe ¢ € '}, (Wpo : Q€' — Qf Jer<yrs (€pr: Qf — Q€ )er<yr)

s a progenerator in R-Mod

If R is a ring with a set of local units £ and
({Pe’ : e/ c El}’ (,Uf’e/ : Pe/ — Pf/)el§f17 (ee/f’ : Pf/ — Pe/)e’gf’)

is a progenerator for a certain set E’, it is possible to build a ring R’
with a set of local units bijective with £’ such that R and R’ are Morita
equivalent. All these results be seen in [1], together with some of the
previous ones with a direct proof that does not use the idempotent
rings.
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3. Rings With Enough Idempotents

DEFINITION 5.19. Let R be aring. We shall say that R has enough
idempotents if there exists a set of orthogonal idempotents {e) : A € A}
in R (that will be called a complete set of idempotents for R) such that

R = @)\EA R@)\ = @)\EA 6)\R.

PROPOSITION 5.20. Let R be a ring with a complete set of idem-
potents {ex : X € A}. Then R is a ring with a set of local units

{er =2 erexll S A, I finite}.
Proor. Let I,J C A finite.

erey = E E 6>\€M = E ENE)\ = €€

\el ped xelinJ

Let 71,--- 7 be a finite family of elements in R = ,., exR. We
can find there a finite set I C A and elements {sy, |k =1,---,t pel}
such that r, = ZHGI €uSky, then

€T — E EXCLSky = E €uSky = Tk

A pel nel
foral k=1,--- ¢t O

DEFINITION 5.21. Let B be a ring with identity, {Uy : A € A} a
family of finitely generated right B-modules, U = @@, Ux. Let

R ={r:Up — Ug|r(U,) = 0 for almost all A € A}

and let {e) : A € A} be the set of idempotents in R that satisfy e, (U) =
Uy. The ring R is called the functor ring of the finitely generated B-
modules {U, : A € A}.

PROPOSITION 5.22. The functor ring of {Uy : A € A}, R, is a ring
with enough idempotents.

Proor. Consider the following elements in R:

en: DreaUn — DireaUn
(Ur)ren = (U/,\))\GA
with vy = u, if A = p and v} =0 if X\ # p.

Ifre R let I ={\e&A:r{U,) #0}. Because of the definition
we have given, I is finite and clearly » = >, ;rex. All the Uy are
finitely generated, then r(U,) C Z/\eJu Uy with J, finite for all p. If
we define J = J,,c; Jy, then r =37, ;exr and this sum is finite. We
have proved that R = > ., exRR = > ., Rex. This sum is direct
because the elements {e |\ € A} are orthogonal. O
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There exists some special examples of this kind of rings, is the
following. Suppose A is an arbitrary index set, and U, = B for all
A € A with B a ring with identity. The functor ring of the modules
(Ux)xea as right B-modules is denoted by FM,(B) and consist in the
ring of A X A-matrices with a finite number of entries.

In the case of rings with enough idempotents it is possible to rebuild
the ring as a functor ring, it is as follows

PROPOSITION 5.23. Let R and R’ be rings with complete sets of
idempotents {e) : A € A} and {e}, : N € A'}, and let (R, R', P,Q, ¢,v)
be a Morita context with ¢ and 1) epimorphisms. Then

1. R is the functor ring of {e\,P : X € A’}
2. R is the functor ring of {Pey : A € A}
3. R is the functor ring of {exQ : A € A}
4. R' is the functor ring of {Qe), : N € A’}

Proor. We are going to prove only one of them because all the
others are proved by symmetry. First of all, we have to notice that

P=RP=> éP=FeP

NeN NeN

As ¢ and 1 are isomorphisms, we can find elements p;y € P and
qix € Q such that 6,)\/ = ¢(Z?;/1 zﬁ(pj)\/ & q]')\/).

The functor ring of the family {e}),P : X € A’} consist in the
o; Pp — Ppg such that o(e),P) = 0 for almost all N € A'. If v/ €
R, the left multiplication by 7’ has this property because 7’e), = 0
for almost all \ € A’. Conversely, let ¢ be in the functor ring of
{e\,\P: N € N}, we are going to prove that o is the left multiplication
by s := 3 yen 2oy (o (ehpin © gix) (notice that this sum is finite
because o (e},p;y) = 0 for almost all \'). For that let p € P,

nys o/
o= wlolepn @gnIp= . > olehpin)p(an ©p) =
AleAl le AleAl le
iy
= Z Z o(expinve(giny @p)) =
NeAN j=1
TL}\I
=3 ol S b @ g = 3 olehehp) = 3 olekp) = olp)
NeN 7j=1 MNeN NeN

O
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4. Rings With Identity

Every ring with identity R is a ring with a complete set of idem-
potents {1z}, the functors ¢ oip; and m oic are the identity functors,
therefore, the three categories are equal. This property caracterize the
rings with identity because ¢ (R) is always a ring with identity.

The definition of a progenerator in this case, is a module that is
finitely generated, projective and generator. This definition generalize
the one for rings with local units if we consider (R, {1g}) as a ring with
local units.

If R and R’ are rings with identity, and (R, R, P, Q, ¢, v) is a Morita
context with ¢ and 1 epimorphisms, then all the following maps, are
isomorphisms:

[*,—] :P — Homp (Q, R') (x,—) :Q — Hompg(P, R)

p—[p,—] q+— (¢, —)
[—, %] :Q — Homp (P, R) (—, %) :P — Homg(Q, R)
q+— [—,q] p— (=,p)
R — Endg (Q) R — Endg(P)
r (g rq) rep =)
R’ — Endg(P) R' — Endg(Q)

s = (p > sp) s — (¢ gs)
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