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A B S T R A C T

Driver fatigue can impair performance as much as alcohol does. It is the most important road safety concern,
causing thousands of accidents and fatalities every year. Thanks to technological developments, wearable,
single-channel EEG devices are now getting considerable attention as fatigue monitors, as they could help drivers
to assess their own levels of fatigue and, therefore, prevent the deterioration of performance. However, the few
studies that have used single-channel EEG devices to investigate the physiological effects of driver fatigue have
had inconsistent results, and the question of whether we can monitor driver fatigue reliably with these EEG
devices remains open. Here, we assessed the validity of a single-channel EEG device (TGAM-based chip) to
monitor changes in mental state (from alertness to fatigue). Fifteen drivers performed a 2-h simulated driving
task while we recorded, simultaneously, their prefrontal brain activity and saccadic velocity. We used saccadic
velocity as the reference index of fatigue. We also collected subjective ratings of alertness and fatigue, as well as
driving performance. We found that the power spectra of the delta EEG band showed an inverted U-shaped
quadratic trend (EEG power spectra increased for the first hour and half, and decreased during the last thirty
minutes), while the power spectra of the beta band linearly increased as the driving session progressed.
Coherently, saccadic velocity linearly decreased and speeding time increased, suggesting a clear effect of fatigue.
Subjective data corroborated these conclusions. Overall, our results suggest that the TGAM-based chip EEG
device is able to detect changes in mental state while performing a complex and dynamic everyday task as
driving.

1. Introduction

Electroencephalography (EEG)-metrics are among the most reliable
contemporary methods to assess cognitive states (Di Stasi et al., 2015a).
EEG recording devices have dramatically developed in the last ten years
thanks to technological progress (Minguillon et al., 2017), making
ubiquitous acquisition of brain activity not only possible, but in-
expensive (Borghini et al., 2014; Picot et al., 2008; Wang et al., 2015).
These new devices, which are user-friendly, portable, and low-cost,
have increased the use of EEG-metrics in daily-life situations (for a
review, see Minguillon et al., 2017).

The EEG recording device “TGAM headset” (ThinkGear ASIC
module, NeuroSky Inc., San Jose, CA, USA) is a single-channel, dry
electrode, wireless signal transfer system (see Fig. 1B) that has received
considerable attention from the general public (Dance, 2012; Bilton,
2013) and the neuroscientific community (e.g. Johnstone et al., 2012;
Rogers et al., 2016) because of its set of features that make it an ideal
wearable EEG system: the low intrusiveness of the equipment, the ro-
bustness of the sensor technology, and the wireless measurement so-
lution (Gramann et al., 2011). Furthermore, since it has been validated
for scientific use for assessing variations in the cognitive state
(Johnstone et al., 2012), neural-engineering researchers have started
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developing EEG-based applications for daily-life (Minguillon et al.,
2017), including for road safety (Morales et al., 2015).

Driver fatigue (i.e., under-aroused) is the most critical issue for
transportation safety (National Transportation Safety Board, 2017),
representing the main cause of motor vehicle crashes and traffic-related
deaths (Touryan et al., 2016). Wearable EEG-based fatigue monitors
have the potential to help drivers to assess their own levels of fatigue
(Ko et al., 2015) and, therefore, to prevent the deterioration of driving
performance (Dawson et al., 2014). Given its features, the TGAM
headset should be suitable for use as a driver fatigue monitor. Un-
fortunately, since the pioneer case study by Yasui (2009), the question
of whether the TGAM headset can monitor driver fatigue remains open.
The few reports that have investigated this issue have not obtained
conclusive results (see below), due to the inconsistencies and/or lim-
itations in their methods/research designs. Examples of these limita-
tions include 1) the use of unfiltered/unprocessed EEG data (Wan et al.,
2013; Lin et al., 2015; He et al., 2015; Hsiao et al., 2015; He et al.,
2016; Abdel-Rahman et al., 2015; He et al., 2014; Lim et al., 2014), 2)
the use of an imprecise operationalization of the construct of fatigue – often
confused with postprandial somnolence – (He et al., 2014, 2015), and
3) the absence of (comparative) gold standard indices of fatigue (Lim et al.,
2014). All these limitations have compromised the potential utility of
this wearable single-channel EEG device as a fatigue monitor.

Here, we present the first conclusive evidence about the sensitivity
and validity of a single electrode EEG device (TGAM-based) as a driver
fatigue monitor. We investigated the effects of a 2-h driving time – a
common inducer of fatigue at the wheel (Wijesuriya et al., 2007; Di
Stasi et al., 2012, 2016) – while we continuously monitored drivers'
brain activity as well as their saccadic velocity. As saccadic velocity is a
well-known fatigue index (Schmidt et al., 1979; Galley and Andres,
1996; Schleicher et al., 2008; Hirvonen et al., 2010; Di Stasi et al.,
2016), we used it as a standard reference measure for fatigue. We also
collected driver performance and subjective ratings of alertness and
fatigue. We hypothesized that, during the 2-h driving session, partici-
pants would gradually experience higher levels of fatigue. EEG activity,
recorded at the prefrontal cortex, as well as saccadic velocity, would
reflect this phenomenon. Furthermore, we expected that participants
would show poorer driving performance (i.e., increased speeding be-
havior) as the driving session progressed.

2. Material and methods

2.1. Ethical approval

We conducted the study in conformity with the Code of Ethics of the
World Medical Association (WMA, Declaration of Helsinki) (WMA,
1964). The experiment was carried out under the guidelines of the
University of Granada's Institutional Review Board (IRB approval #24/
CEIH/2015).

2.2. Participants

Seventeen active drivers (mean age [± standard deviation, SD]
= 25 ± 3.45 years, range 22–34; 12 men) volunteered to participate
in this study. All participants had normal or corrected-to-normal vision
and held a valid driver license (average number years of driving ex-
perience [± SD] = 5.94 ± 2.74 years). We asked participants to ab-
stain from alcohol and caffeine-based beverages 24 and 12 h, respec-
tively, before the driving session. Additionally, they had to get at least
7 h of sleep the night prior to the study. Thus, for screening purposes,
we measured subjective levels of arousal using the Stanford Sleepiness
Scale before the driving session (Hoddes et al., 1972) (see below): no
participants scored more than 3, had they done so they would have
been excluded from further testing (Connor et al., 2002; Morad et al.,
2009; Di Stasi, et al., 2015a). No participants were excluded based on
this criterion. Two participants suffered from simulator sickness and did
not finish the driving session. Therefore, we finally analyzed data from
15 out of 17 participants (mean age ± SD = 24.33 ± 2.69 years,
range 22–31; 10 men). From three of them, due to log system failures
during the recording, we only analyzed performance and subjective
data.

2.3. Experimental design

The study followed a within-subjects design with the Time-On-
Driving (TOD) as the independent variable. Each experimental session
consisted of four consecutive 30-min TOD blocks (TOD1[0–30 min],
TOD2[30–60 min], TOD3[60–90 min], and TOD4[90–120 min]) (Di
Stasi et al., 2012; Di Stasi, et al., 2015b). Participants did not rest be-
tween TOD blocks. We chose this temporal window to be close to the
maximum TOD that professional drivers are allowed before a manda-
tory break (Vehicle and Operator Service Agency[VOSA], 2009). As
dependent variables, we considered several psychophysiological (the
EEG power spectra, as well as the saccadic peak velocity while driving),
driving performance (the percentage of speeding time), and subjective
indices (the perceived alertness and fatigue before and after the driving
session).

2.4. Driving simulation and performance

We used the OpenDS 2.5 software (Math et al., 2013, OpenDS,
Saarbrücken, Germany) to create the virtual environment. We devel-
oped a two-lane, rounded rectangle (curvature angle of π/2 rad) road
scenario. The road was ∼1.5 km long with a width of 8 m, and it was
surrounded by an empty and monotonous grassy meadow (see Fig. 1A).
Participants drove a middle-sized car for 2 h without breaks (i.e.
without stopping the vehicle or restarting the engine) around the same
road in sunny conditions and without any other traffic present (average
number of laps ± SD = 62.2 ± 2.39). A speed limit of 60 km/h was

Fig. 1. A) A screenshot taken from the driving simulator. The speedometer gauges were displayed during the simulation. B) The configuration used to record EEG (black headset) and eye
movements (orange element). C) The EEG device uses a monopolar montage with a single frontal dry electrode placed at Fp1, and uses the left ear-lobe as the reference/ground. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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set up (average speed ± SD = 53.37 ± 2.25 km/h).
The interaction with the virtual car took place via devices typically

present in an automatic transmission vehicle; accordingly, the primary
controls of the simulator were physical. To control the car, participants
used a Logitech G27 steering wheel (steering wheel, gas and brake
pedals; Logitech International S.A., Lausanne, Switzerland) while
seating on an adjustable car seat (PlaySeat®, Doetinchem, The
Netherlands). Speedometer and tachometer gauges were shown in the
bottom right of the screen. Six loudspeakers located around the driver,
about the ground level, provided the simulated surround sound of the
engine.

We used a video projector (EB-410W, EPSON Pty Ltd., Australia) to
display the virtual circuit on a 1.32 × 1.63 m screen, about 2.5 m from
the driveŕs eyes (resulting in a view angle of ∼26° vertically and ∼33°
horizontally). The experiment took place in a dimly lit laboratory.
Similar experimental settings have been successfully used to investigate
drowsy driving (Isnainiyah et al., 2014; Lawoyin et al., 2015).

During the entire experimental session, we controlled for room il-
lumination and temperature, as well as for background noise (∼24 lx
[Iluminance meter T-10, Konica Minolta, Inc., Japan],∼25 °C [Arduino
controlled LM35 wire Digital Thermometer], and ∼52 dB [Sound Level
Meter DSL-330, Tecpel Co Ltd., Australia]).

The driving simulator recorded the car speed automatically (sample
rate 20 Hz). We calculated the time spent speeding for each participant
and TOD block, defined as the amount of time driving at a speed 10% or
more above the speed limit.

2.5. EEG recordings and analyses

We collected EEG activity (at 512 Hz) using the TGAM headset
(ThinkGear ASIC module TGAM1_R2V2.4A, NeuroSky Inc., San Jose,
CA, USA). The device uses a monopolar montage with a single frontal
dry stainless steel electrode (TGAM) placed at (approximately) Fp1
(contact area 12 × 16 mm), according to the International 10/20
system (Jasper, 1958) (see Fig. 1B, C). The ear clip (left ear-lobe) acts as
both ground and reference, which allows the TGAM chip to filter out
the electrical noise from the body and the ambient environment. Before
electrode placement, the pertinent areas of the skin were cleaned with a
slightly abrasive paste and alcohol. Then, the dry electrode/ear clip
were placed and secured with surgical tape.

The TGAM headset sends EEG raw data to a recorder unit via a
Bluetooth connection. We collected the raw EEG data into EDF+ files
using an ad-hoc LabVIEW software script (National Instruments Co.,
USA). Then, we imported the EDF+ files, preprocessed and analyzed
them using Matlab (Mathworks Inc., USA). To remove physiological
artifacts from eye activity, we filtered the signal using an order 10
Chebyshev type II filter, with a flat pass band between 0.1 Hz and
45 Hz, and an independent customized algorithm to remove blinks.

We segmented the whole EEG 2-h recording in four consecutive
non-overlapped epochs of 30 min each (one for each TOD): TOD1,
TOD2, TOD3, and TOD4. We divided data from each TOD into segments
of 2 s in length. We considered artifacts and discarded segments with
amplitudes out of the (−100, 100 μV) range. Then, we used the fast
Fourier transform (window size of 512 samples and overlapping of 256
samples) – implemented in the EEGLAB Matlab toolbox – to perform
spectral analysis and to calculate power spectra for the bands: delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) fre-
quency bands (Di Stasi et al., 2015a,b). Finally, we computed the
average power for each frequency band and TOD. The power spectra
were expressed as μV2/Hz. We used the 10 logarithmic scale (log10)
transformation to improve normality of data.

2.6. Eye movement recordings and analyses

We sampled eye movements binocularly at 1 KHz using infrared
oculography (JAZZ-novo, Ober Consulting, Poznan, Poland). The JAZZ-

novo is a portable and lightweight, head-mounted system (see Fig. 1B).
The eye-tracker uses a radio frequency connection to send raw data to a
recorder platform. We collected the raw eye-movements data into EDF
+ files using an ad hoc LabVIEW software script (National Instruments
Co., USA).

We detected and analyzed saccadic movements as in Di Stasi,
McCamy, and colleagues (Di Stasi, et al., 2013b). Briefly, we identified
saccades with a modified version of the algorithm developed by Engbert
and Kliegl (2003). This algorithm bases saccade identification on a
velocity threshold that adapts to the level of noise in the data (see
Engbert and Kliegl (2003) for a detailed description). Here, we used
λ = 10 (to obtain the velocity threshold) and a minimum saccadic
duration of 10 ms. To reduce the amount of potential noise, we imposed
a minimum intersaccadic interval of 20 ms so that potential overshoot
corrections are not categorized as new saccades (Møller et al., 2002).
Because the magnitude of a saccade is related to both the velocity and
the duration of the movements (Gruart et al., 1995), we studied the
effects of TOD on the saccadic peak velocity/magnitude relationship
(Becker and Fuchs, 1969; Evinger et al., 1991). We assumed a power fit
relationship between saccadic magnitude and peak velocity (Di Stasi,
et al., 2013b). Thus, we performed robust linear regressions (using the
robust fit function in MATLAB [Mathworks Inc., USA]) on the raw data
for each participant for each TOD block. We did a robust linear re-
gression on ln(PV) = mln(MAG) + b, which assumes the power-law
PV = eb MAGm. Here, b is the y-intercept and m is the slope. Thus, for
each participant, we obtained four slope values of the saccadic peak
velocity/magnitude relationship – one for each TOD – (hereafter, sac-
cadic peak velocity).

2.7. Questionnaires

To evaluate the effectiveness of the fatigue-inducing manipulation,
we asked participants to fill in the Stanford Sleepiness Scale (SSS) and
an adapted version of the Borg rating of perceived exertion (BORG
(Borg, 1998). The SSS provides a global measure of how alert a person
is feeling, ranging between 1 and 7 (Hoddes et al., 1973). It contains
seven statements ranging from “Feeling active, vital, alert, or wide
awake” (score 1) to “No longer fighting sleep, sleep onset soon, having
dream-like thoughts” (score 7). The BORG indicated the level of fatigue
(i.e., the level of perceived exertion associated with a task). It consists
of a numerical scale (ranging from 6 to 20) anchored by “not exertion at
all” (score 6) to “maximal exertion” (score 20). Participants filled in the
questionnaires – in the same order – in two separate measuring sessions:
at the beginning (i.e. Pre-driving), and at the end (i.e. Post-driving) of
the driving session. Finally, at the end of the driving session, partici-
pants filled in the NASA-Task Load Index (NASA-TLX) (Hart and
Staveland, 1988) as a global index of the perceived degree of task
complexity (Di Stasi et al., 2009). The NASA-TLX values range between
0 and 100, with higher values indicating higher task complexity.

2.8. Procedure

After signing the consent form, participants filled in the SSS and
BORG scales. Then, after a five-minute familiarization session, we ca-
librated the eye tracker and the driving simulation started. We in-
structed participants to follow the usual traffic rules and to keep the car
mostly in the right lane. The speed limit was set up at 60 km/h. During
the entire simulation, the experimenter did not communicate with
participants, although they were constantly monitored through an ob-
servation window behind the car seat. After the simulation, participants
filled in the same scales. In order to avoid diurnal fluctuations that
affect arousal levels (Del Río-Bermudez et al., 2014), we carried out all
experimental sessions between 9 a.m. and noon. Thus, we ran only one
participant per day. Finally, to avoid an end-spurt effect-reactivation –
that occurs when people know they are approaching the end of a task
(Bergum and Lehr, 1963) – participants were blind about the duration
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of the driving simulation.

2.9. Statistical analysis

To analyze the effect of TOD (i.e. fatigue), we performed separate
repeated-measures ANOVAs on the dependent variables. For the EEG
power spectra, we performed a two-factor, 4 (TOD) x 4 (Frequency
Band), repeated-measures ANOVA. For the saccadic peak velocity and
the speeding time, we performed two one-factor repeated-measures
ANOVAs, with TOD as the repeated-measures factor. Effect size was
calculated using the partial η2 statistic. We also performed separate
trend analyses (one for each dependent variable) to identify the ex-
istence of significant trends in our data over the four TOD blocks. We
used the Bonferroni adjustment to correct for multiple comparisons. If
more than one trend was significant, we focused on the trend having
the highest effect size. For all dependent variables, we compared each
participant to him/herself across the TODs, and, therefore, variability
between participants was part of the error terms. For the BORG and SSS
scales, we used two separate paired t-tests with the two measuring
sessions (i.e., Pre vs. Post-driving) as the repeated-measures factor. For
all dependent variables, we used the Kolmogorov-Smirnov test and a
graphical assessment to verify that both data and residuals were nor-
mally distributed. Both assumptions were always confirmed.
Significance levels were always set at α≤ 0.05.

3. Results

During a 2-h simulated driving session, we continuously recorded
drivers’ EEG power spectra, saccadic eye movements, and driving per-
formance. For analysis purposes, we divided the driving time in four 30-
min blocks: TOD 1, TOD 2, TOD 3 and TOD 4. We also collected sub-
jective ratings of alertness and fatigue at the beginning and at the end of
the driving session, and, at the end of the session, the perceived degree
of task complexity.

3.1. Effectiveness of the TOD manipulation

To examine the effectiveness of the TOD manipulation, we analyzed
changes in the saccadic peak velocity, and in the percentage of speeding
time depending on the TOD, and in the SSS and BORG scores before and
after the driving session.

Saccadic peak velocity changed across TOD blocks; F (3, 33)
= 10.62, p < 0.001, partial η2 = 0.49 (see Fig. 2A and Table 1). Trend
analysis revealed a significant decreasing trend across the four TOD
blocks; F (1, 11) = 13.08, corrected p < 0.05, partial η2 = 0.54. These
results confirm that TOD induced higher levels of fatigue as the ex-
periment progressed (Di Stasi et al., 2012; Di Stasi, et al., 2015b;
Hirvonen et al., 2010; Schmidt et al., 1979). In the same line, the
driving performance and subjective results were also consistent with an
effective fatigue-inducing manipulation. The speeding time changed
across TOD blocks; F (3, 42) = 6.95, p = 0.001, partial η2 = 0.33 (see
Fig. 2B and Table 1). Trend analysis revealed a significant increasing
trend across the four TOD blocks; F (1, 14) = 7.84, corrected p < 0.05,
partial η2 = 0.36. That is, participants exceeded the speed limits more
often as the experiment progressed. Participants also experienced in-
creased levels of sleepiness and fatigue at the end of the experiment
(average SSSpre ± SD = 2.0 ± 0.7 vs. SSSpost ± SD = 3.8 ± 1.0; t
(14) = 5.49, p < 0.001; average BORGpre ± SD = 7.7 ± 1.4 vs.
BORGpost ± SD = 12.6 ± 2.6; t (14) = 7.66, p < 0.001). Finally,
after the driving session, participants reported low levels of task com-
plexity (average NASA-TLX ± SD = 44 ± 8.5), probably due to the
monotony of the virtual scenario (Grier, 2015).

3.2. Effects of TOD on brain activity

The amplitude of the EEG power spectra was dependent on TOD and

the Frequency Band, F (3.33) = 7.16, p = 0.001, partial η2 = 0.39; F
(3.33) = 28.755, p < 0.001, partial η2 = 0.96, respectively. The
TOD × Frequency Band interaction was also significant, F (9.99)
= 2.51, p= 0.013, partial η2 = 0.19 (see Fig. 3 and Table 1). We ob-
served an overall inverted U-shaped quadratic trend across the ex-
perimental session for the power spectra of the delta, F (1, 11) = 10.22,
corrected p < 0.05, partial η2 = 0.48. That is, as the experiment pro-
gressed, delta EEG power spectra increased for the first hour and half,
and, then, slightly decreased throughout the last TOD block (last 30-
min). However, the power spectra of the beta band linearly increased
across the experimental session, F (1, 11) = 12.82, p = 0.004, cor-
rected p < 0.05, partial η2 = 0.54. Finally, alpha and theta EEG power
did not show a significant specific trend (corrected p-values > 0.05).

4. Discussion

We aimed to find conclusive evidence about the validity of using a
single-channel, dry electrode, wearable TGAM-based chip EEG device
to monitor driver fatigue. To obtain a much better understanding of
how driver fatigue could be early detected while driving using wearable
technologies, we combined this EEG device, for the first time, with
high-speed eye tracking technology. Thus, we examined how EEG data
(i.e. power spectra density) changed across a 2-h monotonous driving
together with driver's saccadic peak velocity, a well-known index of
fatigue (Diaz-Piedra et al., 2016). In addition, we analyzed the driving
performance and subjective ratings of alertness and fatigue. We ob-
served an inverted U-shaped quadratic trend for the delta EEG power
spectra and an increasing linear trend for the beta EEG power spectra
across the experimental session, which is coherent with saccadic eye
movements and driving performance data. Thus, our combined results
indicate that EEG-metrics recorded by this dry-electrode, single-channel
EEG device can detect driver fatigue levels online.

4.1. The effect of fatigue on ocular, driving performance, and subjective
indices

We used ocular, driving performance, and subjective indices to
validate EEG spectral changes associated with TOD (i.e. fatigue). These
validation indices provide unambiguous evidence about our successful
manipulation of fatigue (i.e., TOD): participants experienced higher
levels of fatigue as the experiment progressed.

Saccadic peak velocity decreased with increased TOD, which is
consistent with our previous findings during long driving sessions (Di
Stasi et al., 2012; Di Stasi, et al., 2015b), simulated flying tasks (Di Stasi
et al., 2016), and time-on-duty (Di Stasi et al., 2012; Diaz-Piedra et al.,
2016), as well as with independent earlier reports (Galley and Andres,
1996; Hirvonen et al., 2010; Ahlstrom et al., 2013). Consistently,
driving performance degraded with increased TOD, and perceived le-
vels of alertness decreased and levels of fatigue increased after the two
hours driving. Performance degradation and subjective results are in
line with earlier studies using similar experimental procedures (e.g., Lal
and Craig, 2002).

4.2. The effect of fatigue on (pre)frontal EEG spectra

Spectral measures have repeatedly been reported in the literature to
be reliable correlated to mental fatigue (i.e. reduced arousal level)
(Wascher et al., 2014). Here, we found that overall EEG power spec-
trum changed across the 2-h driving session. (Pre)frontal (in our study,
Fp1) power spectra for the delta EEG band showed an inverted U-
shaped quadratic trend (power increased during the first hour and half
and decreased during the last half hour), while the power spectra of the
beta band linearly increased as the driving session progressed. While
numerous studies (e.g. Lal and Craig, 2002; Craig et al., 2012) have
reported increased levels of all EEG-spectral power across the entire
scalp due to arousal decrements – including frontal derivations (Kiroy
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et al., 1996; Cajochen et al., 2002), this study, for the first time, re-
plicated these differences using a single prefrontal channel. In line with
earlier studies, as the cognitive state of the driver shifted from alertness
to fatigue, we found an increase of frontal delta (e.g. Kong et al., 2017),
theta (e.g. Wascher et al., 2014), and alpha (e.g. Simon et al., 2011)
bands. Furthermore, as far as the fatigue arose (i.e. with the time-on-
driving), there was an increase of frontal fast beta EEG activity, as
found by previous studies (Dumont et al., 1999; Kiroy et al., 1996; Smit
et al., 2005). It was suggested that the increase in beta power during
sleep deprivation might result from the effort to stay awake (Corsi-

Cabrera et al., 1996; Lorenzo et al., 1995; Smit et al., 2005). Therefore,
the increase in beta power in our study might reflect compensatory
mechanisms to deal with the low arousal levels.

4.3. An arousal-based explanation

The results can be interpreted using an arousal-based theoretical
approach (Andreassi, 2006): in a condition of a general cognitive de-
terioration, where the increase of delta EEG activity and the reduction
of saccadic velocity occur as the driving session progresses, we

Fig. 2. Effect of Time-On-Driving (TOD) on the saccadic peak velocity and driving performance. A) Saccadic main sequence (peak velocity/magnitude relationship) for participant #14
across the four consecutive TOD blocks (1: black, 2: green, 3: light blue, 4: magenta; 30-min per block). Each dot represents a saccade. The curves are power-law fits to the data for each
TOD block. Right panel: Average saccadic peak velocity across all participants for each TOD. The arrow indicates the significant linear trend of the saccadic velocity across TODs. Error
bars represent the standard error of the mean across participants (n = 12). B) The speed profiles for participant #14 across the four consecutive TOD blocks (colors as in panel A). Right
panel: Average number of times (%) of exceeding the speed limit (posted at 60 Km/h) across all participants for each TOD. The arrow indicates the significant linear trend of exceeding the
speed limit across TODs. Error bars represent the SEM across participants (n= 15). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Saccadic peak velocity (slope values of the saccadic peak velocity/magnitude relationship), speeding time, and power of each EEG frequency band for each one of the four Time-On-
Driving (TOD) bins (30 min each).

TOD1 TOD2 TOD3 TOD4

M ± SD

Saccadic peak velocity (deg/s)/ 0.63 ± 0.04 0.60 ± 0.06 0.57 ± 0.07 0.56 ± 0.08
Speeding time (% time)/ 17.55 ± 17.5 18.99 ± 16.14 27.32 ± 19.65 31.50 ± 18.22
Beta (μV2/Hz)/ 26.97 ± 0.82 27.57 ± 0.84 27.82 ± 0.88 27.78 ± 0.83
Alpha (μV2/Hz) 29.28 ± 0.83 29.70 ± 0.93 29.84 ± 1.04 29.75 ± 1.12
Theta (μV2/Hz) 31.79 ± 1.24 32.29 ± 1.20 32.48 ± 1.13 32.40 ± 1.36
Delta (μV2/Hz)∩ 32.73 ± 1.39 33.53 ± 1.29 33.91 ± 1.19 33.86 ± 1.43

Note. Means and standard deviations (M ± SD) were calculated from the (mean) values of each participant. “/” denotes a statistically significant linear trend for the driving time
manipulation. “∩” denotes a statistically significant quadratic trend for the driving time manipulation.
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observed the adaptive brain mechanisms to provide the proper arousal
levels to perform the task (the increase of beta EEG activity) (Kiroy
et al., 1996; Craig et al., 2012). Arousal changes could also explain the
decrease of delta EEG activity during the last TOD. Even when parti-
cipants did not know the duration of the driving simulation, after more
than 90 min of driving, they might have suspected that the session was
ending, and the end-spurt effect (Bergum and Lehr, 1963) might have
happened. Overall, this compensatory mechanism should, in part, arise
at the level of prefrontal areas, which indicate sleep propensity during
prolonged wakefulness and are also involved in the control of the sac-
cadic movements (Burke and Coats, 2016; Marzano et al., 2007). In line
with this hypothesis, the medial rostral prefrontal cortex (Fp1) has been
recently associated with the saccadic programming, including the
modulation of the saccadic peak velocity (Burke and Coats, 2016).

Note that we did not differentiate between fatigue and boredom (Lal
and Craig, 2001). Thus, our results could be also interpreted as de-
pendent on the reduction in motivation while performing a long
monotonous task (for recent reviews on these topics, Borghini et al.,
2013; Di Stasi et al., 2013a).

4.4. Implications

Our findings could help to bridge the gap between neural-en-
gineering, basic neuroscience, and road safety by offering valid and
conclusive evidence on the sensitivity of a wearable single electrode
EEG device to monitor arousal variations while performing an ecolo-
gical and complex task (i.e. driving). Furthermore, thanks to the pos-
sibility of simultaneously recording with other mobile peripheral sen-
sors, this EEG device might make possible a multimodal approach to
explore driving behavior. For example, the skin conductance response
(SCR) has already been used to study driving behavior (Kinnear et al.,
2013; Tagliabue and Sarlo, 2015; Tagliabue et al., 2017), and is also
related to physiological arousal due to perceived mental effort (Howells
et al., 2010). As the TGAM headset can be connected to a skin con-
ductance sensor (e.g., (Abdur-Rahim et al., 2016)), the integration of
both EEG and SCR would facilitate a more detailed assessment of
driving behavior (Gianfranchi et al., 2017). Furthermore, the TGAM
headset has a reduced cost and a simple setup. Therefore, this com-
prehensive assessment could be conducted outside a simulation la-
boratory. For example, the TGAM headset could be easily introduced in
several “out of the laboratory” driving training programs (e.g.,
Tagliabue et al., 2013) to continuously monitor other arousal-related
road safety factors, as for example (driver) mental effort (Di Stasi et al.,
2009; Howells et al., 2010).

4.5. Conclusions

The EEG-based technology we tested accomplishes several neu-
roergonomics criteria to establish an ideal measure of the cognitive
state in applied settings (Parasuraman and Rizzo, 2007). Briefly, two of
the main requirements of such a measure of the cognitive state are

(Luximon and Goonetilleke, 2001): (i) sensitivity: it should detect sig-
nificant variations in the cognitive state; and (ii) noninvasiveness: it
should not interfere with the primary task. In our research, EEG-metrics
were sufficiently sensitive to reveal significant differences between
varied levels of mental fatigue and noninvasive, that is, the EEG re-
cordings did not interfere with driving task performance. To sum up,
our results suggest that the TGAM headset can provide a sensitive, real-
time, non-invasive measure of variations of the cognitive state due to
driver fatigue.
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