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Previous studies have suggested that numerical processing relates to mathematical
performance, but it seems that such relationship is more evident for intentional than
for automatic numerical processing. In the present study we assessed the relationship
between the two types of numerical processing and specific mathematical abilities in a
sample of 109 children in grades 1–6. Participants were tested in an ample range of
mathematical tests and also performed both a numerical and a size comparison task.
The results showed that numerical processing related to mathematical performance
only when inhibitory control was involved in the comparison tasks. Concretely, we found
that intentional numerical processing, as indexed by the numerical distance effect in
the numerical comparison task, was related to mathematical reasoning skills only when
the task-irrelevant dimension (the physical size) was incongruent; whereas automatic
numerical processing, indexed by the congruency effect in the size comparison task,
was related to mathematical calculation skills only when digits were separated by small
distance. The observed double dissociation highlights the relevance of both intentional
and automatic numerical processing in mathematical skills, but when inhibitory control
is also involved.

Keywords: mathematical abilities, size comparison task, numerical comparison task, congruency effect, numer-
ical distance effect, inhibitory control, primary school children

Introduction

In recent years, there has been an increasing interest on the cognitive and neural mecha-
nisms that underlay children’s mathematical performance. Of particular relevance is to deter-
mine whether individual differences in the processing of numerical information can explain
how well elementary school children perform mathematical tasks that require different abili-
ties, and whether such differences in numerical processing may explain specific learning dis-
orders in mathematics (De Smedt et al., 2010; Butterworth et al., 2011). This issue is impor-
tant not only from a theoretical point of view, but also for the design and assessment of
new educational interventions that promote numerical processing (see De Smedt et al., 2013,
for a review). To accomplish that aim we first need a task (or a set of tasks) that allows
researchers to assess how children process numerical information, and how such processing
develops with age and/or schooling years. Then, we need to assess children’s performance in
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a rather ample range of mathematical tests that are supposed
to tap different mathematical abilities, from simple arithmetic
operations to more complex word arithmetic problems. Here,
we assessed numerical processing through numerical Stroop
tasks (Henik and Tzelgov, 1982; Tzelgov et al., 1992; Girelli
et al., 2000; Rubinsten et al., 2002; Schwarz and Ischebeck, 2003;
Cohen Kadosh et al., 2011). Also, to assess different mathe-
matical areas we used the Spanish version of the Woodcock
Johnson III Tests of Achievement battery (Muñoz-Sandoval
et al., 2005), which was primarily validated for use with partic-
ipants from 6 to 13 years in Spain (see Diamantopoulou et al.,
2012).

The Numerical Stroop Task
Numerals convey rich information regarding semantic and phys-
ical attributes. In order to determine how that information is pro-
cessed and what factors modulate such processing, authors have
designed tasks in which participants are required to respond to
certain dimensions of the number stimulus, such as the numerical
magnitude and/or the physical size. These tasks allow researchers
to assess how those dimensions are perceived and how they inter-
act with each other (Schwarz and Ischebeck, 2003). By combining
the physical size and the numerical value dimensions, and mak-
ing one dimension task-relevant and the other task-irrelevant
(like in Stroop-like paradigms), it may be determined how each
dimension interferes with the intentional processing of the other.
Moreover, Stroop-like paradigms have been probed useful to
assess whether such processing can occur unintentionally in an
automatic way (Tzelgov and Ganor-Stern, 2005).

Several types of numerical Stroop tasks have been amply
used for that purpose (e.g., Henik and Tzelgov, 1982; Tzelgov
et al., 1992; Girelli et al., 2000; Rubinsten et al., 2002; Rubinsten
and Henik, 2005; Tang et al., 2006; Cohen Kadosh et al., 2007;
Holloway and Ansari, 2009; Heine et al., 2010; Bugden and
Ansari, 2011; Wang et al., 2013). In a typical experiment, two
digits are displayed on the center of the screen. Participants
are asked to compare both digits and indicate which one is
bigger in size (hereafter the size comparison task) or in numeri-
cal magnitude (hereafter the numerical comparison task). In the
size comparison task, the digit size is the relevant dimension
and the numerical value the to-be-ignored dimension. In the
numerical comparison task the numerical value is the relevant
dimension and the physical size the to-be-ignored dimension.
As both dimensions are independently manipulated, two crucial
experimental conditions can be created for each task. In the con-
gruent condition the bigger digit has also the greater numerical
magnitude (e.g., 3 6). In the incongruent condition, the bigger
digit has the smaller numerical magnitude and vice versa (e.g.,
3 6). Congruency effects in both tasks can be computed by sub-
tracting performance (i.e., reaction times, RTs; errors) in the
congruent condition from the incongruent condition. Positive
values reflect that the to-be-ignored dimension of the stimulus
has been processed automatically. The fact that both the to-
be-ignored numerical value (Besner and Coltheart, 1979) and
the to-be-ignored physical size (Henik and Tzelgov, 1982) pro-
duce interference in the responses to the physical size and the
numerical magnitude comparisons, respectively, suggests that

continuous quantities share a common system. In addition, the
congruency effect can reveal how efficient is the attentional con-
trol system both to detect conflict and to inhibit interference
from the to-be-ignored dimension. An efficient system is one that
resolves conflict caused by the irrelevant dimension without a
high proportion of errors or excessive long RTs in responses to
incongruent trials.

The pair of digits may also differ according to the numerical
distance. For instance, the two digits can be separated by distance
1 (e.g., 3 vs. 4), distance 2 (e.g., 3 vs. 5), distance 3 (e.g., 3 vs.
6), and so on. It has been assumed that the smaller the numer-
ical distance between the two digits, the longer the RTs (Moyer
and Landauer, 1967). This effect has been interpreted by assum-
ing that people represent numbers in an ordered mental number
line (Dehaene and Cohen, 1995). As the digits are closer in the
mental line, their representations might overlap and therefore the
difficulty for number comparison increases.

Several relevant indexes can be computed when both numer-
ical and size comparison tasks are performed in a single experi-
ment. The first index concerns the congruency effect in the numer-
ical comparison task, which refers to the interference caused by
the task-irrelevant physical size of the stimuli. The need to ignore
the task-irrelevant dimension would involve the attentional con-
trol mechanisms. Thus, a rather small numerical congruency
effect is expected if the attentional control mechanisms are very
efficient to deal with task-irrelevant information. Nonetheless, a
lack of interference or a small effect may be due to reduced auto-
maticity of the to-be-ignored dimension. This might stem from
either an immature or damaged cognitive system. An inspection
to the error rate can be of much help in accounting for such
extremely small interference effects. The second index concerns
the numerical Stroop effect in the size comparison task, which has
been long thought of as a marker of automatic numerical pro-
cessing (Henik and Tzelgov, 1982; Tzelgov et al., 1992; Rubinsten
et al., 2002; Szűcs et al., 2007; Cohen Kadosh et al., 2008a,b, 2011,
2012; Rubinsten and Henik, 2009; Heine et al., 2010; Santens and
Verguts, 2011). The better the numerical abilities are, the larger
the numerical Stroop effect is expected, which indicates greater
level of automaticity in numerical processing (Girelli et al., 2000;
Rubinsten et al., 2002; Rubinsten andHenik, 2005; CohenKadosh
et al., 2007). The third index refers to the numerical distance effect,
which is usually interpreted as a marker of intentional numerical
processing (Rubinsten et al., 2002). The better the numerical abili-
ties are, the smaller the numerical distance effect (Rubinsten et al.,
2002; Holloway and Ansari, 2009; Heine et al., 2010; Mussolin
et al., 2010; Bugden and Ansari, 2011).

The task-irrelevant information in both the size and the
numerical comparison tasks may cause inhibitory processes
to modulate the intentional and/or the automatic markers of
numerical processing. Thus, the distance effect in the numerical
comparison task can be affected by whether the task-irrelevant
dimension of the stimulus is incongruent (requiring attention-
dependent inhibitory control) or congruent (inhibitory control is
not required). Similarly, the numerical Stroop effect in the size
comparison task can be affected by whether the numerical val-
ues activate competing (overlapping) numerical representations
(small numerical distance), involving inhibitory control, or such
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competence is minimal as it happens with larger numerical dis-
tances. Importantly for the present study is to determine whether
mathematical performance is related to numerical processing per
se, and/or to the efficiency of inhibitory control mechanisms (see
Soltész et al., 2011; Gilmore et al., 2013).

In the following sections we will address how the two types
of numerical processing develop with age and how they relate to
mathematical abilities in primary school children.

Development of Numerical Processing
A main goal of the present research is to investigate how
intentional and automatic numerical processing relates to math-
ematical performance in children that were in grades 1–6.
Several studies have shown that intentional numerical processing
is present in an ample range of ages, ranging from kinder-
garten (e.g., Sasanguie et al., 2012), primary school (Girelli
et al., 2000; Rubinsten et al., 2002; Sasanguie et al., 2012) to
adult age (see Noël et al., 2005, for a review). However, auto-
matic numerical processing, as indexed by numerical Stroop
effect in the size comparison task, seems to emerge later on.
In the Western culture, children of first grade show numer-
ical Stroop effects only if they are tested at the end of first
grade (Rubinsten et al., 2002; Bugden and Ansari, 2011), but
not if they are tested at the beginning of the first grade
(Girelli et al., 2000; Rubinsten et al., 2002). Children may have
acquired enough experience during the first schooling year so
that by the end of the academic year numerical processing has
become automatic. These results suggest that automatization of
numerical processing develops with age.

Numerical Processing and Math Abilities
Individual differences in basic numerical processing of children
of an ample range of age correlate with individual differences
in some mathematical abilities. This contention is supported by
the use of an ample range of tasks that measure numerical pro-
cessing, different tests that measure mathematical abilities, and
children with and without a diagnosis of dyscalculia (Halberda
et al., 2008; De Smedt et al., 2009; Holloway and Ansari, 2009;
Heine et al., 2010; Bugden and Ansari, 2011; Sasanguie et al.,
2012; Göbel et al., 2014; van Marle et al., 2014). For instance,
De Smedt et al. (2009) used a numerical comparison task but
did not manipulate any other dimension of the stimuli (e.g., the
physical size), and therefore only intentional numerical process-
ing could be assessed. They also tested mathematics achievement
in a sample of first year children, and then when children were
in the second year. Their results showed that the numerical
distance effect predicted children’s mathematics achievement in
the second year. The relationship between intentional numer-
ical processing and math abilities was extended to children in
kindergarten, first, second, and sixth year, although the effect was
larger in the younger than in the older children (Sasanguie et al.,
2012). In a more recent study, Sasanguie et al. (2013; see also
Vanbinst et al., 2012) extended such relationship to a timed math
test that required simple additions, subtractions, multiplications,
and divisions. The results confirmed the previous relationship
between general mathematical performance and intentional pro-
cessing. Better performance in the numerical comparison task

was predictive of higher score on the timed math test 1 year
later. The use of different mathematical tests raises the possi-
bility that not all mathematical abilities are similarly related to
intentional numerical processing. For instance, Holloway and
Ansari (2009) observed that children aged 6–8 years that scored
higher in some mathematical tests showed also smaller numer-
ical distance effects. Importantly, the numerical distance effect
correlated more strongly with scores in the mathematical fluency
test than with scores in calculation or the composite math-
ematical measure (see also Bugden and Ansari, 2011). These
results suggest that intentional numerical processing is not a
good predictor of performance in all the mathematical abilities
explored.

Why does smaller distance effects lead to better performance
in mathematics? Vanbinst et al. (2012) suggest that smaller dis-
tance effects are associated with more precise mapping between
Arabic numerical representations and their magnitudes. This is
beneficial to mathematical performance because it reflects bet-
ter understanding of the relationship between numbers and the
representation of quantity, otherwise arithmetic would be a mere
memory retrieval exercise (Griffin, 2002; Robinson et al., 2002).

Some other studies have used comparison tasks that manip-
ulated both numerical magnitude and physical size of numbers
(Heine et al., 2010; Bugden and Ansari, 2011). Bugden andAnsari
(2011) tested children in first and second grade in two mathe-
matical tests, fluency, and calculation. However, the congruency
effect in the size comparison task (i.e., automatic numerical pro-
cessing) did not correlate with any of the mathematical tests.
Heine et al. (2010) classified children in second and third grade as
high, normal, and low mathematical achievement groups accord-
ing to scores in a general mathematical test. The results with the
size comparison task showed a reversed distance effect (poorer
performance with the large compared with the small distance)
in the incongruent condition, but only in the low and normal
achievement groups. The authors interpreted the reversed task-
irrelevant distance effect as automatic numerical processing (see
also Tang et al., 2006). The lack of reversed distance effect in the
high achievement group was due to shorter RTs in the long dis-
tance when trials were incongruent. This suggests that children
in the high group were more efficient to solve conflict between
the task-relevant and task-irrelevant dimensions in that particu-
lar condition, a result that can be interpreted as higher ability in
inhibitory control to deal with conflict.

The Current Study
In the present study we tested children from 6 to 11 years old and
a group of undergraduates, a range of age that allowed us to trace
the development of numerical processing and to investigate age-
related changes in both intentional and automatic numerical pro-
cessing (Rubinsten et al., 2002; Mussolin and Noël, 2007; Bugden
and Ansari, 2011). The participants performed the two com-
parison tasks in one single experiment. In contrast to previous
studies that investigated children’s mathematics performance by
one or few tests, we selected five tests from the Spanish version of
Woodcock Johnson III Tests of Achievement (Muñoz-Sandoval
et al., 2005): Calculation, Fluency, Applied Problems, Concepts,
and Series, the two latter as subtests of the test Quantitative

Frontiers in Psychology | www.frontiersin.org 3 March 2015 | Volume 6 | Article 375

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Pina et al. Numerical processing and math abilities

Concepts. This allowed us to assess several levels of mathematical
abilities that are related to relevant mathematical areas at school
(see Materials and Methods).

On the basis of aforementioned related studies, we first
expected our comparison tasks being sensitive to the develop-
mental trajectory previously described. As we tested 6-year-old
children at the beginning of first grade, automatic numerical
processing, indexed by the numerical Stroop effect in the size
comparison task, should not be observed at that age, although the
effect is expected tomanifest at the age of 7 years (Rubinsten et al.,
2002). However, intentional numerical processing, as revealed by
the distance effect in the numerical comparison task is expected
to be present since the age of 6 years and on. Some studies have
revealed that conflict scores that index executive control perfor-
mance improves from 4 to around 7 years of age (Rueda et al.,
2004, 2005) or even later (Casey et al., 2001), when it reaches
adult-like levels. Thus, regarding inhibition of the task-irrelevant
dimension, indexed by congruency effects in the numerical com-
parison task, we expected older participants to show greater
efficiency in the control of task-irrelevant conflicting informa-
tion. Younger children, however, should show more difficulties
than older children to solve conflict from task-irrelevant incon-
gruent physical size trials, due to immature attentional control at
those ages.

Because to our knowledge, only few studies have explored
the relationship between numerical processing and a rather large
variety of mathematical abilities, no clear predictions can be
raised respect to the relationship between the different numerical
processing indexes and concrete mathematical areas. An inspec-
tion to the operations required by the different mathematical tests
suggests that some abilities are based on exact basic arithmetic
operations that may depend on recovery of number facts from
long-term memory, like in the test Fluency (Andersson, 2008),
or in the quick activation of the numerical magnitude of Arabic
numerals, like in the test Calculation. Performance in intentional
numerical processing may relate to the efficiency in such opera-
tions (Bugden and Ansari, 2011). In contrast, other mathematical
abilities may make more demands on executive control pro-
cesses such as those involved in the test Applied Problems, which
requires both to hold information in memory and to integrate
new information with the previously processed one (Swanson,
2011; Pina et al., 2014). Performance in both intentional and
automatic numerical processing that requires high involvement
of inhibitory processing (and therefore of executive control), may
relate to the efficiency to solve word problems and/or numerical
sequences that depend on similar cognitive capacity.

Materials and Methods

Participants
A sample of 109 typically developing primary school children was
recruited from two suburban schools from the Region of Murcia
(Spain), with socioeconomic level ranging from low to middle.
Children with special educative needs, speech therapy, and intel-
ligence scores below two standard deviations from the average,
as well as bilingual speakers, were excluded from the study. The

group of undergraduates were 33 (12 male; Mean age = 20.3;
SD = 1.80) Psychology students at the Faculty of Psychology
(University of Murcia, Spain). They performed only the two com-
parison tasks. Written informed consent from parents and oral
consent from participants (only children), and informed consent
from undergraduate students, were collected before the testing
sessions. Demographic data from all participants are presented in
Table 1.

General Procedure
The present study obtained the approval from the bioethics com-
mittee of the University of Murcia. Children were tested in two
sessions. In the first session participants performed individually
the intelligence and the mathematical tests featured in this study,
and they were asked to reply in written or oral form to pencil
and paper tests. In the second session they performed the two
comparison tasks in groups of the same age, with a maximum of
12 children per group. We used the 12 computers located in the
computer room available in the schools. One experimenter and
six assistants stayed in the room during the testing session. The
experimenter explained the instructions to the group of children
through PowerPoint presentations. The assistants checked (one
assistant each two children) that the participants had understood
the task and completed it correctly. Undergraduate participants
performed the two comparison tasks in a room with five com-
puters located at the Faculty of Psychology. As with children, the
instructions to perform the task were given by the experimenter
through PowerPoint presentations. The tasks followed a coun-
terbalanced sequence, which aimed to avoid systematic biases
arising from the order of administration.

Measures
Numerical Stroop
We used two computerized versions of the comparison tasks: the
size comparison task and the numerical comparison task. Stimuli
were presented on the 15′′ color monitors of the computers
with Windows XP Professional at 1024 × 768 pixels resolu-
tion. E-Prime software was used to program the tasks (Schneider
et al., 2002). The distance of the participant to the screen was
approximately 60 cm.

All participants (children and undergraduates) completed two
counterbalanced blocks of trials with the same stimuli: one for

TABLE 1 | Descriptive data of participants.

Years n (boys) Age

M SD Range

6 18 (8) 76.3 3.9 72–83 (months)

7 12 (5) 91.3 4.4 85–95 (months)

8 27 (13) 101.6 3.5 96–107 (months)

9 23 (14) 112.3 3.5 108–119 (months)

10 19 (10) 125.3 3.1 120–130 (months)

11 10 (6) 136.4 3.4 132–142 (months)

Undergraduate 33 (12) 20.4 1.8 18–25 (years)

Frontiers in Psychology | www.frontiersin.org 4 March 2015 | Volume 6 | Article 375

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Pina et al. Numerical processing and math abilities

the size comparison task and the other for the numerical com-
parison task. In each trial two crosses separated by 8 cm appeared
in the center of the screen for 1 s. Then, the two digits replaced
the crosses and remained on until a response was emitted or until
5 s had elapsed. The right and left keys in a joystick were assigned
to choose where the target digit (bigger in size or larger in numer-
ical magnitude) was located. Each block started with 10 practice
trials. Practice trials provided a smiley face for correct responses
or a sad face for incorrect responses as feedback, and it was shown
for 300 ms. Next, the experimental trials started but feedback was
not included. A total of 96 experimental trials were administered
in two blocks, one for each comparison task (48 trials per block).
Each block contained 24 congruent trials (a pair of digits in which
one was larger on both the relevant and irrelevant dimensions),
and 24 incongruent trials (one digit was larger on one dimension
but smaller on the other). The bigger digit of each pair was always
twice (26 mm × 18 mm) the smaller digit (13 mm × 9 mm). On
each block, each digit value and physical size appeared on both
sides of the visual field an equal number of times. Digits from 1 to
9 were used. The following numerical distances were used: small
distance (1–2, 1–3, 4–5, 4–6, 7–9, 8–9) and large distance (1–6,
1–7, 3–8, 2–8, 4–9, 3–9). Thus, for each block there were eight
conditions (2 congruency conditions × 2 target positions × 2
distances) repeated six times.

Mathematical Abilities
We tested math abilities with the Spanish version of the
Woodcock–Johnson III (WJ-III) Achievement (ACH) battery,
which was -primarily validated for use with participants from 6 to
13 years in Spain (see Diamantopoulou et al., 2012). The battery
consists of the following tests:

Calculation
This test measures the ability to perform simple mathemati-
cal computations including addition, subtraction, multiplication,
and division that increase in difficulty as the test progresses. Poor
performance in the test may be due to limited basic skills inmath-
ematics, to a limited instruction level, or to inattention. The test
consists of 45 problems of increasing complexity with no time
limit. The test administration stops once the participant makes six
consecutive mistakes. We used the summed scores of the test as a
measure of calculation. Ascending scores indicate better perfor-
mance. Internal consistency estimate obtained with our sample
was α = 0.87.

Math Fluency
This test measures performance on mathematical operations and
the fluency to operate with numbers through simple calculus
operations such as addition, subtraction, andmultiplication facts.
A deficient performance in the test suggests limited basic skills in
math or lack of automation. The test consists of 160 arithmetic
problems, and participants are asked to solve as many as possible
in a 3-min time limit. We used the summed scores as a measure
of fluency. Ascending scores indicate better performance.

Quantitative Concepts
This test measuresmathematical knowledge and quantitative rea-
soning. It consists of two subtests: Concepts and Series. In the

subtest Concepts, participants are asked to count or identify num-
bers, shapes, and sequences, and to know mathematical formulas
and terms. It consists of 34 items of increasing difficulty, which
are read to the participant. Internal consistency of the subtest
Concepts was α = 0.86. In the subtest Series, participants are
asked to identify a pattern from a series of written numbers and
provide the missing number in the series. It consists of 23 prob-
lems of ascending difficulty. Internal consistency of the subtest
Series was α = 0.86. We used the summed scores of each subtest
as a measure of Quantitative Concepts. A deficient performance
on quantitative concepts suggests a limited vocabulary and/or
insufficient conceptual development. Internal consistency of the
test Quantitative Concepts was α = 0.92.

Applied Problems
This test measures quantitative reasoning, mathematical per-
formance, and mathematical knowledge. Participants are asked
to listen to the problem, identify the procedure to follow, and
perform simple calculus operations. Children have to filter the
appropriate information and exclude extraneous information.
Poor performance on this test may be explained by limited math-
ematical skills, comprehension difficulties, or insufficient ability
on mathematical reasoning. The test consists of 62 problems of
ascending difficulty presented orally and visually to the partici-
pant, and the test administration stops once the participant makes
six consecutive errors. We used the summed scores as a mea-
sure of applied problems. Internal consistency of the test Applied
Problems was α = 0.90.

Mathematical Composite Measures
Compounds scores can be also computed by combining perfor-
mance in some of the above tests. The two main mathemati-
cal composite measures are: (1) Math Calculation Skill, which
refers to basics mathematical skills (it includes Calculation and
Fluency), and (2) Math Reasoning, which refers to knowledge
and math reasoning, and provides a global measure of problem
solving, analysis, reasoning, and vocabulary (it includes Applied
Problems and Quantitative Concepts).

The raw scores from the different tests were transformed into
W scores (Woodcock and Dahl, 1971; Woodcock, 1978), which
are based on Rasch measurement model (Rasch, 1960; Wright
and Stone, 1979). Ascending scores indicate better performance.

General Cognitive Ability (IQ)
We assessed intelligence with the Spanish version of the Kaufman
Brief Intelligence Test (Kaufman and Kaufman, 1990). The
test consists of two main subscales: vocabulary and matrices.
Ascending scores indicate higher intelligence. Internal consis-
tency estimate obtained with our sample was α = 0.80.

Statistical Analyses
Correct RTs below 200 ms or 2.5 SD above the mean for each
participant and condition were discarded from the statistical
analyses (0.27% of the trials). By subtracting incongruent and
congruent conditions in the size comparison task, and small and
large distance in the numerical comparison task we computed the
numerical Stroop effect and the numerical distance effect, respec-
tively. We assessed the effect of age on our dependent variables
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through analyses of variance (ANOVA) for both RTs and errors.
Analyses were separated for each comparison task as each effect
was assumed to tap a different kind of numerical processing.

Pearson correlation coefficients were also computed to assess
the relationships between both intentional and automatic numer-
ical processing markers and the scores in the intelligence and
mathematical tests.

Results

Data from the two comparison tasks are presented in Table 2.
We analyzed both error percentage and mean RTs for correct
responses.

Numerical Comparison Task
Statistical analyses were performed through three-way mixed
ANOVAs, with size congruency (congruent, incongruent) and
numerical distance (small, large) as within-participants factors,
and age (6, 7, 8, 9, 10, 11, undergraduates) as the between-
participants factor.

The error analysis showed significant main effects of size con-
gruency [F(1,135) = 107.66, p < 0.00001; η2

p = 0.44], numerical
distance [F(1,135) = 57.90, p < 0.00001; η2

p = 0.30], and age
[F(6,135) = 4.88, p < 0.00001; η2

p = 0.18]. Larger percentage of
errors was found in both incongruent and small distance con-
ditions compared with congruent and large distance conditions.
That is, the standard size congruency and numerical distance

effects were observed. Also, undergraduates committed fewer
errors than children, and children of different ages did not show
significant differences in errors. However, the advantage of the
undergraduates over the children was observed only in the incon-
gruent condition, a result that was supported by the significant
size congruency × age interaction [F(6,135) = 2.18, p = 0.049;
η2
p = 0.09; Figure 1A]. None of the remaining interactions were

statistically significant.
The RT analysis showed significant main effects of size con-

gruency [F(1,135) = 68.21, p < 0.00001; η2
p = 0.34], numerical

distance [F(1,135) = 44.88, p < 0.00001; η2
p = 0.25], and age

[F(6,135) = 37.64, p < 0.00001; η2
p = 0.63]. RTs were shorter

in the congruent condition compared with the incongruent con-
dition (the size congruency effect), and in the large distance
compared with the small distance (the standard numerical dis-
tance effect). RTs also decreased with age. The significant size
congruency × age interaction [F(6,135) = 2.41, p = 0.030;
η2
p = 0.10] revealed that size congruency effects were observed

in all groups of age except in the youngest one (6 years; see
Figure 1B).

Despite the distance effect ranged between 174 ms showed by
6-year-old children to 35 ms showed by 11-year-old children, the
distance × age interaction was not significant [F(6,135) = 1.79,
p = 0.106; η2

p = 0.07]. To check the possibility that variabil-
ity in the RTs could have masked any difference in the distance
effect as a function of age, we computed the individuals’ dis-
tance effect as a percentage of their large distance RT by using
the following formula (see also Holloway and Ansari, 2009):

TABLE 2 | Percentage of errors and mean reaction time (RTs) as a function of age for the experimental conditions of the two comparison tasks.

Numerical comparison task Size comparison task

Congruent
small distance

Congruent
large distance

Incongruent
small distance

Incongruent
large distance

Congruent
small distance

Congruent
large distance

Incongruent
small distance

Incongruent
large distance

Age % errors % errors % errors % errors % errors % errors % errors % errors

6 7.87 4.63 18.98 11.57 5.09 3.70 5.56 5.09

7 7.64 2.08 19.44 21.53 5.56 8.33 11.11 9.03

8 6.79 2.16 18.83 13.58 2.78 3.70 5.86 4.32

9 7.97 2.54 19.93 8.70 2.90 1.81 4.71 7.61

10 6.58 2.19 19.30 9.65 4.39 1.75 5.26 7.46

11 4.17 2.50 17.50 10.83 0 4.17 5.00 10.00

Under
graduate

2.78 0.25 7.83 3.79 0.51 0.25 2.27 2.27

Congruent/
small distance

Congruent/
large distance

Incongruent/
small distance

Incongruent/
large distance

Congruent/
small distance

Congruent/
large distance

Incongruent/
small distance

Incongruent/
large distance

Age M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

6 1684 (493) 1493 (437) 1701 (374) 1544 (443) 995 (366) 925 (360) 914 (253) 972 (337)

7 1120 (185) 972 (110) 1238 (256) 1165 (190) 624 (105) 633 (105) 778 (212) 687 (121)

8 1067 (289) 1002 (316) 1226 (452) 1123 (304) 662 (205) 664 (235) 676 (204) 723 (272)

9 994 (409) 839 (267) 1048 (343) 955 (294) 527 (84) 542 (118) 582 (114) 555 (102)

10 719 (196) 721 (225) 897 (200) 772 (182) 498 (106) 513 (133) 534 (141) 547 (150)

11 685 (131) 671 (105) 815 (130) 759 (158) 524 (137) 518 (142) 563 (163) 575 (142)

Under
graduate

587 (113) 528 (110) 630 (119) 580 (111) 380 (63) 374 (51) 409 (79) 410 (74)
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FIGURE 1 | Data from the comparison tasks. (A) Percentage of errors
for the size congruency conditions in the numerical comparison task. (B)
Mean reaction times (RTs) for the size congruency conditions in the
numerical comparison task. (C) Transformed scores for the distance effect

in the numerical comparison task [(small distance RTs – large distance
RTs)/large distance RTs]∗100. (D) Numerical Stroop effect as a function of
numerical distance in the size comparison task (Incongruent RTs –
Congruent RTs). Error bars (1 SE of the mean) are shown as vertical lines.

(small distance RT – large distance RT)/large distance RT × 100.
The results are shown in Figure 1C. Participants did not dif-
fer significantly in the distance effect with transformed data
either (F < 1).

Size Comparison Task
Statistical analyses were performed through three-way mixed
ANOVAs, with numerical Stroop (congruent, incongruent) and
numerical distance (small, large) as within-participants factors,
and age (6, 7, 8, 9, 10, 11, undergraduates) as the between-
participants factor.

The error analysis showed significant main effects of numer-
ical Stroop [F(1,135) = 25.12, p < 0.00001; η2

p = 0.16], and age
[F(6,135)= 4.76, p< 0.00001; η2

p = 0.17]. Participants were more
accurate in the congruent condition than in the incongruent con-
dition. Children of 7 years-old were less accurate than the rest
of ages, and undergraduates were more accurate than the whole
group of children (ps < 0.05).

The RT analysis showed significant main effects of numer-
ical Stroop [F(1,135) = 23.28, p < 0.00001; η2

p = 0.15], and
age [F(6,135) = 25.70, p < 0.00001; η2

p = 0.53]. Incongruent
trials produced longer RTs than congruent trials, and the
6-year-old children and the undergraduates showed the

longest and the shortest RTs, respectively. The numerical
Stroop × age interaction was significant [F(6,135) = 2.28,
p = 0.040; η2

p = 0.09], but this interaction was modulated
by the significant three-way numerical Stroop × numeri-
cal distance × age interaction [F(6,135) = 2.85, p = 0.012;
η2
p = 0.11]. The second order interaction was mainly

due to a large reversed numerical Stroop effect in 6-year-
old children (longer RTs in congruent than incongruent
trials), and a large numerical Stroop effect in 7 year-
old children, being both effects only observed with the
small distance (ps < 0.05). However, the different age
groups did not differ in the numerical Stroop effect with
the large distance (p > 0.05; see Figure 1D). No other
effects were found statistically significant.

Mathematical Tests and Intelligence
Data are presented in Table 3. We performed one-way
ANOVAs for each mathematical test, with age (6, 7, 8, 9,
10, and 11 years) as the between-participants factor. The
results showed significant main effects of age on calcula-
tion [F(5,103) = 45.24, p < 0.00001; η2

p = 0.69], fluency
[F(5,103) = 25.22, p < 0.00001; η2

p = 0.55], applied problems
[F(5,103) = 26.96, p < 0.00001; η2

p = 0.57], quantitative
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TABLE 3 | Mean total scores as a function of age in mathematical and intelligence measures.

Calculation Fluency Applied problems Quantitative concepts Math calculation skills Math reasoning IQ composite

Age M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

6 7.11 (2.93) 13.22 (11.48) 23.28 (4.59) 19.61 (4.67) 464.72 (17.67) 454.39 (16.56) 107.78 (12.98)

7 11.33 (1.82) 35.00 (7.71) 29.50 (2.39) 26.83 (5.11) 483.4 (5.48) 479.58 (12.59) 107.25 (12.85)

8 14.18 (2.91) 38.59 (10.46) 32.00 (4.51) 29.96 (4.97) 489.96 (7.19) 488.93 (15.3) 103.11 (13.30)

9 16.30 (3.01) 49.17 (16.93) 33.96 (4.54) 32.00 (5.81) 496.57 (8.47) 496.04 (16.18) 92.78 (11.09)

10 17.42 (2.22) 61.42 (19.26) 35.89 (3.83) 34.47 (3.13) 501.16 (6.61) 503.37 (10.10) 96.05 (12.45)

11 19.80 (2.25) 64.40 (23.75) 40.00 (4.83) 38.00 (3.50) 503.10 (13.94) 511.60 (19.82) 96.20 (12.89)

concepts [F(5,103) = 28.06, p < 0.00001; η2
p = 0.58], math

calculation skills [F(5,103) = 31.72, p < 0.00001; η2
p = 0.61],

math reasoning [F(5,103) = 28.55, p < 0.00001; η2
p = 0.58],

and intelligence [F(5,103) = 4.58, p = 0.001; η2
p = 0.18]. All

the mathematical scores increased with children’s age except
intelligence that decreased. However, all children showed
intelligence scores within the normal range (92–107) accord-
ing to the inclusion criteria. Accordingly, we included
age and intelligence as control variables in the correlation
analyses.

Second-Order Correlations
Intelligence failed to correlate with any of the effects in the com-
parison tasks (ps > 0.05). However, in line with our previous
findings, intelligence correlated with the mathematical tests (Pina
et al., 2014; correlation coefficients ranged from r = 0.27 to
r = 0.53; all ps < 0.01). Table 4 shows the results of the partial
correlations between the variables of interest controlled by both
age and intelligence. The strength of the associations between
the mathematics scores was medium to high, with significant
correlation coefficients ranging from r = 0.43 to r = 0.87 (all
ps < 0.00001).

When we compared the two comparison tasks, automatic
and intentional numerical processing were only related when
the physical size of the digits was congruent to the numeri-
cal value; that is, the RTs related to the numerical Stroop effect

were negatively associated with the RTs related to the distance
effect. In addition, we observed a dissociation in the relationship
between each index of numerical processing and performance in
the different mathematical tests (see Table 4).

The distance effect in the numerical comparison task corre-
lated negatively with applied problems (r = −0.21; p = 0.028),
quantitative concepts (r = −0.23; p = 0.019) and the composite
math reasoning (r = −0.21; p = 0.030). That is, smaller dis-
tance effects were associated with better performance on those
tests. Importantly, correlations were significant only when the
task-irrelevant dimension of the stimuli (the physical size) was
incongruent.

The numerical Stroop effect in the size comparison task cor-
related positively with calculation (r = 0.21; p = 0.027), fluency
(r = 0.19; p = 0.046) and the composite mathematical skills
(r = 0.34; p < 0.0001). That is, larger numerical Stroop effect was
associated with better performance on those tests. Importantly,
correlations were significant only when the two digits in the pair
had a small distance.

Discussion

In the current study we investigated: (1) age-related changes in
both intentional and automatic numerical processing, from 6-
year-old children to undergraduates; and (2) the relationships
between math achievement and both intentional and automatic

TABLE 4 | Correlations among all scores controlled by age and intelligence.

1 2 3 4 5 6 7 8 9 10

Mathematics tests (1) Calculation 1

(2) Fluency 0.54∗∗ 1

(3) Applied problems 0.52∗∗ 0.43∗∗ 1

(4) Quantitative concepts 0.55∗∗ 0.45∗∗ 0.62∗∗ 1

(5) Math calculation skills 0.83∗∗ 0.62∗∗ 0.45∗∗ 0.49∗∗ 1

(6) Math reasoning 0.59∗∗ 0.48∗∗ 0.87∗∗ 0.87∗∗ 0.58∗∗ 1

Numerical comparison
Task (RTs)

(7) Distance effect – congruent −0.06 −0.13 −0.09 −0.05 −0.07 −0.11 1

(8) Distance effect – incongruent −0.15 −0.05 −0.21∗ −0.23∗ −0.03 −0.21∗ 0.08 1

Size comparison task
(RTs)

(9) Congruency effect – large distance 0.09 0.13 0.19 0.14 0.15 0.17 −0.24∗ −0.10 1

(10) Congruency effect – small
distance

0.21∗ 0.19∗ 0.14 0.12 0.34∗∗ 0.16 −0.20∗ −0.01 0.04 1

∗p ≤ 0.05, ∗∗p ≤ 0.01.
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numerical processing. In contrast to some previous studies we
tested children of an ample range of ages and used several math-
ematical tests assumed to tap an ample range of mathematical
abilities.

In one single experiment participants responded either to
the numerical value of a pair of digits, and therefore the phys-
ical size was task-irrelevant, or to the physical size and there-
fore the numerical value was task-irrelevant. The numerical
comparison task allowed us to compute the numerical dis-
tance effect as an index of intentional numerical processing,
and the size comparison task the numerical Stroop effect as
an index of automatic numerical processing. In addition, chil-
dren performed the mathematical tests, which allowed us to
assess the relationships between both intentional and auto-
matic numerical processing and the different mathematical abil-
ities in children from 1 to 6 grades of primary school. We
expected that by increasing the range of ages and the num-
ber of mathematical tests, we were able to depict a more
detailed picture of how different forms of numerical pro-
cessing relate to specific rather than general mathematical
skills.

Developmental Aspects of Numerical
Processing
Regarding intentional numerical processing in the numerical
comparison task, our data revealed that the distance effect was
observed as early as 6 year-old and did not vary with age. These
results are in line with previous studies that have observed inten-
tional numerical processing in studies that compared 5 years-old
children and adult participants, with both behavioral (Sekuler
and Mierkiewicz, 1977; Duncan and McFarland, 1980; Siegler
and Robinson, 1982; Huntley-Fenner, 2001; Fayol and Seron,
2005) and electrophysiological measures (Temple and Posner,
1998). The numerical comparison task allowed us to assess also
inhibitory control abilities to deal with the task-irrelevant dimen-
sion (the physical size). Previous studies have shown that children
aged 6 years manifest size congruency effects in the numeri-
cal comparison task, which means that the irrelevant physical
size of the digits has been processed to some degree (Girelli
et al., 2000; Rubinsten et al., 2002). However, according to pre-
vious studies, the reported size congruency effect seems to be
mainly due to facilitation from congruent trials rather than
interference from incongruent trials, when both conditions are
compared with a neutral condition (e.g., both digits have the
same size; see Rubinsten et al., 2002). Therefore, size congru-
ency effects that are facilitatory based reflect that children at
that age were able to process automatically the size of the stim-
uli. Although our current design did not include neutral trials
and then facilitation and interference effects cannot be dissoci-
ated, the size congruency effect showed by our 6-year-old chil-
dren was likely to be due to facilitation from congruent rather
than interference from incongruent physical size, in line with
the aforementioned studies. Inhibition abilities is not evident
until the age of 7 years when complex tasks, such as those of
the present study, are used (see Best and Miller, 2010, for a
review).

Regarding automatic numerical processing in the size com-
parison task, the numerical Stroop effect varied depending on
whether the numerical distance between the pair of digits was
small or large. When the numerical distance was large, all the
participants exhibited equivalent sizes of numerical Stroop effect.
However, when the numerical distance was small age played
a role in both the size and the direction of the numerical
Stroop effect. A likely explanation for the differential pattern
of numerical Stroop effects is that digits in the large irrel-
evant distance could be classified in a rather crude manner
(e.g., large/small; Tzelgov et al., 1992; Girelli et al., 2000; Cohen
Kadosh, 2008), which was similar across groups. In contrast,
the small irrelevant numerical distance required more refined
mapping between Arabic numerical representations and their
magnitudes, due to the greater overlap between the number
values.

Children aged 6 showed a large and reversed numerical
Stroop effect with the irrelevant small distance; that is, con-
gruent task-irrelevant numerical values produced longer RTs
than incongruent numerical values. An inspection to Table 2
reveals that extremely long RT in the congruent/small con-
dition may have brought about the large reversed numerical
Stroop effect. However, by looking at individual data from
that age group we noticed that the reversed effect was caused
mainly by four (out of 18) children with extremely high neg-
ative effects, ranging from −246 to −519 ms. It suggests that
such reversed effect might not be a genuine effect. Therefore, we
argue that children aged 6 years, when tested at the beginning
of first grade, exhibit poor abilities in the automatic process-
ing of exact numerical values when they activate overlapping
numerical representations, likely due to scarce experience with
numbers.

In contrast to 6-year-old children, older children have more
experience with numbers, automatic processing becomes more
established, and therefore interference from task-irrelevant
numerical values should increase up to the point of stabilization.
From a developmental point of view the stabilization level is
reached when interference does not change as a function of age
or other age-related conditions, something that we observed here
with participants aged 8 years and on (see Figure 1D). However,
interference effects may increase even when automatic numerical
processing has reached the stabilization level if the inhibitory
control system is inefficient to deal with conflict stemming from
a task-irrelevant competitor. Children aged 7 years showed
extremely large numerical Stroop effects with the irrelevant small
distance (see Figure 1D). This result suggests that at the age of
7 years the inhibitory control system is not mature enough to
deal with strong task-irrelevant competitors as it happens with
overlapping numerical representations in the size comparison
task (e.g., numerical values with small distance). However, at that
age the inhibitory control system might be efficient enough to
deal with weaker task-irrelevant competitors as it happens with
the physical size of the digits in the numerical comparison task.
Differences in the strength of both numerical and physical size
dimensions are further supported by comparing performance in
both tasks (see also Rubinsten et al., 2002). Responding to the
numerical value of the digits takes longer and is less accurate
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(954 ms; 8.71% errors) than responding to their physical size
(597 ms; 4.09% errors; see Table 2).

All the above results highlight the relevance of taking
inhibitory processing into account when investigating the devel-
opment of numerical processing (see also Houdé, 2000; Soltész
et al., 2011; Houdé and Borst, 2014).

Correlations Between the Numerical
Processing Indexes
The numerical Stroop effect in the size comparison task corre-
lated negatively with the distance effect in the numerical com-
parison task, but only when the distance effect was computed
with congruent trials, which did not include conflicting informa-
tion. The smaller the numerical distance effect, which indicates an
efficient numerical processing, the higher the numerical Stroop
effect in the size comparison task. This result suggests a link
between intentional and automatic processing of numerical infor-
mation, which fits well with theories of skill acquisition (Logan,
1988; Tzelgov et al., 2000).

It also agrees with the idea of a shared representational sys-
tem between different types of numerical processing. Recent
neuroimaging studies suggest that the posterior parietal cortex
seems to be such shared system, which is activated by differ-
ent magnitude representations such as time, size, quantity, and
space (Fias et al., 2003; Kaufmann et al., 2005; Tang et al., 2006;
Cohen Kadosh et al., 2007, 2008b; see Walsh, 2003 for review).
Concretely, it is the right intra-parietal sulcus the brain area
that is commonly activated by both automatic and intentional
numerical processing (Cohen Kadosh et al., 2012).

Numerical Processing as Predictor of
Mathematical Performance
According to previous studies, inhibitory control may influence
how numerical processing relates to different mathematical mea-
sures (Soltész et al., 2011; Gilmore et al., 2013; for a review see
Friso-van den Bos et al., 2013). Inhibition may act by suppress-
ing strategies not needed for the task in process. Thus, inhibition
would suppress addition on a multiplication task, or irrelevant
information on the process of solving a math problem. Our cor-
relation analysis showed that both intentional and automatic
processing predicted different mathematical abilities, but only
when inhibitory control was also involved in the tasks.

Intentional Numerical Processing and Mathematical
Performance
Regarding intentional numerical processing, a bulk of stud-
ies reported a negative correlation between the numerical dis-
tance effect and mathematical performance (De Smedt et al.,
2009; Holloway and Ansari, 2009; Heine et al., 2010; Bugden
and Ansari, 2011; Sasanguie et al., 2012; Vanbinst et al., 2012;
Sasanguie et al., 2013), although only few studies included con-
flict from a task-irrelevant dimension in the experimental task
(e.g., Heine et al., 2010). In the present study we found that some
mathematical abilities were specifically related with intentional
numerical processing. Our results showed that better intentional
numerical processing predicts better performance in the math-
ematical abilities that involve mathematical reasoning, that is,

applied word problems and quantitative concepts. These math-
ematical abilities have been shown to rely greatly on executive
control functions (Pina et al., 2014).

In contrast to previous studies (e.g., Holloway and Ansari,
2009; Bugden and Ansari, 2011), we did not find any correlation
between intentional numerical processing and rather basic math-
ematical operations (i.e., fluency). Differences in the involve-
ment of inhibitory control in the numerical comparison task
might explain the discrepancies. For instance, Bugden and Ansari
(2011) did not manipulate the physical size of the digits in the
numerical comparison task. Therefore, inhibitory control was not
needed to deal with task-irrelevant information. In contrast, in
the present study the inhibitory system was constantly required
to be active to deal with conflict from a task-irrelevant dimen-
sion (i.e., the physical size). Thus, our numerical comparison
task required the involvement of attentional control mechanisms
that might have masked a relationship between pure intentional
numerical processing and simpler mathematical abilities.

Automatic Numerical Processing and Mathematical
Performance
In contrast to intentional numerical processing, automatic
numerical processing related to operations that mainly rely on
memory retrieval (e.g., fluency) and basic mathematical oper-
ations that require a quick activation of numerical magnitude
represented by Arabic numerals (e.g., calculation). The fact that
such relationships are found only when the numerical distance is
small, suggests that suchmathematical abilities may require auto-
matic processing of exact numerical values and a better ability to
deal with overlapping numerical representations.

Conclusion

Our ample range of age and the study of different components
of mathematics allowed us to reveal dissociable relationships
between intentional and automatic numerical processing and
specific rather than general mathematical abilities. The double
dissociation observed here supports previous views of intentional
processing as a marker of algorithmic processing, and automatic
processing as a marker of memory retrieval and quick activa-
tion of semantic referents. These results extend that view to the
field of numerical cognition and cognitive development. Also,
the associations between the comparison task effects and mathe-
matical scores occurred only when inhibitory processes were also
involved, albeit the correlations were rather small. It suggests that
inhibition skills may play an important role in predicting math-
ematical achievement beyond that predicted by how numerical
information is processed (see Gilmore et al., 2013 for more direct
evidence). These results highlight the relevance of inhibitory
control in children’s mathematical achievement.
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