An introduction to Lorentzian Geometry and its applications

Miguel Angel Javaloyes (UM) and Miguel Sánchez (UGR)

Partially emported by MICINN/FEDER project MTM2009 10418 and Fundación Séneca project 04540/GERM/06, Spain

XVI Escala de Geomètria Diferencial São Paulo, 12-16 July 2010

M. A. Javaloyes and M. Sánchez

M. A. Javaloyes and M. Sánchez

Hendrik Lorentz (1853-1928)

Albert Einstein (1879-1955)

500

M. A. Javaloyes and M. Sánchez

Hendrik Lorentz (1853-1928)

Hermann Minkowski (1864-1909)

Albert Einstein (1879-1955)

500

Hendrik Lorentz (1853-1928)

Hermann Minkowski (1864-1909)

Albert Einstein (1879-1955)

500

M. A. Javaloyes and M. Sánchez

< □ ▶ < □ ▶ < Ξ ▶
 An introduction to Lorentzian Geometry

Omnipresence of Einstein equations - Salar de Uyuni (Bolivia)

Definition

Let $b: V imes V
ightarrow \mathbb{R}$ be a symmetric bilinear form. Then b is

• positive definite if $b(v, v) > 0 \forall v \in V \setminus \{0\}$,

Definition

- positive definite if $b(v, v) > 0 \forall v \in V \setminus \{0\}$,
- positive semidefinite if $b(v, v) \ge 0 \forall v \in V \setminus \{0\}$,

Definition

- positive definite if $b(v, v) > 0 \forall v \in V \setminus \{0\}$,
- positive semidefinite if $b(v, v) \ge 0 \forall v \in V \setminus \{0\}$,
- indefinite if it is neither positive semidefinite nor negative semidefinite,

Definition

- positive definite if $b(v, v) > 0 \forall v \in V \setminus \{0\}$,
- positive semidefinite if $b(v, v) \ge 0 \forall v \in V \setminus \{0\}$,
- indefinite if it is neither positive semidefinite nor negative semidefinite,
- nondegenerate if the condition b(v, w) = 0 ∀ w ∈ V implies that v = 0.

Definition

- positive definite if $b(v, v) > 0 \forall v \in V \setminus \{0\}$,
- positive semidefinite if $b(v, v) \ge 0 \forall v \in V \setminus \{0\}$,
- indefinite if it is neither positive semidefinite nor negative semidefinite,
- nondegenerate if the condition b(v, w) = 0 ∀ w ∈ V implies that v = 0. Otherwise, it is degenerate,

Definition

- positive definite if $b(v, v) > 0 \forall v \in V \setminus \{0\}$,
- positive semidefinite if $b(v, v) \ge 0 \forall v \in V \setminus \{0\}$,
- indefinite if it is neither positive semidefinite nor negative semidefinite,
- nondegenerate if the condition b(v, w) = 0 ∀ w ∈ V implies that v = 0. Otherwise, it is degenerate, and N = {v ∈ V : b(v, w) = 0, ∀w ∈ V} is the radical of b.

Definition

Let $b: V imes V
ightarrow \mathbb{R}$ be a symmetric bilinear form. Then b is

- positive definite if $b(v, v) > 0 \forall v \in V \setminus \{0\}$,
- positive semidefinite if $b(v, v) \ge 0 \forall v \in V \setminus \{0\}$,
- indefinite if it is neither positive semidefinite nor negative semidefinite,
- nondegenerate if the condition b(v, w) = 0 ∀ w ∈ V implies that v = 0. Otherwise, it is degenerate, and N = {v ∈ V : b(v, w) = 0, ∀w ∈ V} is the radical of b.

Moreover, given $v \in V$, $q_b(v) = b(v, v)$, we say that v is

- timelike if $q_b(v) < 0$,
- *lightlike* if $q_b(v) = 0$ and $v \neq 0$,
- spacelike if $q_b(v) > 0$,
- causal if v is timelike or lightlike.

Definition

A scalar product g on V is a nondegenerate sym. bilinear form.

Given
$$v, w \in V$$
, then $v \perp w$ (v
and w are orthogonal) if
 $g(v, w) = 0$.

Definition

A scalar product g on V is a nondegenerate sym. bilinear form.

Given
$$v, w \in V$$
, then $v \perp w$ (v and w are orthogonal) if $g(v, w) = 0$.

• $A, B \subseteq V, A$ is orthogonal to B, $A \perp B$, if $v \perp w \ \forall v \in A$ and $\forall w \in B$.

Definition

A scalar product g on V is a nondegenerate sym. bilinear form.

Given
$$v, w \in V$$
, then $v \perp w$ (v and w are orthogonal) if $g(v, w) = 0$.

• $A, B \subseteq V, A$ is orthogonal to B, $A \perp B$, if $v \perp w \ \forall v \in A$ and $\forall w \in B$.

$$A^{\perp} = \{ w \in V : g(v, w) = 0, \forall v \in A \}.$$

Definition

A scalar product g on V is a nondegenerate sym. bilinear form.

Given
$$v, w \in V$$
, then $v \perp w$ (v and w are orthogonal) if $g(v, w) = 0$.

• $A, B \subseteq V, A$ is orthogonal to $B, A \perp B$, if $v \perp w \ \forall v \in A$ and $\forall w \in B$.

$$A^{\perp} = \{ w \in V : g(v, w) = 0, \forall v \in A \}.$$

a basis
$$e_1, e_2, \ldots, e_n$$
 of V is said
orthonormal if
 $|e_i| = \sqrt{|g(e_i, e_i)|} = 1,$
 $g(e_i, e_j) = 0, i, j = 1, \ldots, n.$

Lemma

The number ν of timelike vectors in a basis B of (V, g) does not depend on the basis, but only on (V, g). ν is called the index of (V, g).

Lemma

The number ν of timelike vectors in a basis B of (V,g) does not depend on the basis, but only on (V,g). ν is called the index of (V,g).

Lemma

The number ν of timelike vectors in a basis B of (V, g) does not depend on the basis, but only on (V, g). ν is called the index of (V, g).

Proof.

If $\mu < \mu'$, $U = \langle e_{n-\mu+1}, \dots, e_n \rangle_{\mathbb{R}} \cap \langle e'_1, e'_2, \dots, e'_{n-\mu'} \rangle_{\mathbb{R}} \neq \{0\}$ because of dimensions

Lemma

The number ν of timelike vectors in a basis B of (V, g) does not depend on the basis, but only on (V, g). ν is called the index of (V, g).

Proof.

- If $\mu < \mu'$, $U = \langle e_{n-\mu+1}, \dots, e_n \rangle_{\mathbb{R}} \cap \langle e'_1, e'_2, \dots, e'_{n-\mu'} \rangle_{\mathbb{R}} \neq \{0\}$ because of dimensions
- Contradiction!! if $v \in U$, g(u, u) < 0 and g(u, u) > 0.

Definition

A vector subspace W < V is said *nondegenerate* in (V, g) if $W \cap W^{\perp} = \{0\}$ (or, equiv., if $g_W = g|_{W \times W}$ is nondegenerate).

Definition

A vector subspace W < V is said *nondegenerate* in (V, g) if $W \cap W^{\perp} = \{0\}$ (or, equiv., if $g_W = g|_{W \times W}$ is nondegenerate).

Proposition

If W < V, then (i) dim $W + \dim W^{\perp} = \dim V$, (ii) $(W^{\perp})^{\perp} = W$, (iii) $V = W + W^{\perp} \Leftrightarrow W$ is nondegenerate ($\Leftrightarrow W^{\perp}$ is nondeg.).

Definition

A vector subspace W < V is said *nondegenerate* in (V, g) if $W \cap W^{\perp} = \{0\}$ (or, equiv., if $g_W = g|_{W \times W}$ is nondegenerate).

Proposition

If W < V, then (i) dim $W + \dim W^{\perp} = \dim V$, (ii) $(W^{\perp})^{\perp} = W$, (iii) $V = W + W^{\perp} \Leftrightarrow W$ is nondegenerate ($\Leftrightarrow W^{\perp}$ is nondeg.).

Proof.

(i) Let e_1, \ldots, e_n be a basis of V such that e_1, \ldots, e_ρ is a basis of W. If $v = \sum_{i=1}^n a^i e_i$, then $v \in W^\perp \Leftrightarrow g(v, e_i) = 0 \quad \forall i = 1, \ldots, \rho$ $\Leftrightarrow \sum_{j=1}^n g_{ij} a^j = 0 \quad \forall i = 1, \ldots, \rho$, where $g_{ij} = g(e_i, e_j)$.

.

Theorem

(V,g) admits an orthonormal basis.

Theorem

(V,g) admits an orthonormal basis.

Proof.

• Apply induction. n = 1 is trivial.

Theorem

(V,g) admits an orthonormal basis.

Proof.

- Apply induction. n = 1 is trivial.
- Assume that it is true for k < n. Choose u, such that $g(u, u) \neq 0$. Apply induction to $\langle u \rangle_{\mathbb{R}}^{\perp}$ to obtain an orthon. basis e_1, \ldots, e_{n-1} .

Theorem

(V,g) admits an orthonormal basis.

Proof.

- Apply induction. n = 1 is trivial.
- Assume that it is true for k < n. Choose u, such that $g(u, u) \neq 0$. Apply induction to $\langle u \rangle_{\mathbb{R}}^{\perp}$ to obtain an orthon. basis e_1, \ldots, e_{n-1} .
- Then

$$e_1,\ldots,e_{n-1},\frac{u}{|u|}$$

is the orthonormal basis.

Definition

A scalar product g is

- Euclidean if $\nu = 0$,
- Lorentzian if $\nu = 1$ and $n \ge 2$.

It is *indefinite* if it is as symmetric bilinear form.

Definition

A scalar product g is

- Euclidean if $\nu = 0$,
- Lorentzian if $\nu = 1$ and $n \ge 2$.

It is *indefinite* if it is as symmetric bilinear form.

Example

In \mathbb{R}^n we will define the usual scalar product of index ν , $\langle \cdot, \cdot \rangle_{\nu}$, as

$$\langle (a^1,\ldots,a^n),(b^1,\ldots,b^n) \rangle_{\nu} = \sum_{i=1}^{n-\nu} a^i b^i - \sum_{i=n-\nu+1}^n a^i b^i$$

The origin of the index 1

 In the (Newtonian) 3-dimensional space, the distance does not depend on the inertial frame of reference

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2}$$

= $\sqrt{(x_1' - x_0')^2 + (y_1' - y_0')^2 + (z_1' - z_0')^2}$

is an invariant (we assume that t = t').

The origin of the index 1

 In the (Newtonian) 3-dimensional space, the distance does not depend on the inertial frame of reference

$$egin{aligned} &\sqrt{(x_1-x_0)^2+(y_1-y_0)^2+(z_1-z_0)^2}\ &=\sqrt{(x_1'-x_0')^2+(y_1'-y_0')^2+(z_1'-z_0')^2} \end{aligned}$$

is an invariant (we assume that t = t').
In the Relativistic spacetime, the distance is not anymore an invariant but

$$(x_1-x_0)^2+(y_1-y_0)^2+(z_1-z_0)^2-c(t_1-t_0)^2.$$

The origin of the index 1

 In the (Newtonian) 3-dimensional space, the distance does not depend on the inertial frame of reference

$$egin{aligned} &\sqrt{(x_1-x_0)^2+(y_1-y_0)^2+(z_1-z_0)^2}\ &=\sqrt{(x_1'-x_0')^2+(y_1'-y_0')^2+(z_1'-z_0')^2} \end{aligned}$$

is an invariant (we assume that t = t').
In the Relativistic spacetime, the distance is not anymore an invariant but

$$(x_1-x_0)^2+(y_1-y_0)^2+(z_1-z_0)^2-c(t_1-t_0)^2.$$

 This leads to consider non positive metrics on index 1

Lorentzian vector spaces: timelike cones

Proposition

The subset of the timelike vectors (resp., causal; lightlike if n > 2) has two connected parts.

Each one of these parts will be called timelike cone, (resp. causal cone; lightlike cone).

Lorentzian vector spaces: timelike cones

Proposition

The subset of the timelike vectors (resp., causal; lightlike if n > 2) has two connected parts.

Each one of these parts will be called timelike cone, (resp. causal cone; lightlike cone).

Proof.

Let e_1, \ldots, e_n be an orthonormal basis of V, and $v \in V$ such that $v = \sum_{i=1}^n a^i e_i$. Obviously,

$$v$$
 is lightlike $\Leftrightarrow \left\{ \begin{array}{c} |a^n| = \sqrt{(a^1)^2 + \ldots + (a^{n-1})^2} \\ a^n \neq 0 \end{array} \right.$

$$\begin{array}{l} \text{v is timelike} \ \Leftrightarrow |a^n| > \sqrt{(a^1)^2 + \ldots + (a^{n-1})^2}, \\ \text{v is causal} \ \Leftrightarrow \left\{ \begin{array}{l} |a^n| \ge \sqrt{(a^1)^2 + \ldots + (a^{n-1})^2} \\ a^n \neq 0 \end{array} \right. \end{array}$$

Lorentzian vector spaces: timelike cones

Definition

A *time orientation* is a choice of one of the two timelike cones. The chosen cone will be called *future*, and the other one, *past*.

Lorentzian vector spaces: timelike cones

Definition

A *time orientation* is a choice of one of the two timelike cones. The chosen cone will be called *future*, and the other one, *past*.

Proposition

Two timelike vectors v and w lie in the same timelike cone iff g(v, w) < 0.

Lorentzian vector spaces: timelike cones

Definition

A *time orientation* is a choice of one of the two timelike cones. The chosen cone will be called *future*, and the other one, *past*.

Proposition

Two timelike vectors v and w lie in the same timelike cone iff g(v, w) < 0.

Proof.

v can be completed to an orthonormal basis $e_1, e_2, \ldots, e_{n-1}, \frac{v}{|v|}$. Observing that

$$w = g(e_1, w)e_1 + \ldots + g(e_{n-1}, w)e_{n-1} - g(v, w)\frac{v}{|v|^2},$$

v and w are in the same cone iff -g(v, w) > 0

Proposition

If v, w are timelike vectors in the same cone, then so is av + bw for any a, b > 0. In particular, each timelike cone is convex

Proposition

If v, w are timelike vectors in the same cone, then so is av + bw for any a, b > 0. In particular, each timelike cone is convex

Proof.

We know that g(v, w) < 0, and then

$$g(v, av + bw) = ag(v, v) + bg(v, w) < 0,$$

 $g(av + bw, av + bw) = a^2g(v, v) + b^2g(w, w) + 2abg(v, w) < 0.$

Theorem (Reverse Cauchy-Schwarz inequality)

If $v, w \in V$ are timelike vectors, then

- $|g(v, w)| \ge |v||w|$, and equality holds iff v, w are colinear.
- If v and w lie in the same cone, then ∃! φ ≥ 0, called the hyperbolic angle between v and w such that

$$g(v, w) = -|v||w| \cosh(\varphi).$$

Theorem (Reverse Cauchy-Schwarz inequality)

If $v, w \in V$ are timelike vectors, then

- $|g(v, w)| \ge |v||w|$, and equality holds iff v, w are colinear.
- If v and w lie in the same cone, then ∃! φ ≥ 0, called the hyperbolic angle between v and w such that

$$g(v, w) = -|v||w| \cosh(\varphi).$$

Proof.

Let $a \in \mathbb{R}$ and $\overline{w} \in \langle v \rangle_{\mathbb{R}}^{\perp}$ such that $w = av + \overline{w}$. Then

$$g(w,w) = a^2 g(v,v) + g(\overline{w},\overline{w}),$$

and hence $g(v,w)^2 = a^2 g(v,v)^2 = g(v,v)(g(w,w) - g(\overline{w},\overline{w})) \ge g(v,v)g(w,w) = |v|^2 |w|^2.$

Theorem (Reverse triangular inequality)

If $v, w \in V$ are timelike vectors in the same cone, then

$$|v|+|w|\leq |v+w|,$$

and the equality holds if and only if v, w are colinear.

Theorem (Reverse triangular inequality)

If $v, w \in V$ are timelike vectors in the same cone, then

```
|v|+|w|\leq |v+w|,
```

and the equality holds if and only if v, w are colinear.

Proof.

As v, w lie in the same cone, v + w is timelike and g(v, w) < 0. Therefore

$$|v + w|^{2} = -g(v + w, v + w)$$

= $|v|^{2} + |w|^{2} + 2|g(v, w)| \ge |v|^{2} + |w|^{2} + 2|v||w| = (|v| + |w|)^{2}.$

Moreover, equality holds iff |g(v, w)| = |v||w|, that is, iff v, w are colinear.

Definition

Let (V, g) be a Lorentzian vector space. We will say that a subspace of V, W < V is

- **spacelike**, if $g_{|W}$ is Euclidean,
- *timelike*, if $g_{|W}$ is nondegenerate with index 1 (that is, Lorentzian whenever dim $W \ge 2$),

■ *lightlike*, if $g_{|W}$ is degenerate, $(W \cap W^{\perp} \neq \{0\})$.

Definition

Let (V, g) be a Lorentzian vector space. We will say that a subspace of V, W < V is

- **spacelike**, if $g_{|W}$ is Euclidean,
- *timelike*, if $g_{|W}$ is nondegenerate with index 1 (that is, Lorentzian whenever dim $W \ge 2$),
- *lightlike*, if $g_{|W}$ is degenerate, $(W \cap W^{\perp} \neq \{0\})$.

Proposition

A subspace W < V is timelike if and only if W^{\perp} is spacelike.

伺 ト く ヨ ト く ヨ ト

Proposition

If W < V, with dim $(W) \ge 2$, the following conditions are equivalent:

- (i) W is timelike,
- (ii) W contains two linearly independent lightlike vectors,
- (iii) W contains one timelike vector.

Proposition

If W < V, with dim $(W) \ge 2$, the following conditions are equivalent:

- (i) W is timelike,
- (ii) W contains two linearly independent lightlike vectors,
- (iii) W contains one timelike vector.

Proof.

• (*i*) \Rightarrow (*ii*). As W is timelike, given an orthonormal basis e_1, e_2, \ldots, e_k of W, e_1 is spacelike and e_k timelike. Then $e_1 + e_k$ and $e_1 - e_k$ are two lin. ind. lightlike vectors.

Proposition

If W < V, with dim $(W) \ge 2$, the following conditions are equivalent:

- (i) W is timelike,
- (ii) W contains two linearly independent lightlike vectors,
- (iii) W contains one timelike vector.

- (*i*) \Rightarrow (*ii*). As W is timelike, given an orthonormal basis e_1, e_2, \ldots, e_k of W, e_1 is spacelike and e_k timelike. Then $e_1 + e_k$ and $e_1 e_k$ are two lin. ind. lightlike vectors.
- (ii) \Rightarrow (iii). Let v, w be two lin. ind. lightlike vectors of W, then either v + w or v w is timelike because $g(v, w) \neq 0$

Proposition

If W < V, with dim $(W) \ge 2$, the following conditions are equivalent:

- (i) W is timelike,
- (ii) W contains two linearly independent lightlike vectors,
- (iii) W contains one timelike vector.

Proof.

(iii) ⇒ (i). Let u be a timelike vector of W. Assume by contradiction that g|_W is degenerate. Then ∃ z ≠ 0 in rad(g|_W). As u, z are lin. ind., we know that

if u, z are in the same causal cone $\Rightarrow g(u, z) < 0$ if u, z are in different causal cones $\Rightarrow g(u, z) > 0$.

Proposition

If W < V, the following conditions are equivalent:

- (i) W is lightlike.
- (ii) W contains a lightlike vector, but not a timelike one.
- (iii) The intersection of W with the subset of null vectors (lightlike or zero) forms a vector subspace of dimension 1.

Denote \mathbb{L}^n the Lorentz-Minkowski spacetime, that is, \mathbb{R}^n endowed with $\langle\cdot,\cdot\rangle_1$ and

$$\eta = \left(\begin{array}{c|c} I_{n-1} & 0\\ \hline 0 & -1 \end{array}\right)$$

Denote \mathbb{L}^n the Lorentz-Minkowski spacetime, that is, \mathbb{R}^n endowed with $\langle\cdot,\cdot\rangle_1$ and

$$\eta = \left(\begin{array}{c|c} I_{n-1} & 0\\ \hline 0 & -1 \end{array}\right)$$

Definition

We define the Lorentz transformation group as

 $\mathsf{lso}(\mathbb{L}^n) = \{ f : \mathbb{L}^n \longrightarrow \mathbb{L}^n \mid f \text{ is a vector isometry} \},\$

and the Lorentz group as $O_1(n) = \{A \in M_n(\mathbb{R}) \mid A^t \eta A = \eta\}.$

Definition

Let f be a Lorentz transformation. Then

- f is proper if det $f(= \det A_f) = 1$,
- f is *improper* otherwise.
- $\mathsf{Iso}^+(\mathbb{L}^n) = \mathsf{proper Lorentz transformations}; \ \mathcal{O}^+_1(n) := \Phi(\mathsf{Iso}^+(\mathbb{L}^n))$
- $lso^{-}(\mathbb{L}^{n}) = improper Lorentz transformations;$ $O_{1}^{-}(n) := \Phi(lso^{-}(\mathbb{L}^{n}))$

From the usual basis e_1, \ldots, e_n of \mathbb{L}^n , we can fix the standard time orientation:

 $\begin{cases} Future \text{ causal cone } C^{\uparrow} \text{ : the one that contains } e_n, \\ Past \text{ causal cone } C^{\downarrow} \text{ : the one that contains } -e_n. \end{cases}$

From the usual basis e_1, \ldots, e_n of \mathbb{L}^n , we can fix the standard time orientation:

 $\begin{cases} Future \text{ causal cone } C^{\uparrow} \text{ : the one that contains } e_n, \\ Past \text{ causal cone } C^{\downarrow} \text{ : the one that contains } -e_n. \end{cases}$

Definition

- We will say that f is orthocronous if $f(C^{\uparrow}) = C^{\uparrow}$
- $\mathsf{Iso}^{\uparrow}(\mathbb{L}^n) = \mathsf{the subgroup of orthocronous transformations}$

•
$$O_1^{\uparrow}(n) = \Phi(\mathsf{Iso}^{\uparrow}(n)).$$

- $\mathsf{Iso}^{\downarrow}(\mathbb{L}^n)$ = the subset of nonorthocronous transformations,
- $O_1^{\downarrow}(n) = \Phi(\mathsf{Iso}^{\downarrow}(\mathbb{L}^n)).$

We will combine the notation in an obvious way:

$$O_1^{+\downarrow}(n), O_1^{+\uparrow}(n), O_1^{-\downarrow}(n), O_1^{-\uparrow}(n).$$

These are in fact the four components of $O_1(n)$.

• We will combine the notation in an obvious way:

$$O_1^{+\downarrow}(n), O_1^{+\uparrow}(n), O_1^{-\downarrow}(n), O_1^{-\uparrow}(n).$$

These are in fact the four components of $O_1(n)$.

Nevertheless, we will use the special notation SO[↑]₁(n) for the restricted Lorentz group, that is, the subgroup of proper orthocronus transformations.

• We will combine the notation in an obvious way:

$$O_1^{+\downarrow}(n), O_1^{+\uparrow}(n), O_1^{-\downarrow}(n), O_1^{-\uparrow}(n).$$

These are in fact the four components of $O_1(n)$.

Nevertheless, we will use the special notation SO₁[↑](n) for the restricted Lorentz group, that is, the subgroup of proper orthocronus transformations.

Proposition

If $f \in Iso(\mathbb{L}^n)$, then the following conditions are equivalent:

- $f \in \mathsf{Iso}^{\uparrow}(\mathbb{L}^n)$,
- \exists a causal vector $v \in \mathbb{L}^n$ such that $\langle v, f(v) \rangle < 0$,
- \forall timelike vector $v \in \mathbb{L}^n$, $\langle v, f(v) \rangle < 0$,

 in every orthonormal basis, the element (n, n) of the matrix of f is ≥ 0 (and, actually, ≥ 1).

$$\begin{pmatrix} I_{n-2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in SO_1^{\uparrow}(n); \qquad \begin{pmatrix} I_{n-2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \in O_1^{-\downarrow}(n)$$
$$\begin{pmatrix} I_{n-2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \in O_1^{+\downarrow}(n); \qquad \begin{pmatrix} I_{n-2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \in O_1^{-\uparrow}(n)$$

Isometries with determinant equal to 1: all of them admit a basis of lightlike eigenvectors and

$$SO_1^{\uparrow}(2) = \left\{ \left(egin{array}{cc} \cosh heta & \sinh heta \ \sinh heta & \cosh heta \end{array}
ight) : heta \in \mathbb{R}
ight\}; \ O_1^{+\downarrow}(2) = \left\{ -A : A \in O_1^{+\uparrow}(2)
ight\}.$$

Isometries with determinant equal to 1: all of them admit a basis of lightlike eigenvectors and

$$SO_1^{\uparrow}(2) = \left\{ \left(egin{array}{cc} \cosh heta & \sinh heta \ \sinh heta & \cosh heta \end{array}
ight) : heta \in \mathbb{R}
ight\}; \ O_1^{+\downarrow}(2) = \left\{ -A : A \in O_1^{+\uparrow}(2)
ight\}.$$

Isometries with determinant equal to -1: all of them admit an orthonormal basis of eigenvectors and

$$O_1^{-\uparrow}(2) = \left\{ \left(\begin{array}{cc} \cosh\theta & \sinh\theta \\ -\sinh\theta & -\cosh\theta \end{array} \right) : \theta \in \mathbb{R} \right\}; \ O_1^{-\downarrow}(2) = \left\{ -A : A \in O_1^{-\uparrow}(2) \right\}$$

Observe that, unlike the Euclidean case, all these matrices are diagonalizable.

Proposition

- If $A \in O_1(n)$, then:
 - (i) non-lightlike eigenvectors of A, if any, have +1 or -1 as eigenvalues,
 - (ii) the product of the eigenvalues of two lin. indep. lightlike eigenvectors is 1,
- (iii) if U is an eigenspace of A that contains a non-lightlike eigenvector, then any other eigenspace is orthogonal to U,
- (iv) if U is an A-invariant subspace, then U^{\perp} is also A-invariant.

Proof.

(i) Let v be a non-lightlike eigenvector of A, Av = av. Then

$$\langle v, v \rangle = \langle Av, Av \rangle = a^2 \langle v, v \rangle \Rightarrow a = \pm 1.$$

Proposition

If $A \in O_1(n)$, then:

- (i) non-lightlike eigenvectors of A, if any, have +1 or -1 as eigenvalues,
- (ii) the product of the eigenvalues of two lin. indep. lightlike eigenvectors is 1,
- (iii) if U is an eigenspace of A that contains a non-lightlike eigenvector, then any other eigenspace is orthogonal to U,
- (iv) if U is an A-invariant subspace, then U^{\perp} is also A-invariant.

Proof.

(ii) Let v, w be two lin. indep. lightlike eigenvectors, Av = av, Aw = bw.

$$0 \neq \langle v, w \rangle = \langle Av, Aw \rangle = ab \langle v, w \rangle \Rightarrow ab = 1.$$

Proposition

If $A \in O_1(n)$, then:

- (i) non-lightlike eigenvectors of A, if any, have +1 or -1 as eigenvalues,
- (ii) the product of the eigenvalues of two lin. indep. lightlike eigenvectors is 1,
- (iii) if U is an eigenspace of A that contains a non-lightlike eigenvector, then any other eigenspace is orthogonal to U,
- (iv) if U is an A-invariant subspace, then U^{\perp} is also A-invariant.

Proof.

(iii) Let $z \in U$ be a non-lightlike eigenvector of A. By (i), $Az = \epsilon z$, $\epsilon = \pm 1$. Let w be an eigenvector of λ distinct from ϵ , $\forall u \in U$,

$$\langle u, w \rangle = \langle Au, Aw \rangle = \lambda \epsilon \langle u, w \rangle.$$

Thus, $\langle u, w \rangle = 0$ ($\lambda \epsilon \neq 1$).

Proposition

If $A \in O_1(n)$, then:

- (i) non-lightlike eigenvectors of A, if any, have +1 or -1 as eigenvalues,
- (ii) the product of the eigenvalues of two lin. indep. lightlike eigenvectors is 1,
- (iii) if U is an eigenspace of A that contains a non-lightlike eigenvector, then any other eigenspace is orthogonal to U,

(iv) if U is an A-invariant subspace, then U^{\perp} is also A-invariant.

Proof.

(iv) As A is an isometry, A(U) = U. Moreover, $A^{-1}(U) = U$. Consider $w \in U^{\perp}$, then

$$\langle Aw, u \rangle = \langle w, A^{-1}u \rangle = 0, \qquad \forall u \in U,$$

and therefore, $Aw \in U^{\perp}$, which concludes.

M. A. Javaloyes and M. Sánchez An introduction to Lorentzian Geometry

Theorem

If $A \in O_1(n)$ and $f_A \in Iso(\mathbb{L}^n)$, then one of the following three mutually exclusive cases holds:

(i) A admits a timelike eigenvector. Then $M(f_A, B)$ is

$$\left(\begin{array}{c|c} R_{n-1} & 0\\ \hline 0 & \pm 1 \end{array}\right),$$

where B is orthon. and $R_{n-1} \in O(n-1)$.

(ii) A admits a lightlike eigenvector with eigenvalue $\lambda \neq \pm 1$. Then there exists an o. b. B such that $M(f_A, B)$ is

$$\left(\begin{array}{c|c} R_{n-2} & 0\\ \hline 0 & R \end{array}\right),$$

where $R_{n-2} \in O(n-2)$ and $R \in O_1(2)$.

(iii) A admits a unique indep. lightlike eigenvector of eigenvalue ± 1 .

Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$

- Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$
- Assume that the theorem is true for k < n and prove it for n.

- Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$
- Assume that the theorem is true for k < n and prove it for n.
- You can show that \exists a causal eigenvector v, $Av = \lambda v$:

- Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$
- Assume that the theorem is true for k < n and prove it for n.
- You can show that \exists a causal eigenvector v, $Av = \lambda v$:
- Let λ be an eigenvalue of A

- Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$
- Assume that the theorem is true for k < n and prove it for n.
- You can show that \exists a causal eigenvector v, $Av = \lambda v$:
- Let λ be an eigenvalue of A
 - If $\lambda \in \mathbb{R}$ and it has a causal eigenvector, we conclude.
- Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$
- Assume that the theorem is true for k < n and prove it for n.
- You can show that \exists a causal eigenvector v, $Av = \lambda v$:
- Let λ be an eigenvalue of A
 - If $\lambda \in \mathbb{R}$ and it has a causal eigenvector, we conclude.
 - If $\lambda \in \mathbb{R}$ and it has a spacelike eigenvector v, apply induction to $\langle v \rangle_{\mathbb{R}}^{\perp}$

- Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$
- Assume that the theorem is true for k < n and prove it for n.
- You can show that \exists a causal eigenvector v, $Av = \lambda v$:
- Let λ be an eigenvalue of A
 - If $\lambda \in \mathbb{R}$ and it has a causal eigenvector, we conclude.
 - If λ ∈ ℝ and it has a spacelike eigenvector ν, apply induction to ⟨ν⟩_ℝ[⊥]
 - If $\lambda \in \mathbb{C} \setminus \mathbb{R}$, and $Az = \lambda z$, then $P = \langle z, \overline{z} \rangle_{\mathbb{R}}$ is spacelike. Apply induction to P^{\perp} .

- Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$
- Assume that the theorem is true for k < n and prove it for n.
- You can show that \exists a causal eigenvector v, $Av = \lambda v$: Then,

- Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$
- Assume that the theorem is true for k < n and prove it for n.
- You can show that \exists a causal eigenvector v, $Av = \lambda v$: Then,
- 1) If v is timelike, we obtain (*i*).

- Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$
- Assume that the theorem is true for k < n and prove it for n.
- You can show that \exists a causal eigenvector v, $Av = \lambda v$: Then,
- 1) If v is timelike, we obtain (*i*).
- 2) If v is lightlike, it can happen that

- Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$
- Assume that the theorem is true for k < n and prove it for n.
- You can show that \exists a causal eigenvector v, $Av = \lambda v$: Then,
- 1) If v is timelike, we obtain (*i*).
- 2) If v is lightlike, it can happen that
 - a) $\lambda \notin \{\pm 1\}$, in this case we obtain (*ii*). $\Longrightarrow 1/\lambda$ is eigenvalue, and if v, w eigenvectors of λ , $1/\lambda$ resp., $\langle v, w \rangle_{\mathbb{R}}$ is timelike.

- Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$
- Assume that the theorem is true for k < n and prove it for n.
- You can show that \exists a causal eigenvector v, $Av = \lambda v$: Then,
- 1) If v is timelike, we obtain (*i*).
- 2) If v is lightlike, it can happen that
 - a) $\lambda \notin \{\pm 1\}$, in this case we obtain (*ii*). $\Longrightarrow 1/\lambda$ is eigenvalue, and if v, w eigenvectors of λ , $1/\lambda$ resp., $\langle v, w \rangle_{\mathbb{R}}$ is timelike.

- Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$
- Assume that the theorem is true for k < n and prove it for n.
- You can show that \exists a causal eigenvector v, $Av = \lambda v$: Then,
- 1) If v is timelike, we obtain (*i*).
- 2) If v is lightlike, it can happen that
 - a) $\lambda \notin \{\pm 1\}$, in this case we obtain (*ii*). $\Longrightarrow 1/\lambda$ is eigenvalue, and if v, w eigenvectors of λ , $1/\lambda$ resp., $\langle v, w \rangle_{\mathbb{R}}$ is timelike.
 - b) $\lambda \in \{\pm 1\}$, and (iii) does not hold, then (i) occurs:

- Reasoning by induction, for n = 2 the conclusion follows from the study of $O_1(2)$
- Assume that the theorem is true for k < n and prove it for n.
- You can show that \exists a causal eigenvector v, $Av = \lambda v$: Then,
- 1) If v is timelike, we obtain (*i*).
- 2) If v is lightlike, it can happen that
 - a) $\lambda \notin \{\pm 1\}$, in this case we obtain (*ii*). $\Longrightarrow 1/\lambda$ is eigenvalue, and if v, w eigenvectors of λ , $1/\lambda$ resp., $\langle v, w \rangle_{\mathbb{R}}$ is timelike.
 - b) $\lambda \in \{\pm 1\}$, and (iii) does not hold, then (i) occurs:
 - c) if w lightlike eigen. lin. indep. of v, then the eigenvalues of w and v are equal (the product is 1), so either u + w or u w is a timelike eigenvector.

Our aim is to show that the universal covering of SO₁[↑](4) is the group SI(2, C), constructing explicitly the universal covering homomorphism SI(2, C) → SO₁[↑](4) or spin map.

Our aim is to show that the universal covering of SO₁[↑](4) is the group SI(2, C), constructing explicitly the universal covering homomorphism SI(2, C) → SO₁[↑](4) or spin map.

Construction of the spin covering. Plan of work:

■ A brief study of the topology of *SI*(2, ℂ), showing in particular that it is 1-connected.

Our aim is to show that the universal covering of SO₁[↑](4) is the group SI(2, C), constructing explicitly the universal covering homomorphism SI(2, C) → SO₁[↑](4) or spin map.

Construction of the spin covering. Plan of work:

- A brief study of the topology of *SI*(2, ℂ), showing in particular that it is 1-connected.
- The Hermitian matrices H(2, C) constitute naturally a (real) Lorentz vector space, canonically isomorphic to L⁴.

Our aim is to show that the universal covering of SO₁[↑](4) is the group SI(2, C), constructing explicitly the universal covering homomorphism SI(2, C) → SO₁[↑](4) or spin map.

Construction of the spin covering. Plan of work:

- A brief study of the topology of *SI*(2, ℂ), showing in particular that it is 1-connected.
- The Hermitian matrices H(2, C) constitute naturally a (real) Lorentz vector space, canonically isomorphic to L⁴.
- The natural action SI(2, C) × H(2, C) → H(2, C) induces the required spinor map

$$SI(2,\mathbb{C}) \to \operatorname{Iso}^{+\uparrow}(H(2,\mathbb{C}),g_L) \equiv SO_1^{\uparrow}(4).$$

Lemma

If
$$|a|^2 + |b|^2
e 0$$
 $A \in SI(2, \mathbb{C})$ iff \exists (a unique) $\lambda \in \mathbb{C}$ such that

$$\left(\begin{array}{c} c\\ d\end{array}\right)=\frac{1}{|a|^2+|b|^2}\left(\begin{array}{c} -\bar{b}\\ \bar{a}\end{array}\right)+\lambda\left(\begin{array}{c} a\\ b\end{array}\right);\quad \textit{where }A=\left(\begin{array}{c} a&c\\ b&d\end{array}\right)$$

Proof.

Recall that

$$\left| egin{array}{c} \mathbf{a} & c \ b & d \end{array}
ight| = \left| egin{array}{c} \mathbf{a} & -rac{ar{b}}{|\mathbf{a}|^2+|\mathbf{b}|^2} \ \mathbf{b} & rac{ar{a}}{|\mathbf{a}|^2+|\mathbf{b}|^2} \end{array}
ight| + \left| egin{array}{c} \mathbf{a} & c+rac{ar{b}}{|\mathbf{a}|^2+|\mathbf{b}|^2} \ \mathbf{b} & d-rac{ar{a}}{|\mathbf{a}|^2+|\mathbf{b}|^2} \end{array}
ight|,$$

the second determinant equal to 1. So, the first determinant is 1 iff the last one is 0.

Lemma

If
$$|a|^2 + |b|^2 \neq 0$$
 $A \in SI(2, \mathbb{C})$ iff \exists (a unique) $\lambda \in \mathbb{C}$ such that

$$\left(egin{array}{c} c \ d \end{array}
ight) = rac{1}{|a|^2 + |b|^2} \left(egin{array}{c} -ar b \ ar a \end{array}
ight) + \lambda \left(egin{array}{c} a \ b \end{array}
ight); \quad \textit{where } A = \left(egin{array}{c} a & c \ b & d \end{array}
ight)$$

Proposition

The map

$$F: \left(\mathbb{C}^2 \setminus \{\mathbf{0}\}\right) \times \mathbb{C} \to Sl(2,\mathbb{C}), \quad \left(\begin{pmatrix} a\\b \end{pmatrix}, \lambda\right) \mapsto \begin{vmatrix} a & -\frac{\bar{b}}{|a|^2+|b|^2} + \lambda a\\ b & \frac{\bar{a}}{|a|^2+|b|^2} + \lambda b \end{vmatrix}$$

is a diffeomorphism.

- ● ● ●

Lemma

If
$$|a|^2 + |b|^2
e 0$$
 $A \in Sl(2, \mathbb{C})$ iff \exists (a unique) $\lambda \in \mathbb{C}$ such that

$$\left(\begin{array}{c} c\\ d\end{array}\right)=\frac{1}{|a|^2+|b|^2}\left(\begin{array}{c} -\bar{b}\\ \bar{a}\end{array}\right)+\lambda\left(\begin{array}{c} a\\ b\end{array}\right);\quad \textit{where }A=\left(\begin{array}{c} a&c\\ b&d\end{array}\right)$$

Proposition

The map

$$F: \left(\mathbb{C}^2 \setminus \{\mathbf{0}\}\right) \times \mathbb{C} \to Sl(2,\mathbb{C}), \quad \left(\begin{pmatrix} a\\b \end{pmatrix}, \lambda\right) \mapsto \begin{vmatrix} a & -\frac{\bar{b}}{|a|^2+|b|^2} + \lambda a\\ b & \frac{\bar{a}}{|a|^2+|b|^2} + \lambda b \end{vmatrix}$$

is a diffeomorphism.

Corollary

 $SI(2, \mathbb{C})$ is diffeomorphic to $\mathbb{R}^3 \times \mathbb{S}^3$.

$$H(2,\mathbb{C}) = \{ \begin{pmatrix} a & z \\ \overline{z} & d \end{pmatrix} \in M_2(\mathbb{C}) : a, d \in \mathbb{R}, z = x + iy \in \mathbb{C} \}$$

$$H(2,\mathbb{C}) = \{ \left(egin{array}{cc} \mathsf{a} & z \ ar{z} & d \end{array}
ight) \in M_2(\mathbb{C}) : \mathsf{a}, d \in \mathbb{R}, z = x + iy \in \mathbb{C} \}$$

• the (minus) determinant

$$- \begin{vmatrix} a & z \\ \overline{z} & d \end{vmatrix} = x^2 + y^2 - ad$$

is a quadratic form of Lorentzian signature. Then we consider $(H(2,\mathbb{C}),g_L)$

$$H(2,\mathbb{C}) = \{ \left(egin{array}{cc} \mathsf{a} & z \ ar{z} & d \end{array}
ight) \in M_2(\mathbb{C}) : \mathsf{a}, d \in \mathbb{R}, z = x + iy \in \mathbb{C} \}$$

• the (minus) determinant

$$- \begin{vmatrix} a & z \\ \overline{z} & d \end{vmatrix} = x^2 + y^2 - ad$$

is a quadratic form of Lorentzian signature. Then we consider $(H(2, \mathbb{C}), g_L)$

■ the subspace H(2, C)_{*} of the traceless matrices (d = -a) constitutes a natural spacelike hyperplane, (H(2, C)_{*}, g_E).

Action of $SI(2,\mathbb{C})$ on $H(2,\mathbb{C})$ and \mathbb{L}^4

Consider the following map:

$$\begin{array}{ccc} SI(2,\mathbb{C}) imes H(2,\mathbb{C}) & o & H(2,\mathbb{C}) \ (A,X) & \mapsto & A * X := AXA^{\dagger}. \end{array}$$

Consider the following map:

$$\begin{array}{rcl} SI(2,\mathbb{C})\times H(2,\mathbb{C}) &\to & H(2,\mathbb{C}) \\ (A,X) &\mapsto & A*X := AXA^{\dagger}. \end{array}$$

Straightforward relevant properties are:

- It is well-defined: $(AXA^{\dagger})^{\dagger} = AXA^{\dagger}$.
- It is an action: $(A_1 \cdot A_2) * X = A_1 * (A_2 * X)$.
- It gives a linear isometry for $(H(2, \mathbb{C}), g_L)$:

Consider the following map:

$$\begin{array}{rcl} SI(2,\mathbb{C})\times H(2,\mathbb{C}) &\to & H(2,\mathbb{C}) \\ (A,X) &\mapsto & A*X := AXA^{\dagger}. \end{array}$$

Straightforward relevant properties are:

- It is well-defined: $(AXA^{\dagger})^{\dagger} = AXA^{\dagger}$.
- It is an action: $(A_1 \cdot A_2) * X = A_1 * (A_2 * X)$.
- It gives a linear isometry for $(H(2, \mathbb{C}), g_L)$:
 - Linearity in the second variable: A * (aX₁ + bX₂) = a(A * X₁) + b(A * X₂),

 Preserves g_L: det(A * X)=det(X),

for all $A, A_1, A_2 \in Sl(2, \mathbb{C}), X, X_1, X_2 \in H(2, \mathbb{C}), a, b \in \mathbb{R}$.

Action of $SI(2,\mathbb{C})$ on $H(2,\mathbb{C})$ and \mathbb{L}^4

The third property implies that the well-defined map

$$A_*: H(2,\mathbb{C}) \to H(2,\mathbb{C}), \qquad X \mapsto A * X,$$

is an isometry of $(H(2, \mathbb{C}), g_L)$.

$$*: SI(2, \mathbb{C}) \to \operatorname{Iso}(H(2, \mathbb{C}), g_L), \qquad A \mapsto A_*.$$

Moreover, $(A_1 \cdot A_2)_* = (A_1)_* \circ (A_2)_*$. That is, the map * is a Lie group homomorphism.

Action of $SI(2, \mathbb{C})$ on $H(2, \mathbb{C})$ and \mathbb{L}^4

The third property implies that the well-defined map

$$A_*: H(2,\mathbb{C}) \to H(2,\mathbb{C}), \qquad X \mapsto A * X,$$

is an isometry of $(H(2, \mathbb{C}), g_L)$.

$$*: SI(2, \mathbb{C}) \to \operatorname{Iso}(H(2, \mathbb{C}), g_L), \qquad A \mapsto A_*.$$

Moreover, $(A_1 \cdot A_2)_* = (A_1)_* \circ (A_2)_*$. That is, the map * is a Lie group homomorphism.

Theorem

$$SI(2,\mathbb{C})/\{\pm I_2\} \cong SO_1^{\uparrow}(4).$$

Action of $SI(2, \mathbb{C})$ on $H(2, \mathbb{C})$ and \mathbb{L}^4

Proof.

Let us prove that its kernel is just $\{\pm l_2\}$.

Notice that if
$$A_*(X) = X$$
 for all $X \in H(2, \mathbb{C})$,

Theorem

$$SI(2,\mathbb{C})/\{\pm I_2\} \cong SO_1^{\uparrow}(4).$$

Action of $\mathit{SI}(2,\mathbb{C})$ on $\mathit{H}(2,\mathbb{C})$ and \mathbb{L}^4

Proof.

Let us prove that its kernel is just $\{\pm I_2\}$.

- Notice that if $A_*(X) = X$ for all $X \in H(2, \mathbb{C})$,
- then, taking $X = I_2$, the matrix A must be unitary $(A^{\dagger} = A^{-1})$.

Theorem

$$SI(2,\mathbb{C})/\{\pm I_2\} \cong SO_1^{\uparrow}(4).$$

Action of $\mathit{SI}(2,\mathbb{C})$ on $\mathit{H}(2,\mathbb{C})$ and \mathbb{L}^4

Proof.

Let us prove that its kernel is just $\{\pm I_2\}$.

- Notice that if $A_*(X) = X$ for all $X \in H(2, \mathbb{C})$,
- then, taking $X = I_2$, the matrix A must be unitary $(A^{\dagger} = A^{-1})$.
- So, AX = XA for all X, and $A = \pm I_2$ follows easily.

Theorem

$$SI(2,\mathbb{C})/\{\pm I_2\} \cong SO_1^{\uparrow}(4).$$

Our plan of work is:

■ recall the polar decomposition A = PR of any $A \in Gl(n, \mathbb{C})$ by means of $P \in H^+(n, \mathbb{C})$ and $R \in U(n)$.

Our plan of work is:

- recall the polar decomposition A = PR of any $A \in Gl(n, \mathbb{C})$ by means of $P \in H^+(n, \mathbb{C})$ and $R \in U(n)$.
- To check that, through the spin map $\Lambda: Sl(2,\mathbb{C}) \to SO_1^{\uparrow}(4)$,
 - $R \in SU(2)$ corresponds to a rotation which fixes the timelike axis of \mathbb{L}^4 ,
 - $P \in SH_+(2, \mathbb{C})$ corresponds to a boost in a timelike plane which contains the *t* axis.

Our plan of work is:

- recall the polar decomposition A = PR of any $A \in Gl(n, \mathbb{C})$ by means of $P \in H^+(n, \mathbb{C})$ and $R \in U(n)$.
- To check that, through the spin map $\Lambda : SI(2,\mathbb{C}) \to SO_1^{\uparrow}(4)$,
 - $R \in SU(2)$ corresponds to a rotation which fixes the timelike axis of \mathbb{L}^4 ,
 - $P \in SH_+(2, \mathbb{C})$ corresponds to a boost in a timelike plane which contains the *t* axis.
- As a consequence any matrix on $SO_1^{\uparrow}(4)$ can be written as the composition of a rotation and a boost.

Lemma

Let (V, G) be a complex vector space endowed with an inner product and $f \in Aut_{\mathbb{C}}V$. Then:

- f ∘ f[†] is self-adjoint, and all its eigenvalues are positive. So, there exists a G-orthonormal basis B such that M(f ∘ f[†], B) is diagonal, real and definite positive.
- $\exists ! h \in Aut_{\mathbb{C}}V$ self-adjoint and with all its eigenvalues positive, such that $h \circ h = f \circ f^{\dagger}$.
- $h^{-1} \circ f \in Iso(V, G).$

Decomposition in rotations and boosts

Theorem

For all $A \in Gl(n, \mathbb{C})$ there exist $!P \in H_+(n, \mathbb{C})$ and $!R \in U(n)$ so that: A = PR. Moreover, the map

$$H_+(n,\mathbb{C}) \times U(n) \to \mathrm{Gl}(n,\mathbb{C}), \quad (P,R) \mapsto PR,$$

is a homeomorphism.

Decomposition in rotations and boosts

Theorem

For all $A \in Gl(n, \mathbb{C})$ there exist $!P \in H_+(n, \mathbb{C})$ and $!R \in U(n)$ so that: A = PR. Moreover, the map

 $H_+(n,\mathbb{C}) \times U(n) \to \mathrm{Gl}(n,\mathbb{C}), \quad (P,R) \mapsto PR,$

is a homeomorphism.

Corollary

If $A \in SI(2, \mathbb{C})$ and P, R are the matrices obtained in its polar decomposition, then $P \in SH_+(2, \mathbb{C})$ and $R \in SU(2)$. Therefore, the restricted map

$$SH_+(2,\mathbb{C}) \times SU(2) \rightarrow SI(2,\mathbb{C}), \quad (P,R) \mapsto PR,$$

is a homeomorphism.

Corollary

 $SO_1^{\uparrow}(4)$ is homeomorphic to $\mathbb{R}^3 \times \mathbb{R}\mathrm{P}^3$.

Corollary

 $SO_1^{\uparrow}(4)$ is homeomorphic to $\mathbb{R}^3 \times \mathbb{R}\mathrm{P}^3$.

Proof.

Clearly, $SH_+(2,\mathbb{C})$ is homeomorphic to \mathbb{R}^3 , as

$$SH_{+}(2,\mathbb{C}) = \{ \begin{pmatrix} a & x + iy \\ x - iy & d \end{pmatrix} \in M_{2}(\mathbb{C}) : x, y \in \mathbb{R}, \\ a, d > 0, ad - x^{2} - y^{2} = 1 \}$$

and one can remove the last restriction substituting $a = (1 + x^2 + y^2)/d$. Moreover, SU(2) is homeomorphic to \mathbb{S}^3 .

Decomposition in rotations and boosts

Proposition

Let $R \in SI(2, \mathbb{C})$. $R \in SU(2)$ iff $\Lambda(R) \in SO(3)$, that is, $\Lambda(R)$ is a rotation, being x^4 an axis of rotation.
Proposition

Let $R \in SI(2, \mathbb{C})$. $R \in SU(2)$ iff $\Lambda(R) \in SO(3)$, that is, $\Lambda(R)$ is a rotation, being x^4 an axis of rotation.

Proof.

The Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \sigma_4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

constitute a natural orthonormal basis of $(H(2, \mathbb{C}), g_L)$.

Proposition

Let $R \in SI(2, \mathbb{C})$. $R \in SU(2)$ iff $\Lambda(R) \in SO(3)$, that is, $\Lambda(R)$ is a rotation, being x^4 an axis of rotation.

Proof.

The Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \sigma_4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

constitute a natural orthonormal basis of $(H(2, \mathbb{C}), g_L)$.

σ₄ = I₂ is a timelike direction, and an eigenvector of R_∗ of eigenvalue 1 (R_∗(σ₄) = RI₂R[†] = I₂ = σ₄).

Proposition

Let $R \in SI(2, \mathbb{C})$. $R \in SU(2)$ iff $\Lambda(R) \in SO(3)$, that is, $\Lambda(R)$ is a rotation, being x^4 an axis of rotation.

Proof.

The Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \sigma_4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

constitute a natural orthonormal basis of $(H(2, \mathbb{C}), g_L)$.

- σ₄ = I₂ is a timelike direction, and an eigenvector of R_∗ of eigenvalue 1 (R_∗(σ₄) = RI₂R[†] = I₂ = σ₄).
- So, the restriction of R_{*} to σ[⊥]₄ = (H(2, C)_{*}, g_E) is an isometry which preserves the orientation.

Proposition

If $P \in SH_+(2, \mathbb{C})$, there exists a timelike plane π which contains the x⁴-axis such that $\Lambda(P)$ is a boost on π .

Proposition

If $P \in SH_+(2, \mathbb{C})$, there exists a timelike plane π which contains the x^4 -axis such that $\Lambda(P)$ is a boost on π .

Lemma

For
$$\alpha > 0$$
, $(\alpha \neq 1)$, let $P_{\alpha} = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}$ ($\in SH_{+}(2, \mathbb{C})$). Then $\Lambda(P_{\alpha})$ is a boost on $\langle x^{3}, x^{4} \rangle_{\mathbb{R}}$ with eigenvalues α^{2}, α^{-2} .

Proposition

If $P \in SH_+(2, \mathbb{C})$, there exists a timelike plane π which contains the x^4 -axis such that $\Lambda(P)$ is a boost on π .

Lemma

For
$$\alpha > 0$$
, $(\alpha \neq 1)$, let $P_{\alpha} = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}$ ($\in SH_{+}(2, \mathbb{C})$). Then $\Lambda(P_{\alpha})$ is a boost on $\langle x^{3}, x^{4} \rangle_{\mathbb{R}}$ with eigenvalues α^{2}, α^{-2} .

Proof of Proposition.

- as P is Hermitian, there exists $R \in SU(2)$ such that $P = R^{-1}P_{\alpha}R$ for some positive $\alpha \neq 1$.
- Let σ'_i so that $R_*\sigma'_i = \sigma_i$ for i = 1, 2, 3. Clearly, $P_*\sigma'_i = \sigma'_i$ for i = 1, 2.

• So P_* is a boost on the orthogonal plane $\pi = \langle \sigma'_3, \sigma_4 \rangle_{\mathbb{R}}$.

Proposition

Let $R \in SI(2, \mathbb{C})$. $R \in SU(2)$ iff $\Lambda(R) \in \widetilde{SO}(3)$, that is, $\Lambda(R)$ is a rotation, being x^4 an axis of rotation.

Proposition

If $P \in SH_+(2, \mathbb{C})$, there exists a timelike plane π which contains the x^4 -axis such that $\Lambda(P)$ is a boost on π .

Theorem

Let $L \in SO_1^{\uparrow}(4)$. Then \exists a boost B on a timelike plane π_1 which contains the x_4 axis, and a rotation S on a spacelike plane π_2 orthogonal to the x^4 axis (but not necessarily orthogonal to π_1) such that L = B S.

The Möbius group in the starred nights

Proposition

The smooth map

$$\tilde{j}:\mathbb{C}^2\setminus\{\mathbf{0}\}\to H(2,\mathbb{C}), \quad \left(egin{array}{c}\xi\\\eta\end{array}
ight)\mapsto \left(egin{array}{c}\xi\\\eta\end{array}
ight)(ar{\xi},ar{\eta})=\left(egin{array}{c}|\xi|^2&\xiar{\eta}\\ar{\xi}\eta&|\eta|^2\end{array}
ight)$$

satisfies:

- (i) The image of j̃ is the set of all the future-directed lightlike vectors of the Lorentzian vector space (H(2, ℂ), g_L).
- (ii) \tilde{j} induces a bijection j between $\mathbb{C}P^1$ and the set of all the future-pointing lightlike directions

 $j: \mathbb{C}P^{1} \ (\equiv S_{R}) \to \mathbb{S}^{2} \times \{1\} \ (\equiv \ \textit{future lightlike directions of} \ (H(2,\mathbb{C}),g_{L}) \equiv \ S_{R}).$

(iii) For any $A \in Sl(2, \mathbb{C})$ and the corresponding restricted isometry A_* of $(H(2, \mathbb{C}), g_L)$:

$$\widetilde{j}(A\left(\begin{array}{c}\xi\\\eta\end{array}\right)) = (A_*\widetilde{j})\left(\begin{array}{c}\xi\\\eta\end{array}\right) \\
j([A\left(\begin{array}{c}\xi\\\eta\end{array}\right)]) = [(A_*\widetilde{j})\left(\begin{array}{c}\xi\\\eta\end{array}\right)].$$

900

Self-adjoint endomorphisms with Lorentzian products

Proposition

Let (V,g) be a vector space V endowed with a Lorentzian scalar product g and $A: V \rightarrow V$ a self-adjoint endomorphism with respect to g. Then any of the following possibilities happens

• there exists an orthonormal basis in that the matrix of A is diagonal or of the form

$$\begin{pmatrix} D_{n-2} & 0 \\ 0 & a & b \\ -b & a \end{pmatrix}$$

• there exists a basis $e_1, e_2, \ldots, e_{n-2}, u, v$ with $g(e_i, e_i) = 1$ for $i = 1, \ldots, n-2$, g(u, v) = 1 and all the other products equal to zero, in that the matrix representation of A is either

$$\begin{pmatrix} D_{n-2} & 0 \\ \hline 0 & \lambda & \epsilon \\ 0 & 0 & \lambda \end{pmatrix} \quad \text{with } \epsilon = \pm 1, \text{ or } \quad \begin{pmatrix} D_{n-2} & 0 \\ \hline \lambda & 0 & 1 \\ 0 & 1 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$