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Omnipresence of Einstein equations - Salar de Uyuni (Bolivia)
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Scalar product: basic properties

Definition

Let b : V × V → R be a symmetric bilinear form. Then b is

positive definite if b(v , v) > 0 ∀ v ∈ V \ {0},

positive semidefinite if b(v , v) ≥ 0 ∀ v ∈ V \ {0},
indefinite if it is neither positive semidefinite nor negative
semidefinite,

nondegenerate if the condition b(v ,w) = 0 ∀ w ∈ V implies
that v = 0. Otherwise, it is degenerate, and
N = {v ∈ V : b(v ,w) = 0,∀w ∈ V } is the radical of b.

Moreover, given v ∈ V , qb(v) = b(v , v), we say that v is

timelike if qb(v) < 0,

lightlike if qb(v) = 0 and v 6= 0,

spacelike if qb(v) > 0,

causal if v is timelike or lightlike.
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Scalar product: basic properties

Definition

A scalar product g on V is a nondegenerate sym. bilinear form.

Given v ,w ∈ V , then v ⊥ w (v
and w are orthogonal) if
g(v ,w) = 0.

A,B ⊆ V , A is orthogonal to B,
A ⊥ B, if v ⊥ w ∀v ∈ A and
∀w ∈ B.

A⊥ = {w ∈ V : g(v ,w) = 0,∀v ∈ A}.
a basis e1, e2, . . . , en of V is said
orthonormal if
|ei | =

√
|g(ei , ei )| = 1,

g(ei , ej) = 0, i , j = 1, . . . , n.

timelike

spacelike

lig
ht
lik
e

(1, y)

(y, 1)

Figure: Two orthogonal
vectors in R2 with
g((x , t), (x ′, t)) = xx ′ − tt′
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Scalar product: basic properties

Lemma

The number ν of timelike vectors in a basis B of (V , g) does not
depend on the basis, but only on (V , g). ν is called the index of
(V , g).

Proof.

Let

spacelike︷ ︸︸ ︷
e1, e2, . . . , en−µ,

timelike︷ ︸︸ ︷
en−µ+1, . . . , en and

e ′1, e
′
2, . . . , e

′
n−µ′︸ ︷︷ ︸

spacelike

, e ′n−µ+1, . . . , e
′
n︸ ︷︷ ︸

timelike

be two (ordered) orthonormal

bases.

If µ < µ′, U = 〈en−µ+1, . . . , en〉R ∩ 〈e ′1, e ′2, . . . , e ′n−µ′〉R 6= {0}
because of dimensions

Contradiction!! if v ∈ U, g(u, u) < 0 and g(u, u) > 0.
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Scalar product: basic properties

Definition

A vector subspace W < V is said nondegenerate in (V , g) if
W ∩W⊥ = {0} (or, equiv., if gW = g |W×W is nondegenerate).

Proposition

If W < V , then

(i) dim W + dim W⊥ = dim V ,

(ii) (W⊥)⊥ = W ,

(iii) V = W + W⊥ ⇔W is nondegenerate (⇔W⊥ is nondeg.).

Proof.

(i) Let e1, . . . , en be a basis of V such that e1, . . . , eρ is a basis of
W . If v =

∑n
i=1 aiei , then v ∈W⊥ ⇔ g(v , ei ) = 0 ∀i = 1, . . . , ρ

⇔
∑n

j=1 gija
j = 0 ∀i = 1, . . . , ρ, where gij = g(ei , ej).
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Scalar product: basic properties

Theorem

(V , g) admits an orthonormal basis.

Proof.

Apply induction. n = 1 is trivial.

Assume that it is true for k < n. Choose u, such that
g(u, u) 6= 0. Apply induction to 〈u〉⊥R to obtain an orthon.
basis e1, . . . , en−1.

Then
e1, . . . , en−1,

u

|u|
is the orthonormal basis.

M. A. Javaloyes and M. Sánchez An introduction to Lorentzian Geometry



Scalar product: basic properties

Theorem

(V , g) admits an orthonormal basis.

Proof.

Apply induction. n = 1 is trivial.

Assume that it is true for k < n. Choose u, such that
g(u, u) 6= 0. Apply induction to 〈u〉⊥R to obtain an orthon.
basis e1, . . . , en−1.

Then
e1, . . . , en−1,

u

|u|
is the orthonormal basis.

M. A. Javaloyes and M. Sánchez An introduction to Lorentzian Geometry



Scalar product: basic properties

Theorem

(V , g) admits an orthonormal basis.

Proof.

Apply induction. n = 1 is trivial.

Assume that it is true for k < n. Choose u, such that
g(u, u) 6= 0. Apply induction to 〈u〉⊥R to obtain an orthon.
basis e1, . . . , en−1.

Then
e1, . . . , en−1,

u

|u|
is the orthonormal basis.

M. A. Javaloyes and M. Sánchez An introduction to Lorentzian Geometry



Scalar product: basic properties

Theorem

(V , g) admits an orthonormal basis.

Proof.

Apply induction. n = 1 is trivial.

Assume that it is true for k < n. Choose u, such that
g(u, u) 6= 0. Apply induction to 〈u〉⊥R to obtain an orthon.
basis e1, . . . , en−1.

Then
e1, . . . , en−1,

u

|u|
is the orthonormal basis.

M. A. Javaloyes and M. Sánchez An introduction to Lorentzian Geometry



Scalar product: basic properties

Definition

A scalar product g is

Euclidean if ν = 0,

Lorentzian if ν = 1 and n ≥ 2.

It is indefinite if it is as symmetric bilinear form.

Example

In Rn we will define the usual scalar product of index ν, 〈·, ·〉ν , as

〈(a1, . . . , an), (b1, . . . , bn)〉ν =
n−ν∑
i=1

aibi −
n∑

i=n−ν+1

aibi .
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The origin of the index 1

In the (Newtonian) 3-dimensional space,
the distance does not depend on the
inertial frame of reference√

(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2

=
√

(x ′1 − x ′0)2 + (y ′1 − y ′0)2 + (z ′1 − z ′0)2

is an invariant (we assume that t = t ′).

In the Relativistic spacetime, the distance
is not anymore an invariant but

(x1−x0)2+(y1−y0)2+(z1−z0)2−c(t1−t0)2.

This leads to consider non positive
metrics on index 1
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Lorentzian vector spaces: timelike cones

Proposition

The subset of the timelike vectors (resp., causal; lightlike if n > 2)
has two connected parts.
Each one of these parts will be called timelike cone, (resp. causal
cone; lightlike cone).

Proof.

Let e1, . . . , en be an orthonormal basis of V , and v ∈ V such that
v =

∑n
i=1 aiei . Obviously,

v is lightlike ⇔
{
|an|=

√
(a1)2 + . . .+ (an−1)2

an 6= 0

v is timelike ⇔ |an|>
√

(a1)2 + . . .+ (an−1)2,

v is causal ⇔
{
|an|≥

√
(a1)2 + . . .+ (an−1)2

an 6= 0
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Lorentzian vector spaces: timelike cones

Definition

A time orientation is a choice of one of the
two timelike cones. The chosen cone will be
called future, and the other one, past.

Proposition

Two timelike vectors v and w lie in the same
timelike cone iff g(v ,w) < 0.

Proof.

v can be completed to an orthonormal basis
e1, e2, . . . , en−1,

v
|v| . Observing that

w = g(e1,w)e1 + . . .+ g(en−1,w)en−1 − g(v ,w)
v

|v |2 ,

v and w are in the same cone iff −g(v ,w) > 0
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Proposition

Two timelike vectors v and w lie in the same
timelike cone iff g(v ,w) < 0.

Proof.

v can be completed to an orthonormal basis
e1, e2, . . . , en−1,

v
|v| . Observing that

w = g(e1,w)e1 + . . .+ g(en−1,w)en−1 − g(v ,w)
v

|v |2 ,

v and w are in the same cone iff −g(v ,w) > 0
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Lorentzian vector spaces: timelike cones

Proposition

If v ,w are timelike vectors in the same cone, then so is av + bw
for any a, b > 0. In particular, each timelike cone is convex

Proof.

We know that g(v ,w) < 0, and then

g(v , av + bw) = ag(v , v) + bg(v ,w) < 0,

g(av + bw , av + bw) = a2g(v , v) + b2g(w ,w) + 2abg(v ,w) < 0.
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Reverse inequalities

Theorem (Reverse Cauchy-Schwarz inequality)

If v ,w ∈ V are timelike vectors, then

|g(v ,w)| ≥ |v ||w |, and equality holds iff v ,w are colinear.

If v and w lie in the same cone, then ∃! ϕ ≥ 0, called the
hyperbolic angle between v and w such that

g(v ,w) = −|v ||w | cosh(ϕ).

Proof.

Let a ∈ R and w ∈ 〈v〉⊥R such that w = av + w . Then

g(w ,w) = a2g(v , v) + g(w ,w),

and hence g(v ,w)2 = a2g(v , v)2 = g(v , v)(g(w ,w)− g(w ,w)) ≥
g(v , v)g(w ,w) = |v |2|w |2.
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Reverse inequalities

Theorem (Reverse triangular inequality)

If v ,w ∈ V are timelike vectors in the same cone, then

|v |+ |w | ≤ |v + w |,

and the equality holds if and only if v ,w are colinear.

Proof.

As v ,w lie in the same cone, v + w is timelike and g(v ,w) < 0.
Therefore

|v + w |2 = −g(v + w , v + w)

= |v |2 + |w |2 + 2|g(v ,w)| ≥ |v |2 + |w |2 + 2|v ||w | = (|v |+ |w |)2.

Moreover, equality holds iff |g(v ,w)| = |v ||w |, that is, iff v ,w are
colinear.
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Subspaces

Definition

Let (V , g) be a Lorentzian vector space. We will say that a
subspace of V , W < V is

spacelike, if g|W is Euclidean,

timelike, if g|W is nondegenerate with index 1 (that is,
Lorentzian whenever dim W ≥ 2),

lightlike, if g|W is degenerate, (W ∩W⊥ 6= {0}).

Proposition

A subspace W < V is timelike if and only if W⊥ is spacelike.
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Subspaces

Proposition

If W < V , with dim(W ) ≥ 2, the following conditions are
equivalent:

(i) W is timelike,

(ii) W contains two linearly independent lightlike vectors,

(iii) W contains one timelike vector.

Proof.

(i)⇒ (ii). As W is timelike, given an orthonormal basis
e1, e2, . . . , ek of W , e1 is spacelike and ek timelike. Then
e1 + ek and e1 − ek are two lin. ind. lightlike vectors.

(ii)⇒ (iii). Let v ,w be two lin. ind. lightlike vectors of W ,
then either v + w or v − w is timelike because g(v ,w) 6= 0
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Subspaces

Proposition

If W < V , with dim(W ) ≥ 2, the following conditions are
equivalent:

(i) W is timelike,

(ii) W contains two linearly independent lightlike vectors,

(iii) W contains one timelike vector.

Proof.

(iii)⇒ (i). Let u be a timelike vector of W . Assume by
contradiction that g |W is degenerate. Then ∃ z 6= 0 in
rad(g |W ). As u, z are lin. ind., we know that{

if u, z are in the same causal cone ⇒ g(u, z) < 0
if u, z are in different causal cones ⇒ g(u, z) > 0.
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Subspaces

Proposition

If W < V , the following conditions are equivalent:

(i) W is lightlike.

(ii) W contains a lightlike vector, but not a timelike one.

(iii) The intersection of W with the subset of null vectors
(lightlike or zero) forms a vector subspace of dimension 1.
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The Lorentz group: the four connected components

Denote Ln the Lorentz-Minkowski spacetime, that is, Rn endowed
with 〈·, ·〉1 and

η =

(
In−1 0

0 −1

)

Definition

We define the Lorentz transformation group as

Iso(Ln) = {f : Ln −→ Ln | f is a vector isometry},

and the Lorentz group as O1(n) = {A ∈ Mn(R) / AtηA = η}.
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The Lorentz group: the four connected components

Definition

Let f be a Lorentz transformation. Then

f is proper if det f (= det Af ) = 1,

f is improper otherwise.

Iso+(Ln) = proper Lorentz transformations; O+
1 (n) := Φ(Iso+(Ln))

Iso−(Ln) = improper Lorentz transformations;
O−1 (n) := Φ(Iso−(Ln))
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The Lorentz group: the four connected components

From the usual basis e1, . . . , en of Ln, we can fix the standard time
orientation:{

Future causal cone C ↑ : the one that contains en,
Past causal cone C ↓ : the one that contains − en.

Definition

We will say that f is orthocronous if f (C ↑) = C ↑

Iso↑(Ln) = the subgroup of orthocronous transformations

O↑1 (n) = Φ(Iso↑(n)).

Iso↓(Ln) = the subset of nonorthocronous transformations,

O↓1 (n) = Φ(Iso↓(Ln)).
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The Lorentz group: the four connected components

We will combine the notation in an obvious way:

O+↓
1 (n),O+↑

1 (n),O−↓1 (n),O−↑1 (n).

These are in fact the four components of O1(n).

Nevertheless, we will use the special notation SO↑1 (n) for the
restricted Lorentz group, that is, the subgroup of proper
orthocronus transformations.

Proposition

If f ∈ Iso(Ln), then the following conditions are equivalent:

f ∈ Iso↑(Ln),

∃ a causal vector v ∈ Ln such that 〈v , f (v)〉 < 0,

∀ timelike vector v ∈ Ln, 〈v , f (v)〉 < 0,

in every orthonormal basis, the element (n, n) of the matrix of
f is ≥ 0 (and, actually, ≥ 1).
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The Lorentz group: the four connected components

 In−2 0

0
1 0
0 1

 ∈ SO↑1 (n);

 In−2 0

0
1 0
0 −1

 ∈ O−↓1 (n)

 In−2 0

0
−1 0

0 −1

 ∈ O+↓
1 (n);

 In−2 0

0
−1 0

0 1

 ∈ O−↑1 (n)
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The Lorentz group in dimension 2

Isometries with determinant equal to 1: all of them admit a basis of
lightlike eigenvectors and

SO↑1 (2) =

{(
cosh θ sinh θ
sinh θ cosh θ

)
: θ ∈ R

}
; O+↓

1 (2) =
{
−A : A ∈ O+↑

1 (2)
}
.

Isometries with determinant equal to −1: all of them admit an
orthonormal basis of eigenvectors and

O−↑1 (2) =

{(
cosh θ sinh θ
−sinh θ − cosh θ

)
: θ ∈ R

}
; O−↓1 (2) =

{
−A : A ∈ O−↑1 (2)

}
.

Observe that, unlike the Euclidean case, all these matrices are

diagonalizable.
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Properties of Lorentz group in greater dimensions

Proposition

If A ∈ O1(n), then:

(i) non-lightlike eigenvectors of A, if any, have +1 or −1 as eigenvalues,

(ii) the product of the eigenvalues of two lin. indep. lightlike
eigenvectors is 1,

(iii) if U is an eigenspace of A that contains a non-lightlike eigenvector,
then any other eigenspace is orthogonal to U,

(iv) if U is an A-invariant subspace, then U⊥ is also A-invariant.

Proof.

(i) Let v be a non-lightlike eigenvector of A, Av = av . Then

〈v , v〉 = 〈Av ,Av〉 = a2〈v , v〉 ⇒ a = ±1.
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Properties of Lorentz group in greater dimensions

Proposition

If A ∈ O1(n), then:

(i) non-lightlike eigenvectors of A, if any, have +1 or −1 as eigenvalues,

(ii) the product of the eigenvalues of two lin. indep. lightlike
eigenvectors is 1,

(iii) if U is an eigenspace of A that contains a non-lightlike eigenvector,
then any other eigenspace is orthogonal to U,

(iv) if U is an A-invariant subspace, then U⊥ is also A-invariant.

Proof.

(ii) Let v ,w be two lin. indep. lightlike eigenvectors, Av = av , Aw = bw .

0 6= 〈v ,w〉 = 〈Av ,Aw〉 = ab〈v ,w〉 ⇒ ab = 1.
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Properties of Lorentz group in greater dimensions

Proposition

If A ∈ O1(n), then:

(i) non-lightlike eigenvectors of A, if any, have +1 or −1 as eigenvalues,

(ii) the product of the eigenvalues of two lin. indep. lightlike
eigenvectors is 1,

(iii) if U is an eigenspace of A that contains a non-lightlike eigenvector,
then any other eigenspace is orthogonal to U,

(iv) if U is an A-invariant subspace, then U⊥ is also A-invariant.

Proof.

(iii) Let z ∈ U be a non-lightlike eigenvector of A. By (i), Az = εz ,
ε = ±1. Let w be an eigenvector of λ distinct from ε, ∀ u ∈ U,

〈u,w〉 = 〈Au,Aw〉 = λε〈u,w〉.

Thus, 〈u,w〉 = 0 (λε 6= 1).
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Properties of Lorentz group in greater dimensions

Proposition

If A ∈ O1(n), then:

(i) non-lightlike eigenvectors of A, if any, have +1 or −1 as eigenvalues,

(ii) the product of the eigenvalues of two lin. indep. lightlike
eigenvectors is 1,

(iii) if U is an eigenspace of A that contains a non-lightlike eigenvector,
then any other eigenspace is orthogonal to U,

(iv) if U is an A-invariant subspace, then U⊥ is also A-invariant.

Proof.

(iv) As A is an isometry, A(U) = U. Moreover, A−1(U) = U. Consider
w ∈ U⊥, then

〈Aw , u〉 = 〈w ,A−1u〉 = 0, ∀u ∈ U,

and therefore, Aw ∈ U⊥, which concludes.
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Properties of Lorentz group in greater dimensions

Theorem

If A ∈ O1(n) and fA ∈ Iso(Ln), then one of the following three mutually
exclusive cases holds:

(i) A admits a timelike eigenvector. Then M(fA,B) is(
Rn−1 0

0 ±1

)
,

where B is orthon. and Rn−1 ∈ O(n − 1).

(ii) A admits a lightlike eigenvector with eigenvalue λ 6= ±1. Then
there exists an o. b. B such that M(fA,B) is(

Rn−2 0
0 R

)
,

where Rn−2 ∈ O(n − 2) and R ∈ O1(2).

(iii) A admits a unique indep. lightlike eigenvector of eigenvalue ±1.
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Properties of Lorentz group in greater dimensions

Proof.

Reasoning by induction, for n = 2 the conclusion follows from
the study of O1(2)

Assume that the theorem is true for k < n and prove it for n.

You can show that ∃ a causal eigenvector v , Av = λv :

M. A. Javaloyes and M. Sánchez An introduction to Lorentzian Geometry



Properties of Lorentz group in greater dimensions

Proof.

Reasoning by induction, for n = 2 the conclusion follows from
the study of O1(2)

Assume that the theorem is true for k < n and prove it for n.

You can show that ∃ a causal eigenvector v , Av = λv :

M. A. Javaloyes and M. Sánchez An introduction to Lorentzian Geometry



Properties of Lorentz group in greater dimensions

Proof.

Reasoning by induction, for n = 2 the conclusion follows from
the study of O1(2)

Assume that the theorem is true for k < n and prove it for n.

You can show that ∃ a causal eigenvector v , Av = λv :

M. A. Javaloyes and M. Sánchez An introduction to Lorentzian Geometry



Properties of Lorentz group in greater dimensions

Proof.

Reasoning by induction, for n = 2 the conclusion follows from
the study of O1(2)

Assume that the theorem is true for k < n and prove it for n.

You can show that ∃ a causal eigenvector v , Av = λv :

Let λ be an eigenvalue of A

If λ ∈ R and it has a causal eigenvector, we conclude.
If λ ∈ R and it has a spacelike eigenvector v , apply induction
to 〈v〉⊥R
If λ ∈ C \R, and Az = λz , then P = 〈z , z̄〉R is spacelike.
Apply induction to P⊥.
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Properties of Lorentz group in greater dimensions

Proof.

Reasoning by induction, for n = 2 the conclusion follows from
the study of O1(2)

Assume that the theorem is true for k < n and prove it for n.

You can show that ∃ a causal eigenvector v , Av = λv :
Then,

1) If v is timelike, we obtain (i).

2) If v is lightlike, it can happen that

a) λ 6∈ {±1}, in this case we obtain (ii). =⇒ 1/λ is eigenvalue,
and if v ,w eigenvectors of λ, 1/λ resp., 〈v ,w〉R is timelike.

b) λ ∈ {±1}, and (iii) does not hold, then (i) occurs:
c) if w lightlike eigen. lin. indep. of v , then the eigenvalues of w

and v are equal (the product is 1), so either u + w or u − w is
a timelike eigenvector.
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Assume that the theorem is true for k < n and prove it for n.

You can show that ∃ a causal eigenvector v , Av = λv :
Then,

1) If v is timelike, we obtain (i).

2) If v is lightlike, it can happen that

a) λ 6∈ {±1}, in this case we obtain (ii). =⇒ 1/λ is eigenvalue,
and if v ,w eigenvectors of λ, 1/λ resp., 〈v ,w〉R is timelike.

b) λ ∈ {±1}, and (iii) does not hold, then (i) occurs:
c) if w lightlike eigen. lin. indep. of v , then the eigenvalues of w

and v are equal (the product is 1), so either u + w or u − w is
a timelike eigenvector.
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The spin covering of the restricted Lorentz group

Our aim is to show that the universal covering of SO↑1 (4) is
the group Sl(2,C), constructing explicitly the universal

covering homomorphism Sl(2,C)→ SO↑1 (4) or spin map.

Construction of the spin covering. Plan of work:

A brief study of the topology of Sl(2,C), showing in particular
that it is 1-connected.

The Hermitian matrices H(2,C) constitute naturally a (real)
Lorentz vector space, canonically isomorphic to L4.

The natural action Sl(2,C)× H(2,C)→ H(2,C) induces the
required spinor map

Sl(2,C)→ Iso+↑(H(2,C), gL) ≡ SO↑1 (4).
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The spin covering of the restricted Lorentz group

Lemma

If |a|2 + |b|2 6= 0 A ∈ Sl(2,C) iff ∃ (a unique) λ ∈ C such that(
c
d

)
=

1

|a|2 + |b|2

(
−b̄

ā

)
+λ

(
a
b

)
; where A =

(
a c
b d

)

Proof.

Recall that∣∣∣∣ a c
b d

∣∣∣∣ =

∣∣∣∣∣ a − b̄
|a|2+|b|2

b ā
|a|2+|b|2

∣∣∣∣∣+

∣∣∣∣∣ a c + b̄
|a|2+|b|2

b d − ā
|a|2+|b|2

∣∣∣∣∣ ,
the second determinant equal to 1. So, the first determinant is 1
iff the last one is 0.
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|a|2+|b|2 + λa

b ā
|a|2+|b|2 + λb

∣∣∣∣∣
is a diffeomorphism.

Corollary

Sl(2,C) is diffeomorphic to R3 × S3.
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The spin covering of the restricted Lorentz group

H(2,C) = {
(

a z
z̄ d

)
∈ M2(C) : a, d ∈ R, z = x + iy ∈ C}

the (minus) determinant

−
∣∣∣∣ a z

z̄ d

∣∣∣∣ = x2 + y 2 − ad

is a quadratic form of Lorentzian signature. Then we consider
(H(2,C), gL)

the subspace H(2,C)∗ of the traceless matrices (d = −a)
constitutes a natural spacelike hyperplane, (H(2,C)∗, gE ).
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Action of Sl(2,C) on H(2,C) and L4

Consider the following map:

Sl(2,C)× H(2,C) → H(2,C)
(A,X ) 7→ A ∗ X := AXA†.

Straightforward relevant properties are:

It is well-defined: (AXA†)† = AXA†.

It is an action: (A1 · A2) ∗ X = A1 ∗ (A2 ∗ X ).

It gives a linear isometry for (H(2,C), gL):

Linearity in the second variable:
A ∗ (aX1 + bX2) = a(A ∗ X1) + b(A ∗ X2),
Preserves gL: det(A ∗ X )=det(X ),

for all A,A1,A2 ∈ Sl(2,C),X ,X1,X2 ∈ H(2,C), a, b ∈ R.
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Action of Sl(2,C) on H(2,C) and L4

The third property implies that the well-defined map

A∗ : H(2,C)→ H(2,C), X 7→ A ∗ X ,

is an isometry of (H(2,C), gL).

∗ : Sl(2,C)→ Iso(H(2,C), gL), A 7→ A∗.

Moreover, (A1 · A2)∗ = (A1)∗ ◦ (A2)∗. That is, the map ∗ is a Lie
group homomorphism.

Theorem

The spin map defined above is a double covering map, which yields
the universal covering group of SO↑1 (4). Thus,

Sl(2,C)/{±I2} ∼= SO↑1 (4).
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Action of Sl(2,C) on H(2,C) and L4

Proof.

Let us prove that its kernel is just {±I2}.
Notice that if A∗(X ) = X for all X ∈ H(2,C),

then, taking X = I2, the matrix A must be unitary
(A† = A−1).

So, AX = XA for all X , and A = ±I2 follows easily.

Theorem

The spin map defined above is a double covering map, which yields
the universal covering group of SO↑1 (4). Thus,

Sl(2,C)/{±I2} ∼= SO↑1 (4).
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Decomposition in rotations and boosts

Our plan of work is:

recall the polar decomposition A = PR of any A ∈ Gl(n,C) by
means of P ∈ H+(n,C) and R ∈ U(n).

To check that, through the spin map Λ : Sl(2,C)→ SO↑1 (4),

R ∈ SU(2) corresponds to a rotation which fixes the timelike
axis of L4,
P ∈ SH+(2,C) corresponds to a boost in a timelike plane
which contains the t axis.

As a consequence any matrix on SO↑1 (4) can be written as the
composition of a rotation and a boost.
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Decomposition in rotations and boosts

Lemma

Let (V ,G ) be a complex vector space endowed with an inner
product and f ∈ AutCV . Then:

f ◦ f † is self-adjoint, and all its eigenvalues are positive. So,
there exists a G -orthonormal basis B such that M(f ◦ f †,B) is
diagonal, real and definite positive.

∃!h ∈ AutCV self-adjoint and with all its eigenvalues positive,
such that h ◦ h = f ◦ f †.

h−1 ◦ f ∈ Iso (V ,G ).
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Decomposition in rotations and boosts

Theorem

For all A ∈ Gl(n,C) there exist !P ∈ H+(n,C) and !R ∈ U(n) so
that: A = P R.
Moreover, the map

H+(n,C)× U(n)→ Gl(n,C), (P,R) 7→ P R,

is a homeomorphism.

Corollary

If A ∈ Sl(2,C) and P,R are the matrices obtained in its polar
decomposition, then P ∈ SH+(2,C) and R ∈ SU(2).
Therefore, the restricted map

SH+(2,C)× SU(2)→ Sl(2,C), (P,R) 7→ P R,

is a homeomorphism.
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Decomposition in rotations and boosts

Corollary

SO↑1 (4) is homeomorphic to R3 ×RP3.

Proof.

Clearly, SH+(2,C) is homeomorphic to R3, as

SH+(2,C) = {
(

a x + iy
x − iy d

)
∈ M2(C) : x , y ∈ R,

a, d > 0, ad − x2 − y 2 = 1}

and one can remove the last restriction substituting
a = (1 + x2 + y 2)/d . Moreover, SU(2) is homeomorphic to S3.
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Decomposition in rotations and boosts

Proposition

Let R ∈ Sl(2,C). R ∈ SU(2) iff Λ(R) ∈ S̃O(3), that is, Λ(R) is a
rotation, being x4 an axis of rotation.

Proof.

The Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σ4 =

(
1 0
0 1

)
constitute a natural orthonormal basis of (H(2,C), gL).

σ4 = I2 is a timelike direction, and an eigenvector of R∗ of
eigenvalue 1 (R∗(σ4) = RI2R† = I2 = σ4).

So, the restriction of R∗ to σ⊥4 = (H(2,C)∗, gE ) is an
isometry which preserves the orientation.
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Decomposition in rotations and boosts

Proposition

If P ∈ SH+(2,C), there exists a timelike plane π which contains
the x4-axis such that Λ(P) is a boost on π.

Lemma

For α > 0, (α 6= 1), let Pα =

(
α 0
0 α−1

)
(∈ SH+(2,C)). Then

Λ(Pα) is a boost on 〈x3, x4〉R with eigenvalues α2, α−2.

Proof of Proposition.

as P is Hermitian, there exists R ∈ SU(2) such that
P = R−1PαR for some positive α( 6= 1).

Let σ′i so that R∗σ
′
i = σi for i = 1, 2, 3. Clearly, P∗σ

′
i = σ′i for

i = 1, 2.

So P∗ is a boost on the orthogonal plane π = 〈σ′3, σ4〉R.
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Decomposition in rotations and boosts

Proposition

Let R ∈ Sl(2,C). R ∈ SU(2) iff Λ(R) ∈ S̃O(3), that is, Λ(R) is a
rotation, being x4 an axis of rotation.

Proposition

If P ∈ SH+(2,C), there exists a timelike plane π which contains
the x4-axis such that Λ(P) is a boost on π.

Theorem

Let L ∈ SO↑1 (4). Then ∃ a boost B on a timelike plane π1 which
contains the x4 axis, and a rotation S on a spacelike plane π2

orthogonal to the x4 axis (but not necessarily orthogonal to π1)
such that L = B S.
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The Möbius group in the starred nights

Proposition

The smooth map

j̃ : C2 \ {0} → H(2,C),

(
ξ
η

)
7→
(
ξ
η

)
(ξ̄, η̄) =

(
|ξ|2 ξη̄
ξ̄η |η|2

)
satisfies:

(i) The image of j̃ is the set of all the future-directed lightlike vectors of the
Lorentzian vector space (H(2,C), gL).

(ii) j̃ induces a bijection j between CP1 and the set of all the future-pointing
lightlike directions

j : CP1 (≡ SR)→ S
2×{1} (≡ future lightlike directions of (H(2,C), gL) ≡ SR).

(iii) For any A ∈ Sl(2,C) and the corresponding restricted isometry A∗ of
(H(2,C), gL):

j̃(A

(
ξ
η

)
) = (A∗ j̃)

(
ξ
η

)
j([A

(
ξ
η

)
]) = [(A∗ j̃)

(
ξ
η

)
].
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Self-adjoint endomorphisms with Lorentzian products

Proposition

Let (V , g) be a vector space V endowed with a Lorentzian scalar product g
and A : V → V a self-adjoint endomorphism with respect to g. Then any of
the following possibilities happens

there exists an orthonormal basis in that the matrix of A is diagonal or of
the form  Dn−2 0

0
a b
−b a


there exists a basis e1, e2, . . . , en−2, u, v with g(ei , ei ) = 1 for
i = 1, . . . , n − 2, g(u, v) = 1 and all the other products equal to zero, in
that the matrix representation of A is either

 Dn−2 0

0
λ ε
0 λ

 with ε = ±1, or


Dn−2 0

0
λ 0 1
1 λ 0
0 0 λ

 .
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