Finsler metrics (Flag Curvature)

Miguel Angel Javaloyes and Miguel Sánchez

Universidad de Granada

Seminario del departamento de Geometría y Topología
16 de diciembre de 2009
Main reference:

DEFINITION: a Finsler metric F in a manifold M is a continuous function $F : TM \to [0, +\infty)$ such that:

1. It is C^∞ in $TM \setminus \{0\}$
2. Positively homogeneous of degree one
 \[F(x, \lambda y) = \lambda F(x, y) \text{ for all } \lambda > 0 \]
3. Fiberwise strictly convex square:
 \[g_{ij}(x, y) = \frac{1}{2} \frac{\partial^2}{\partial y^i \partial y^j} (F^2) \bigg|_{x, y} \]
 is positively defined.

It can be showed that this implies:

- F is positive in $TM \setminus \{0\}$
- Triangle inequality holds in the fibers
- F^2 is C^1 on TM.
DEFINITION: a Finsler metric F in a manifold M is a continuous function $F : TM \to [0, +\infty)$ such that:

1. It is C^∞ in $TM \setminus \{0\}$
2. Positively homogeneous of degree one $F(x, \lambda y) = \lambda F(x, y)$ for all $\lambda > 0$
3. Fiberwise strictly convex square: $g_{ij}(x, y) = \frac{1}{2} \frac{\partial^2}{\partial y_i \partial y_j} (F^2)(x, y)$ is positively defined.

It can be showed that this implies:

- F is positive in $TM \setminus \{0\}$
- Triangle inequality holds in the fibers
- F^2 is C^1 on TM.
Finsler metrics

Main reference:

DEFINITION: a Finsler metric F in a manifold M is a continuous function $F : TM \rightarrow [0, +\infty)$ such that:

1. It is C^∞ in $TM \setminus \{0\}$
2. Positively homogeneous of degree one $F(x, \lambda y) = \lambda F(x, y)$ for all $\lambda > 0$

Paul Finsler (1894-1970)

D. Bao, S.S. Chern and Z. Shen
Finsler metrics

Main reference:

DEFINITION: A Finsler metric F in a manifold M is a continuous function $F : TM \rightarrow [0, +\infty)$ such that:

1. It is C^∞ in $TM \setminus \{0\}$
2. Positively homogeneous of degree one

 $F(x, \lambda y) = \lambda F(x, y)$ for all $\lambda > 0$
3. Fiberwise strictly convex square:

 $g_{ij}(x, y) = \left[\frac{1}{2} \frac{\partial^2 (F^2)}{\partial y^i \partial y^j} (x, y) \right]$ is positively defined.
Finsler metrics

Main reference:

DEFINITION: a Finsler metric F in a manifold M is a continuous function $F : TM \rightarrow [0, +\infty)$ such that:

1. It is C^∞ in $TM \setminus \{0\}$
2. Positively homogeneous of degree one $F(x, \lambda y) = \lambda F(x, y)$ for all $\lambda > 0$
3. Fiberwise strictly convex square:
 $$g_{ij}(x, y) = \left[\frac{1}{2} \frac{\partial^2 (F^2)}{\partial y^i \partial y^j} (x, y) \right]$$
 is positively defined.

It can be showed that this implies:

- F is positive in $TM \setminus \{0\}$
Finsler metrics

Main reference:

DEFINITION: A Finsler metric F in a manifold M is a continuous function $F : TM \to [0, +\infty)$ such that:

1. It is C^∞ in $TM \setminus \{0\}$
2. Positively homogeneous of degree one
 $F(x, \lambda y) = \lambda F(x, y)$ for all $\lambda > 0$
3. Fiberwise strictly convex square:

 $g_{ij}(x, y) = \left[\frac{1}{2} \frac{\partial^2 (F^2)}{\partial y^i \partial y^j}(x, y) \right]$ is positively defined.

It can be showed that this implies:

- F is positive in $TM \setminus \{0\}$
- Triangle inequality holds in the fibers
Finsler metrics

Main reference:

DEFINITION: a Finsler metric F in a manifold M is a continuous function $F : TM \to [0, +\infty)$ such that:

1. It is C^∞ in $TM \setminus \{0\}$
2. Positively homogeneous of degree one $F(x, \lambda y) = \lambda F(x, y)$ for all $\lambda > 0$
3. Fiberwise strictly convex square: $g_{ij}(x, y) = \left[\frac{1}{2} \frac{\partial^2 (F^2)}{\partial y^i \partial y^j} (x, y) \right]$ is positively defined.

It can be showed that this implies:

- F is positive in $TM \setminus \{0\}$
- Triangle inequality holds in the fibers
- F^2 is C^1 on TM.

Paul Finsler (1894-1970)

D. Bao, S.S. Chern and Z. Shen
Non-symmetric “distance”

We can define the length of a curve:
\[L(\gamma) = \int_{a}^{b} F(\gamma, \dot{\gamma}) \, ds \]

and then the distance between two points:
\[\text{dist}(p, q) = \inf_{\gamma \in C^\infty(p, q)} L(\gamma) \]

\text{dist} is non-symmetric because \(F \) is non-reversible. The length of a curve \(t \to \gamma(t) \) is different from the length of its reverse \(t \to \gamma(t) \)!! We have to distinguish between forward and backward.
Non-symmetric “distance”

- We can define the length of a curve: \(L(\gamma) = \int_a^b F(\gamma, \dot{\gamma})ds \)
Non-symmetric “distance”

- We can define the length of a curve: \(L(\gamma) = \int_a^b F(\gamma, \dot{\gamma}) ds \)
- and then the distance between two points:
 \[\text{dist}(p, q) = \inf_{\gamma \in C^\infty(p, q)} L(\gamma) \]
We can define the length of a curve: $L(\gamma) = \int_{a}^{b} F(\gamma, \dot{\gamma}) \, ds$

and then the distance between two points:

$$\text{dist}(p, q) = \inf_{\gamma \in \mathcal{C}_\infty(p,q)} L(\gamma)$$

dist is non-symmetric because F is non-reversible
Non-symmetric “distance”

- We can define the length of a curve: $L(\gamma) = \int_a^b F(\gamma, \dot{\gamma}) \, ds$
- and then the distance between two points:
 \[\text{dist}(p, q) = \inf_{\gamma \in C^\infty(p, q)} L(\gamma) \]
- dist is non-symmetric because F is non-reversible
- the length of a curve $t \rightarrow \gamma(t)$ is different from the length of its reverse $t \rightarrow \gamma(t)$!!
We can define the length of a curve: \(L(\gamma) = \int_a^b F(\gamma, \dot{\gamma}) \, ds \)

and then the distance between two points:

\[
\text{dist}(p, q) = \inf_{\gamma \in \mathcal{C}^\infty(p, q)} L(\gamma)
\]

\text{dist} is non-symmetric because \(F \) is non-reversible

the length of a curve \(t \to \gamma(t) \) is different from the length of its reverse \(t \to \gamma(t)! \)

We have to distinguish between forward and backward:

- balls
Non-symmetric “distance”

- We can define the length of a curve: \(L(\gamma) = \int_a^b F(\gamma, \dot{\gamma}) \, ds \)
- and then the distance between two points:
 \[\text{dist}(p, q) = \inf_{\gamma \in C^\infty(p, q)} L(\gamma) \]
- \(\text{dist} \) is non-symmetric because \(F \) is non-reversible
- the length of a curve \(t \to \gamma(t) \) is different from the length of its reverse \(t \to \gamma(t) \)

We have to distinguish between forward and backward:
- balls
- Cauchy sequence
Non-symmetric “distance”

- We can define the length of a curve: $L(\gamma) = \int_a^b F(\gamma, \dot{\gamma}) \, ds$
- and then the distance between two points:
 $\text{dist}(p, q) = \inf_{\gamma \in C^\infty(p, q)} L(\gamma)$
- dist is non-symmetric because F is non-reversible
- the length of a curve $t \to \gamma(t)$ is different from the length of its reverse $t \to \gamma(t)$!!

We have to distinguish between forward and backward:

- balls
- Cauchy sequence
- topological completeness
Non-symmetric “distance”

- We can define the length of a curve: \(L(\gamma) = \int_a^b F(\gamma, \dot{\gamma}) ds \)
- and then the distance between two points:
 \[\text{dist}(p, q) = \inf_{\gamma \in C^\infty(p, q)} L(\gamma) \]
- \(\text{dist} \) is non-symmetric because \(F \) is non-reversible
- the length of a curve \(t \to \gamma(t) \) is different from the length of its reverse \(t \to \gamma(t) \)

We have to distinguish between forward and backward:

- balls
- Cauchy sequence
- topological completeness
- geodesical completeness
Closed Geodesics

A geodesic of \((M,F)\) (parameterized by the arclength) is a critical curve of the energy function

\[E(\gamma) = \int_0^1 F^2(\gamma, \dot{\gamma}) \, ds \]

Existence of closed geodesics in compact manifolds:
At least one: Fet and Lyusternik (51), F. Mercuri (78)

Multiplicity results under topological hypotheses:
Gromoll-Meyer theorem: Betti numbers of \(\Lambda M\) are unbounded
(Matthias 78)
Bangert-Hingston theorem: \(\pi(M)\) is infinite abelian (L. Biliotti, M.A.J. to be published)

Katok metrics (73) in \(S^n\) admit a finite number of closed geodesics.

\(S^2\) admits at least 2 closed geodesics (Bangert-Long, preprint)
\(S^2\) with a Riemannian metric admit infinite many closed geodesics (Franks (92) and Bangert (93))
A geodesic of \((M, F)\) (parameterized by the arclength) is a critical curve of the energy function

\[
E(\gamma) = \int_0^1 F^2(\gamma, \dot{\gamma}) \, ds
\]
Closed Geodesics

A geodesic of \((M, F)\) (parameterized by the arclength) is a critical curve of the energy function

\[E(\gamma) = \int_0^1 F^2(\gamma, \dot{\gamma}) \, ds \]

Existence of closed geodesics in compact manifolds:

- At least one: Fet and Lyusternik (51), F. Mercuri (78)
- Multiplicity results under topological hypotheses:
 - Gromoll-Meyer theorem: Betti numbers of \(\Lambda M\) are unbounded (Matthias 78)
 - Bangert-Hingston theorem: \(\pi_1(M)\) is infinite abelian (L. Biliotti, M.A.J. to be published)
- Katok metrics (73) in \(S^n\) admit a finite number of closed geodesics.
- \(S^2\) admits at least 2 closed geodesics (Bangert-Long, preprint)
- \(S^2\) with a Riemannian metric admit infinite many closed geodesics (Franks (92) and Bangert (93))
Closed Geodesics

A geodesic of \((M, F)\) (parameterized by the arclength) is a critical curve of the energy function

\[
E(\gamma) = \int_0^1 F^2(\gamma, \dot{\gamma}) \, ds
\]

Existence of closed geodesics in compact manifolds:

- At least one: Fet and Lyusternik (51), F. Mercuri (78)
Closed Geodesics

A geodesic of \((M, F)\) (parameterized by the arclength) is a critical curve of the energy function

\[E(\gamma) = \int_0^1 F^2(\gamma, \dot{\gamma}) \, ds \]

Existence of closed geodesics in compact manifolds:
- At least one: Fet and Lyusternik (51), F. Mercuri (78)
- Multiplicity results under topological hypotheses:
Closed Geodesics

A geodesic of \((M, F)\) (parameterized by the arclength) is a critical curve of the energy function

\[E(\gamma) = \int_0^1 F^2(\gamma, \dot{\gamma}) \, ds \]

Existence of closed geodesics in compact manifolds:

- At least one: Fet and Lyusternik (51), F. Mercuri (78)
- Multiplicity results under topological hypotheses:
 - Gromoll-Meyer theorem: Betti numbers of \(\Lambda M\) are unbounded (Matthias 78)

\[S^2 \text{ admits at least 2 closed geodesics} \] (Bangert-Long, preprint)

\[S^2 \text{ with a Riemannian metric admit infinite many closed geodesics} \] (Franks (92) and Bangert (93))
Closed Geodesics

A geodesic of \((M, F)\) (parameterized by the arclength) is a critical curve of the energy function

\[
E(\gamma) = \int_0^1 F^2(\gamma, \dot{\gamma}) \, ds
\]

Existence of closed geodesics in compact manifolds:

- At least one: Fet and Lyusternik (51), F. Mercuri (78)
- Multiplicity results under topological hypotheses:
 - Gromoll-Meyer theorem: Betti numbers of \(\Lambda M\) are unbounded (Matthias 78)
 - Bangert-Hingston theorem: \(\pi(M)\) is infinite abelian (L. Biliotti, M.A.J. to be published)
Closed Geodesics

A geodesic of \((M, F)\) (parameterized by the arclength) is a critical curve of the energy function

\[
E(\gamma) = \int_0^1 F^2(\gamma, \dot{\gamma})\,ds
\]

Existence of closed geodesics in compact manifolds:

- At least one: Fet and Lyusternik (51), F. Mercuri (78)
- Multiplicity results under topological hypotheses:
 - Gromoll-Meyer theorem: Betti numbers of \(\Lambda M\) are unbounded (Matthias 78)
 - Bangert-Hingston theorem: \(\pi(M)\) is infinite abelian (L. Biliotti, M.A.J. to be published)
- Katok metrics (73) in \(S^n\) admit a finite number of closed geodesics.
Closed Geodesics

A geodesic of \((M, F)\) (parameterized by the arclength) is a critical curve of the energy function

\[E(\gamma) = \int_0^1 F^2(\gamma, \dot{\gamma}) \, ds \]

Existence of closed geodesics in compact manifolds:
- At least one: Fet and Lyusternik (51), F. Mercuri (78)
- Multiplicity results under topological hypotheses:
 - Gromoll-Meyer theorem: Betti numbers of \(\Lambda M\) are unbounded (Matthias 78)
 - Bangert-Hingston theorem: \(\pi(M)\) is infinite abelian (L. Biliotti, M.A.J. to be published)
- Katok metrics (73) in \(S^n\) admit a finite number of closed geodesics.
- \(S^2\) admits at least 2 closed geodesics (Bangert-Long, preprint)
Closed Geodesics

A geodesic of (M, F) (parameterized by the arclength) is a critical curve of the energy function

$$E(\gamma) = \int_{0}^{1} F^2(\gamma, \dot{\gamma}) ds$$

Existence of closed geodesics in compact manifolds:

- At least one: Fet and Lyusternik (51), F. Mercuri (78)
- Multiplicity results under topological hypotheses:
 - Gromoll-Meyer theorem: Betti numbers of ΛM are unbounded (Matthias 78)
 - Bangert-Hingston theorem: $\pi(M)$ is infinite abelian (L. Biliotti, M.A.J. to be published)
- Katok metrics (73) in S^n admit a finite number of closed geodesics.
- S^2 admits at least 2 closed geodesics (Bangert-Long, preprint)
- S^2 with a Riemannian metric admit infinite many closed geodesics (Franks (92) and Bangert (93))
Chern Connection

\[\pi: \{0\} \to \mathcal{M}\]

is the natural projection.

Now we take the pullback of \(\mathcal{T}\) by \(d\pi = \pi^*\), that is, \(\pi^*\mathcal{T}\).

We have a metric over this vector bundle given by

\[g_{ij}(x, y) = \frac{1}{4} \partial_x^2 (F^2) \partial_y^i \partial_y^j (x, y),\]

where \(g_{ij}(x, y) = 1\).
\(\pi : TM \setminus \{0\} \rightarrow M \) is the natural projection
\(\pi : TM \setminus \{0\} \to M \) is the natural projection

now we take the pullback of \(TM \) by \(d\pi = \pi^* \), that is, \(\pi^* TM \)
- \(\pi : TM \setminus \{0\} \rightarrow M \) is the natural projection
- now we take the pullback of \(TM \) by \(d\pi = \pi^* \), that is, \(\pi^* TM \)
- We have a metric over this vector bundle given by \(g_{ij}(x, y) dx^i \otimes dx^j \), where

\[
g_{ij}(x, y) = \frac{1}{2} \frac{\partial^2 (F^2)}{\partial y^i \partial y^j}
\]
Given a connection ∇, the connection 1-forms ω^i:

$$\nabla_v \frac{\partial}{\partial x^j} = \omega^i_j(v) \frac{\partial}{\partial x^i}$$
Chern Connection

- Given a connection ∇, the connection 1-forms ω^i_j: $\nabla_v \frac{\partial}{\partial x^j} = \omega^i_j(v) \frac{\partial}{\partial x^i}$
- The **Chern connection** ∇ is the unique linear connection on $\pi^* TM$ whose connection 1-forms ω^i_j satisfy:

\[d\pi^* g_{ij} - g_{kj} \omega^k_i - g_{ik} \omega^k_j = 2 F A^i_{jks} \delta^s_y \]

where δ^s_y are the 1-forms on $\pi^* TM$ given as $\delta^s_y := dy^s + N^s_j dx^j$.

$N^i_j(x, y)$ are the coefficients of the so-called nonlinear connection on $TM \setminus 0$, and $\gamma^i_{jk}(x, y) = \frac{1}{2} g^{rs} y^r y^s$.
Chern Connection

- Given a connection ∇, the connection 1-forms ω^i_j: $\nabla_v \frac{\partial}{\partial x^j} = \omega^i_j(v) \frac{\partial}{\partial x^i}$
- The Chern connection ∇ is the unique linear connection on $\pi^* TM$ whose connection 1-forms ω^i_j satisfy:

$$dx^j \wedge \omega^i_j = 0 \quad \text{torsion free} \quad (1)$$

$$dg_{ij} - g_{kj} \omega^k_i - g_{ik} \omega^k_j = \frac{2}{F} A_{ijs} \delta y^s \quad \text{almost g-compatibility} \quad (2)$$
Chern Connection

- Given a connection \(\nabla \), the connection 1-forms \(\omega^i_j \): \(\nabla_v \frac{\partial}{\partial x^j} = \omega^i_j(v) \frac{\partial}{\partial x^i} \)

- The *Chern connection* \(\nabla \) is the unique linear connection on \(\pi^* TM \) whose connection 1-forms \(\omega^i_j \) satisfy:

\[
dx^j \wedge \omega^i_j = 0 \quad \text{torsion free} \tag{1}
\]

\[
dg_{ij} - g_{kj} \omega^k_i - g_{ik} \omega^k_j = \frac{2}{F} A_{ijs} \delta y^s \quad \text{almost } g\text{-compatibility} \tag{2}
\]

where \(\delta y^s \) are the 1-forms on \(\pi^* TM \) given as \(\delta y^s := dy^s + N^s_j dx^j \), and

\[
N^i_j(x, y) := \gamma^i_{jk} y^k - \frac{1}{F} A^i_{jk} \gamma^r_{rs} y^r y^s
\]

are the coefficients of the so called *nonlinear connection* on \(TM \setminus 0 \), and
Given a connection ∇, the connection 1-forms ω^i_j: $\nabla_v \frac{\partial}{\partial x^j} = \omega^i_j(v) \frac{\partial}{\partial x^i}$.

The **Chern connection** ∇ is the unique linear connection on $\pi^* TM$ whose connection 1-forms ω^i_j satisfy:

\[
dx^j \wedge \omega^i_j = 0 \quad \text{torsion free} \tag{1}
\]

\[
dg_{ij} - g_{kj} \omega^k_i - g_{ik} \omega^k_j = \frac{2}{F} A_{ijs} \delta y^s \quad \text{almost g-compatibility} \tag{2}
\]

where δy^s are the 1-forms on $\pi^* TM$ given as $\delta y^s := dy^s + N^s_j dx^j$, and

\[
N^i_j(x, y) := \gamma^i_{jk} y^k - \frac{1}{F} A^i_{jk} \gamma^k_{rs} y^r y^s
\]

are the coefficients of the so called **nonlinear connection** on $TM \setminus 0$, and

\[
\gamma^i_{jk}(x, y) = \frac{1}{2} g^{is} \left(\frac{\partial g_{sj}}{\partial x^k} - \frac{\partial g_{jk}}{\partial x^s} + \frac{\partial g_{ks}}{\partial x^j} \right), A_{ijk}(x, y) = \frac{F}{2} \frac{\partial g_{ij}}{\partial y^k} = \frac{F}{4} \frac{\partial^3 (F^2)}{\partial y^i \partial y^j \partial y^k},
\]
Covariant derivatives

The components of the Chern connection are given by:

\[\Gamma_{ij}^{k}(x, y) = \gamma_{ij}^{k} - g_{il} F(A_{ljs}^{N} s^{k} - A_{jks}^{N} s^{i} + A_{kls}^{N} s^{j}) \]

that is,

\[\omega_{ij} = \Gamma_{ij}^{k} dx^{k} \]

The Chern connection gives two different covariant derivatives:

\[D_{T}W = \left(dW_{i} dt + W_{j} T^{k} \Gamma_{i}^{j} (\gamma, T) \right) \frac{\partial}{\partial x^{i}} \bigg|_{\gamma(t)} \]

with ref. vector \(T \),

\[D_{T}W = \left(dW_{i} dt + W_{j} T^{k} \Gamma_{i}^{j} (\gamma, W) \right) \frac{\partial}{\partial x^{i}} \bigg|_{\gamma(t)} \]

with ref. vector \(W \).
Covariant derivatives

- The components of the Chern connection are given by:

\[\Gamma^i_{jk}(x, y) = \gamma^i_{jk} - \frac{g^{il}}{F} \left(A_{ljs} N^s_k - A_{jks} N^s_l + A_{kljs} N^s_l \right). \]

that is, \(\omega^i_j = \Gamma^i_{jk} dx^k \).
Covariant derivatives

- The components of the Chern connection are given by:

\[
\Gamma^i_{jk}(x, y) = \gamma^i_{jk} - \frac{g^{il}}{F} \left(A_{ljs} N^s_k - A_{jks} N^s_i + A_{kls} N^s_j \right).
\]

that is, \(\omega^i_j = \Gamma^i_{jk} dx^k\).

- The Chern connection gives two different covariant derivatives:

\[
\begin{align*}
D_T W &= \left(\frac{dW^i}{dt} + W^j T^k \Gamma^i_{jk}(\gamma, T) \right) \frac{\partial}{\partial x^i} \bigg|_{\gamma(t)} \\
D_W W &= \left(\frac{dW^i}{dt} + W^j T^k \Gamma^i_{jk}(\gamma, W) \right) \frac{\partial}{\partial x^i} \bigg|_{\gamma(t)}
\end{align*}
\]

with ref. vector \(T\),

with ref. vector \(W\).
Other connections

- Cartan connection: metric compatible but has torsion
- Hashiguchi connection
- Berwald connection: no torsion. Specially good to treat with Finsler spaces of constant flag curvature
- Rund connection: coincides with Chern connection
Other connections

- Cartan connection: metric compatible but has torsion
Other connections

- Cartan connection: metric compatible but has torsion
- Hashiguchi connection

Masao Hashiguchi

E. Cartan (1861-1940)
Other connections

- Cartan connection: metric compatible but has torsion
- Hashiguchi connection
- Berwald connection: no torsion. Specially good to treat with Finsler spaces of constant flag curvature
Other connections

- Cartan connection: metric compatible but has torsion
- Hashiguchi connection
- Berwald connection: no torsion. Specially good to treat with Finsler spaces of constant flag curvature
- Rund connection: coincides with Chern connection
Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

$$\Omega^i_j := d\omega^i_j - \omega^k_j \wedge \omega^i_k$$
The curvature 2-forms of the Chern connection are:

\[\Omega_{j}^{i} := d\omega_{j}^{i} - \omega_{j}^{k} \wedge \omega_{k}^{i} \]

- It can be expanded as

\[\Omega_{j}^{i} := \frac{1}{2} R_{j}^{i} {}_{kl} dx^{k} \wedge dx^{l} + P_{j}^{i} {}_{kl} dx^{k} \wedge \frac{\delta y^{l}}{F} + \frac{1}{2} Q_{j}^{i} {}_{kl} \frac{\delta y^{k}}{F} \wedge \frac{\delta y^{l}}{F} \]
Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

\[\Omega^i_j := d\omega^i_j - \omega^k_j \wedge \omega^i_k \]

- It can be expanded as

\[\Omega^i_j := \frac{1}{2} R^i_{jkl} dx^k \wedge dx^l + P^i_{jkl} dx^k \wedge \frac{\delta y^l}{F} + \frac{1}{2} Q^i_{jkl} \frac{\delta y^k}{F} \wedge \frac{\delta y^l}{F} \]

- From free torsion of the Chern connection \(Q^i_{jkl} = 0 \)
The curvature 2-forms of the Chern connection are:

\[\Omega_{i}^{j} := d\omega_{j}^{i} - \omega_{j}^{k} \wedge \omega_{k}^{i} \]

- It can be expanded as

\[\Omega_{i}^{j} := \frac{1}{2} R_{j} \; i_{kl} d\!x^{k} \wedge d\!x^{l} + P_{j} \; i_{kl} d\!x^{k} \wedge \frac{\delta y^{l}}{F} \]

- From free torsion of the Chern connection \(Q_{j} \; i_{kl} = 0 \)
Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

\[\Omega_j^i := d\omega_j^i - \omega_j^k \wedge \omega_k^i \]

- It can be expanded as

\[\Omega_j^i := \frac{1}{2} R_j^i_{kl} dx^k \wedge dx^l + P_j^i_{kl} dx^k \wedge \frac{\delta y^l}{F} \]

- From free torsion of the Chern connection \(Q_j^i_{kl} = 0 \)

\[R_j^i_{kl} = \frac{\delta \Gamma^i_j}{\delta x^k} - \frac{\delta \Gamma^i_k}{\delta x^k} + \Gamma^i_{hk} \Gamma^h_{jl} - \Gamma^i_{hl} \Gamma^h_{jk} \left(\frac{\delta}{\delta x^k} = \frac{\partial}{\partial x^k} - N^i_k \frac{\partial}{\partial y^i} \right) \]
The curvature 2-forms of the Chern connection are:

$$\Omega_j^i := d\omega_j^i - \omega_j^k \wedge \omega_k^i$$

- It can be expanded as

$$\Omega_j^i := \frac{1}{2}R_j^i_{kl}dx^k \wedge dx^l + P_j^i_{kl}dx^k \wedge \frac{\delta y^l}{F}$$

- From free torsion of the Chern connection $Q_j^i_{kl} = 0$

$$R_j^i_{kl} = \frac{\delta \Gamma^i}{\delta x^k} - \frac{\delta \Gamma^i}{\delta x^k} + \Gamma^i_{hk} \Gamma^h_{jl} - \Gamma^i_{hl} \Gamma^h_{jk} \left(\frac{\delta}{\delta x^k} = \frac{\partial}{\partial x^k} - N^i_k \frac{\partial}{\partial y^i} \right)$$

$$P_j^i_{kl} = -F \frac{\partial \Gamma^i}{\partial y^l}$$
Bianchi Identities

First Bianchi Identity for R

Other identities:

$$P_{ikjl} = -R_{ijkl} + R_{jikl} = 2B_{ijkl},$$

where $B_{ijkl} := -A_{iju} R_{u kl}$, $R_{u kl} = y_{j} F_{u j kl}$ and $R_{ijkl} = g_{j}^{\mu} R_{i kl} R_{\mu ji} - R_{jikl} = (B_{klji} - B_{jikl}) + (B_{kilj} + B_{ljki}) + (B_{ilji} + B_{jkil})$.

Second Bianchi identities: very complicated, mix terms in $R_{i j kl}$ and $P_{i j kl}$.

Luigi Bianchi (1856-1928)
Bianchi Identities

First Bianchi Identity for R

\[R^i_{\ jkl} + R^i_{\ klj} + R^i_{\ ilj} = 0 \]

Second Bianchi identities: very complicated, mix terms in $R_{ij\ kl}$ and $P_{ij\ kl}$

Luigi Bianchi (1856-1928)
Bianchi Identities

First Bianchi Identity for R

- $R_j^i{}_{kl} + R_k^i{}_{lj} + R_l^i{}_{jk} = 0$

Other identities:

- $P_k^i{}_{jl} = P_j^i{}_{kl}$
Bianchi Identities

First Bianchi Identity for R

- $R_{j}^{i}{}_{kl} + R_{k}^{i}{}_{lj} + R_{l}^{i}{}_{jk} = 0$

Other identities:

- $P_{k}^{i}{}_{jl} = P_{j}^{i}{}_{kl}$
- $R_{ijkl} + R_{jikl} = 2B_{ijkl}$, where

\[B_{ijkl} := -A_{iju}R^{u}{}_{kl}, \quad R^{u}{}_{kl} = \frac{v^{j}}{F}R_{j}^{u}{}_{kl} \]

and

\[R_{ijkl} = g_{j\mu}R_{i}^{\mu}{}_{kl} \]
Bianchi Identities

First Bianchi Identity for R

- $R^i_{j\, kl} + R^i_{k\, lj} + R^i_{l\, jk} = 0$

Other identities:

- $P^i_{k\, jl} = P^i_{j\, kl}$
- $R_{ijkl} + R_{jikl} = 2B_{ijkl}$, where
 \[B_{ijkl} := -A_{iju}R^u_{\ kl}, \ R^u_{\ kl} = \frac{y^j}{F}R^u_{\ j\ kl} \]
 and
- $R_{ijkl} = g_{j\mu}R^\mu_{i\ kl}$
- $R_{klji} - R_{jikl} = (B_{klji} - B_{jikl}) + (B_{kilj} + B_{ljki}) + (B_{ilji} + B_{jkil})$
Bianchi Identities

First Bianchi Identity for R

- $R_{j}^{i}{}_{kl} + R_{k}^{i}{}_{lj} + R_{l}^{i}{}_{jk} = 0$

Other identities:

- $P_{k}^{i}{}_{jl} = P_{j}^{i}{}_{kl}$
- $R_{ijkl} + R_{jikl} = 2B_{ijkl}$, where
 \[B_{ijkl} := -A_{iju}R^{u}{}_{kl}, \quad R^{u}{}_{kl} = \frac{y^{j}}{F}R_{j}^{u}{}_{kl}\]
 \[R_{ijkl} = g_{j\mu}R_{i}^{\mu}{}_{kl}\]
- $R_{klji} - R_{jikl} = (B_{klji} - B_{jikl}) + (B_{kilj} + B_{ljki}) + (B_{ilji} + B_{jkil})$

Second Bianchi identities: very complicated, mix terms in $R_{j}^{i}{}_{kl}$ and $P_{j}^{i}{}_{kl}$
We must fix a flagpole y and then a transverse edge V.

\[K(y, V) := V_i R_{jikl} y^l V^k g(y, y) g(V, V) - g(y, V)^2 \]

We can change V by $W = \alpha V + \beta y$, that is, $K(y, W) = K(y, V)$. We obtain the same quantity with the other connections (Cartan, Berwald, Hashiguchi...).
We must fix a **flagpole** \(y \) and then a **transverse edge** \(V \)

\[
K(y, V) := \frac{V^i (y^j R^l_{ijk} y^l) V^k}{g(y, y)g(V, V) - g(y, V)^2}
\]
We must fix a flagpole y and then a transverse edge V

$$K(y, V) := \frac{V^i (y^j R_{jikl} y^l) V^k}{g(y, y) g(V, V) - g(y, V)^2}$$

- We can change V by $W = \alpha V + \beta y$, that is, $K(y, W) = K(y, V)$.

M. A. Javaloyes ()*
We must fix a flagpole y and then a transverse edge V

$$K(y, V) := \frac{V^i(y^j R^k_{jikl} y^l) V^k}{g(y, y)g(V, V) - g(y, V)^2}$$

- We can change V by $W = \alpha V + \beta y$, that is, $K(y, W) = K(y, V)$.
- We obtain the same quantity with the other connections (Cartan, Berwald, Hashiguchi).
Computing Flag curvature

\[G_i := \gamma_{jk} y_j y_k \] (spray coefficients)

\[2 \mathcal{F} R_{ik} = 2(G_i) x_k - \frac{1}{2} (G_i) y_j (G_j) y_k - y_j (G_i) y_k x_j + G_j (G_i) y_k y_j \]

\[K(y, V) = K(l, V) = V_i (R_{ik} V_k) g(V, V) - g(l, V) \frac{2}{2} , \]

where \(l = y / \mathcal{F} \).

If we consider \(\mathcal{F}(x, y) = \sqrt{\langle y, y \rangle} + df[y] \), with \(\langle \cdot, \cdot \rangle \) the Euclidean metric,

\[G_i = \frac{1}{F f} x_j x_k y_j y_k \], very simple!!

\[K(y, V) = K(x, y) = \frac{3}{4} F^4 (f x_i x_j y_i y_j)^2 - \frac{1}{2} F^3 (f x_i x_j x_k y_i y_j y_k) \]

the flag curvature does not depend on the transverse edge!! it is scalar.
Computing Flag curvature

\[G^i := \gamma^i_{jk} y^j y^k \] (spray coefficients)
Computing Flag curvature

- \(G^i := \gamma^i_{jk} y^j y^k \) (spray coefficients)
- \(2F^2 R^i_k = 2(G^i)_{x^k} - \frac{1}{2}(G^i)_{y^j}(G^j)_{y^k} - y^j(G^i)_{y^k x^j} + G^j(G^i)_{y^k y^j} \)
Computing Flag curvature

- $G^i := \gamma^i_{jk} y^j y^k$ (spray coefficients)
- $2 F^2 R^i_k = 2 (G^i)_x^k - \frac{1}{2} (G^i)_y^j (G^j)_y^k - y^j (G^i)_y^k x^j + G^j (G^i)_y^k y^j$
- $K(y, V) = K(l, V) = \frac{V_i (R^i_k) V^k}{g(V, V) - g(l, V)^2}$, where $l = y/F$.

If we consider $F(x, y) = \sqrt{\langle y, y \rangle} + df[y]$, with $\langle \cdot, \cdot \rangle$ the Euclidean metric, then
Computing Flag curvature

- $G^i := \gamma^i_{jk} y^j y^k$ (spray coefficients)

- $2F^2 R^i_k = 2(G^i)_x - \frac{1}{2}(G^i)_{yj}(G^j)_{yk} - y^j(G^i)_{ykxj} + G^j(G^i)_{ykj}$

- $K(y, V) = K(l, V) = \frac{V_i(R^i_k)V^k}{g(V,V)-g(l,V)^2}$, where $l = y/F$.

If we consider $F(x, y) = \sqrt{\langle y, y \rangle} + df[y]$, with $\langle \cdot , \cdot \rangle$ the Euclidean metric, then

- $G^i = \frac{1}{F} f_{xj} y^j y^k$, very simple!!!
Computing Flag curvature

- \(G^i := \gamma^i_{jk}y^jy^k \) (spray coefficients)
- \(2F^2R^i_k = 2(G^i)_x^k - \frac{1}{2}(G^i)_y^j(G^j)_y^k - y^j(G^i)_y^k x^j + G^j(G^i)_y^k y^j \)
- \(K(y, V) = K(l, V) = \frac{V_i(R^i_k)V^k}{g(V,V) - g(l,V)^2} \), where \(l = y / F \).

If we consider \(F(x, y) = \sqrt{\langle y, y \rangle} + df[y] \), with \(\langle \cdot, \cdot \rangle \) the Euclidean metric, then

- \(G^i = \frac{1}{F} f_x^i x^k y^j y^k \), very simple!!!
- \(K(y, V) = K(x, y) = \frac{3}{4F^4} (f_x^i x^j y^i y^j)^2 - \frac{1}{2F^3} (f_x^i x^j x^k y^i y^j y^k) \)
Computing Flag curvature

- $G^i := \gamma^i_{jk}y^jy^k$ (spray coefficients)
- $2F^2 R^i_k = 2(G^i)_x^k - \frac{1}{2}(G^i)_y^j(G^j)_y^k - y^j(G^i)_y^kx^j + G^j(G^i)_y^ky^j$
- $K(y, V) = K(l, V) = \frac{V_i(R^i_k)V^k}{g(V, V) - g(l, V)^2}$, where $l = y/F$.

If we consider $F(x, y) = \sqrt{\langle y, y \rangle} + df[y]$, with $\langle \cdot, \cdot \rangle$ the Euclidean metric, then

- $G^i = \frac{1}{F} f^i_{xjx^k}y^jy^k$, very simple!!!
- $K(y, V) = K(x, y) = \frac{3}{4F^4}(f^i_{xjx^k}y^jy^k)^2 - \frac{1}{2F^3} (f^i_{xjx^k}y^jy^ky^k)$
- the flag curvature does not depend on the transverse edge!! it is scalar
Finsler metric with constant flag curvature

The complete classification is an open problem, no Hopf’s theorem!!!

In the class of Randers metrics there does exist a classification after a long story.

In 1977 Yasuda and Shimada publish a paper with a characterization of Randers metrics of scalar flag curvature. As a particular case they obtain the Randers metrics of constant flag curvature.

In summer 2000, P. Antonelli asks if Yasuda-Shimada theorem is indeed correct.
The complete classification is an open problem, no Hopf’s theorem!!!
Finsler metric with constant flag curvature

- The complete classification is an open problem, no Hopf’s theorem!!!
- In the class of Randers metrics there does exist a classification after a long story
The complete classification is an open problem, no Hopf’s theorem!!!

In the class of Randers metrics there does exist a classification after a long story

In 1977 Yasuda and Shimada publish a paper with a characterization of Randers metrics of scalar flag curvature
The complete classification is an open problem, no Hopf’s theorem!!!

In the class of Randers metrics there does exist a classification after a long story.

In 1977 Yasuda and Shimada publish a paper with a characterization of Randers metrics of scalar flag curvature.

As a particular case they obtain the Randers metrics of constant flag curvature.
The complete classification is an open problem, no Hopf’s theorem!!!

In the class of Randers metrics there does exist a classification after a long story

In 1977 Yasuda and Shimada publish a paper with a characterization of Randers metrics of scalar flag curvature

As a particular case they obtain the Randers metrics of constant flag curvature

Shibata-Kitayama in 1984 and Matsumoto in 1989 obtain alternative derivations of the Yasuda-Shimada theorem
The complete classification is an open problem, no Hopf’s theorem!!!

In the class of Randers metrics there does exist a classification after a long story.

In 1977 Yasuda and Shimada publish a paper with a characterization of Randers metrics of scalar flag curvature.

As a particular case they obtain the Randers metrics of constant flag curvature.

In summer 2000, P. Antonelli asks if Yasuda-Shimada theorem is indeed correct.
In the academic year of 2000-2001 Colleen Robles (a graduate student) and David Bao begin to work in a geometrical proof of Yasuda-Shimada theorem. In 17th May 2001, Z. Shen phones D. Bao describing a counterexample to Yasuda-Shimada he found when working with Zermelo metrics. In the same year, D. Bao-C. Robles and Matsumoto find independently the correct version of Yasuda-Shimada theorem.

Still no classification (solutions \(\sqrt{h} + h(W, v) \)) must have a \(h \)-Riemannian curvature related with the module of a \(h \)-Killing field. Finally, they perceive that when considering Zermelo expression of Randers metrics, the geometry comes out.
In the academic year of 2000-2001 Colleen Robles (a graduate student) and David Bao begin to work in a geometrical proof of Yasuda-Shimada theorem.
In the academic year of 2000-2001 Colleen Robles (a graduate student) and David Bao begin to work in a geometrical proof of Yasuda-Shimada theorem.

In 17th may 2001 Z. Shen phones D. Bao describing a counterexample to Yasuda-Shimada he found when working with Zermelo metrics.

In the same year D. Bao-C. Robles and Matsumoto find independently the correct version of Yasuda-Shimada theorem.

Still no classification (solutions $\sqrt{h} + h(W, v)$ must have a h-Riemannian curvature related with the module of a h-Killing field.

Finally they perceive that when considering Zermelo expression of Randers metrics the geometry comes out.
In the academic year of 2000-2001 Colleen Robles (a graduate student) and David Bao begin to work in a geometrical proof of Yasuda-Shimada theorem.

In 17th may 2001 Z. Shen phones D. Bao describing a counterexample to Yasuda-Shimada he found when working with Zermelo metrics.

In the same year D. Bao-C. Robles and Matsumoto find independently the correct version of Yasuda-Shimada theorem.
In the academic year of 2000-2001 Colleen Robles (a graduate student) and David Bao begin to work in a geometrical proof of Yasuda-Shimada theorem.

In 17th May 2001 Z. Shen phones D. Bao describing a counterexample to Yasuda-Shimada he found when working with Zermelo metrics.

In the same year D. Bao-C. Robles and Matsumoto find independently the correct version of Yasuda-Shimada theorem.

Still no classification (solutions $\sqrt{h} + h(W, v)$ must have a h-Riemannian curvature related with the module of a h-Killing field W).
In the academic year of 2000-2001 Colleen Robles (a graduate student) and David Bao begin to work in a geometrical proof of Yasuda-Shimada theorem.

In 17th may 2001 Z. Shen phones D. Bao describing a counterexample to Yasuda-Shimada he found when working with Zermelo metrics.

In the same year D. Bao-C. Robles and Matsumoto find independently the correct version of Yasuda-Shimada theorem.

Still no classification (solutions $\sqrt{h} + h(W, v)$ must have a h-Riemannian curvature related with the module of a h-Killing field W).

Finally they perceive that when considering Zermelo expression of Randers metrics the geometry comes out
Flag constant curvature and stationary spacetimes

Zermelo metric:
$$\sqrt{\alpha g(v,v)} + \alpha^2 g(W,W)^2 - \sqrt{\alpha g(W,W)},$$
where \(\alpha = 1 - g(W,W) \).

Randers space forms are those Zermelo metrics having \(h \) of constant curvature and \(W \) a conformal Killing field.

Katok metrics are Randers space forms.

When the Fermat metric associated to a stationary spacetime is of constant flag curvature, then the spacetime is locally conformally flat.

Reciprocal is not true ($\sqrt{h + df}$).

What about scalar flag curvature?
Zermelo metric:

\[
\sqrt{\frac{1}{\alpha} g(v, v) + \frac{1}{\alpha^2} g(W, v)^2 - \frac{1}{\alpha} g(W, v)},
\]

where \(\alpha = 1 - g(W, W) \).
Flag constant curvature and stationary spacetimes

- **Zermelo metric:**
 \[
 \sqrt{\frac{1}{\alpha} g(v, v) + \frac{1}{\alpha^2} g(W, v)^2} - \frac{1}{\alpha} g(W, v),
 \]
 where \(\alpha = 1 - g(W, W) \).

- Randers space forms are those Zermelo metrics having \(h \) of constant curvature and \(W \) a conformal Killing field.
Zermelo metric:

$$\sqrt{\frac{1}{\alpha} g(\nu, \nu) + \frac{1}{\alpha^2} g(W, \nu)^2 - \frac{1}{\alpha} g(W, \nu)},$$

where $\alpha = 1 - g(W, W)$.

Randers space forms are those Zermelo metrics having h of constant curvature and W a conformal Killing field.

Katok metrics are Randers space forms.
Flag constant curvature and stationary spacetimes

- **Zermelo metric:**
 \[\sqrt{\frac{1}{\alpha} g(v, v) + \frac{1}{\alpha^2} g(W, v)^2 - \frac{1}{\alpha} g(W, v)}, \]
 where \(\alpha = 1 - g(W, W). \)

- Randers space forms are those Zermelo metrics having \(h \) of constant curvature and \(W \) a conformal Killing field.

- Katok metrics are Randers space forms.

- When the Fermat metric associated to a stationary spacetime is of constant flag curvature, then the spacetime is locally conformally flat.
Zermelo metric:

\[
\sqrt{\frac{1}{\alpha} g(v, v) + \frac{1}{\alpha^2} g(W, v)^2 - \frac{1}{\alpha} g(W, v)},
\]

where \(\alpha = 1 - g(W, W) \).

Randers space forms are those Zermelo metrics having \(h \) of constant curvature and \(W \) a conformal Killing field.

Katok metrics are Randers space forms.

When the Fermat metric associated to a stationary spacetime is of constant flag curvature, then the spacetime is locally conformally flat.

Reciprocal is not true \((\sqrt{h} + df) \).
Zermelo metric:

\[
\sqrt{\frac{1}{\alpha} g(v, v) + \frac{1}{\alpha^2} g(W, v)^2} - \frac{1}{\alpha} g(W, v),
\]

where \(\alpha = 1 - g(W, W) \).

Randers space forms are those Zermelo metrics having \(h \) of constant curvature and \(W \) a conformal Killing field.

Katok metrics are Randers space forms.

When the Fermat metric associated to a stationary spacetime is of constant flag curvature, then the spacetime is locally conformally flat.

Reciprocal is not true \((\sqrt{h} + df)\).

What about scalar flag curvature?
Schur’s Lemma

Theorem

Let M be a Riemannian manifold with dimension ≥ 3. If for every point $x \in M$ the sectional curvature does not depend on the plane, then M has constant sectional curvature.

Issai Schur (1875-1941)
Let M be a Riemannian manifold with dimension ≥ 3. If for every point $x \in M$ the sectional curvature does not depend on the plane, then M has constant sectional curvature.

- It was established by Issai Schur (1875-1941)
Schur’s Lemma

Theorem

Let M be a Riemannian manifold with dimension ≥ 3. If for every point $x \in M$ the sectional curvature does not depend on the plane, then M has constant sectional curvature.

- It was established by Issai Schur (1875-1941)
Theorem

Suppose M is a 2-dim compact Riemannian manifold with boundary ∂M. Then

$$\int_{M} K \, dA + \int_{\partial M} k_{g} \, ds = 2\pi \chi(M),$$
Gauss-Bonnet Theorem

Theorem

Suppose M is a 2-dim compact Riemannian manifold with boundary ∂M. Then

$$\int_M K \, dA + \int_{\partial M} kg \, ds = 2\pi \chi(M),$$

- **Gauss** knew a version but never published it
Gauss-Bonnet Theorem

Suppose M is a 2-dim compact Riemannian manifold with boundary ∂M. Then
\[\int_M K \, dA + \int_{\partial M} k_g \, ds = 2\pi \chi(M), \]

- **Gauss** knew a version but never published it
- **Bonnet** published a version in 1848

Pierre O. Bonnet (1819-1892)
Gauss-Bonnet Theorem

Theorem

Suppose M is a 2-dim compact Riemannian manifold with boundary ∂M. Then

$$
\int_M K \ dA + \int_{\partial M} k_g \ ds = 2\pi \chi(M),
$$

- **Gauss** knew a version but never published it
- **Bonnet** published a version in 1848
- **Allendoerfer-Weil-Chern** generalized Gauss-Bonnet to even dimensions using the Pfaffian in the mid-40’s

S. S. Chern (1911-2004)

C. Allendoerfer (1911-1974)

André Weil (1906-1998)

M. A. Javaloyes (*)

Flag Curvature
Gauss-Bonnet Theorem

Theorem

Suppose M is a 2-dim compact Riemannian manifold with boundary ∂M. Then

$$\int_M K \, dA + \int_{\partial M} k_g \, ds = 2\pi \chi(M),$$

- **Gauss** knew a version but never published it
- **Bonnet** published a version in 1848
- **Allendoerfer-Weil-Chern** generalized Gauss-Bonnet to even dimensions using the Pfaffian in the mid-40’s
- **Lichnerowitz** (Comm. Helv. Math. 1949) extends the theorem to the Finsler setting in some particular cases

André Lichnerowitz (1915-1998)
Gauss-Bonnet Theorem

Theorem

Suppose M is a 2-dim compact Riemannian manifold with boundary ∂M. Then

$$\int_{M} K \, dA + \int_{\partial M} k_g \, ds = 2\pi \chi(M),$$

- **Gauss** knew a version but never published it
- **Bonnet** published a version in 1848
- **Allendoerfer-Weil-Chern** generalized Gauss-Bonnet to even dimensions using the Pfaffian in the mid-40’s
- **Lichnerowicz** (Comm. Helv. Math. 1949) extends the theorem to the Finsler setting in some particular cases
- **Bao-Chern** (Ann. Math. 1996) extend it to a wider class of Finsler manifolds
Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannian manifold M is bounded below by $(n - 1)k > 0$, then its diameter is at most π/\sqrt{k} and the manifold is compact.
Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannian manifold M is bounded below by $(n - 1)k > 0$, then its diameter is at most π/\sqrt{k} and the manifold is compact.

- Pierre Ossian Bonnet (1819-1892) obtained a version bounding from above the sectional curvatures with a positive constant.
Bonnet-Myers Theorem

Theorem

*If Ricci curvature of a complete Riemannian manifold M is bounded below by $(n - 1)k > 0$, then its diameter is at most π/\sqrt{k} and the manifold is compact.***

- **Pierre Ossian Bonnet** (1819-1892) obtained a version bounding from above the sectional curvatures with a positive constant.
- **Myers** obtained the generalized version with Ric curvatures in 1941.
Bonnet-Myers Theorem

Theorem

*If Ricci curvature of a complete Riemannian manifold \(M \) is bounded below by \((n - 1)k > 0\), then its diameter is at most \(\pi/\sqrt{k} \) and the manifold is compact."

- **Pierre Ossian Bonnet** (1819-1892) obtained a version bounding from above the sectional curvatures with a positive constant.
- **Myers** obtained the generalized version with \(Ric \) curvatures in 1941.
- **Louis Auslander** extended the result to the Finsler setting in 1955 (Trans AMS).
Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannian manifold M is bounded below by $(n - 1)k > 0$, then its diameter is at most π/\sqrt{k} and the manifold is compact.
Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannian manifold M is bounded below by $(n - 1)k > 0$, then its diameter is at most π/\sqrt{k} and the manifold is compact.

- Bao-Chern-Chen assume just forward completeness in their book “Introduction to Riemann-Finsler geometry”
Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannian manifold M is bounded below by $(n - 1)k > 0$, then its diameter is at most π/\sqrt{k} and the manifold is compact.

- **Bao-Chern-Chen** assume just forward completeness in their book “Introduction to Riemann-Finsler geometry”

- Causality reveals that completeness can be substituted by the condition

 $$B^+(x, r) \cap B^-(x, r) \text{ compact for all } x \in M \text{ and } r > 0$$

 (see Caponio-M.A.J.-Sánchez, preprint 09)
Synge’s Theorem

Theorem

If M is an even-dimensional, oriented, complete and connected manifold, with all the sectional curvatures bounded by some positive constant, then M is simply connected.

Louis Auslander (1928-1997) extended the result for Finsler manifolds in 1955. Again the completeness condition can be weakened.
Synge’s Theorem

Theorem

If \(M \) is an even-dimensional, oriented, complete and connected manifold, with all the sectional curvatures bounded by some positive constant, then \(M \) is simply connected.

[Image of John Synge (1897-1995)]
Synge’s Theorem

Theorem

If M is an even-dimensional, oriented, complete and connected manifold, with all the sectional curvatures bounded by some positive constant, then M is simply connected.

- **Louis Auslander** (1928-1997) extended the result for Finsler manifolds in 1955.
Synge’s Theorem

Theorem

If M is an even-dimensional, oriented, complete and connected manifold, with all the sectional curvatures bounded by some positive constant, then M is simply connected.

- Again the completeness condition can be weakened.
Theorem

If M is a geodesically complete connected Riemannian manifold of non positive sectional curvature. Then

- Geodesics do not have conjugate points
- $\exp_p : T_p M \to M$ is globally defined and a local diffeomorphism
- If M simply connected, then \exp_p is a diffeomorphism
If M is a geodesically complete connected Riemannian manifold of non positive sectional curvature. Then

- **Geodesics do not have conjugate points**
- $\exp_p : T_pM \to M$ is globally defined and a local diffeomorphism
- **If M simply connected, then \exp_p is a diffeomorphism**

- Obtained for surfaces in 1898 by Hadamard
Cartan-Hadamard Theorem

Theorem

If M *is a geodesically complete connected Riemannian manifold of non positive sectional curvature. Then*

- Geodesics do not have conjugate points
- $\exp_p : T_p M \to M$ *is globally defined and a local diffeomorphism*
- *If* M *simply connected, then* \exp_p *is a diffeomorphism*

Obtained for surfaces in 1898 by Hadamard
Generalized for every dimension by Cartan
Cartan-Hadamard Theorem

Theorem

If M is a geodesically complete connected Riemannian manifold of non positive sectional curvature. Then

- Geodesics do not have conjugate points
- $\exp_p : T_p M \rightarrow M$ is globally defined and a local diffeomorphism
- If M simply connected, then \exp_p is a diffeomorphism

- Obtained for surfaces in 1898 by Hadamard
- Generalized for every dimension by Cartan
- Extended to Finsler manifolds in 1955 by L. Auslander
Rauch’s Comparison Theorem

Theorem

For large curvature, geodesics tend to converge, while for small (or negative) curvature, geodesics tend to spread.
Rauch’s Comparison Theorem

Theorem

For large curvature, geodesics tend to converge, while for small (or negative) curvature, geodesics tend to spread.

- Proved in the 40’s by A. D. Aleksandrov for surfaces

A. D. ALEKSANDROV (1912-1999)
Rauch’s Comparison Theorem

Theorem

For large curvature, geodesics tend to converge, while for small (or negative) curvature, geodesics tend to spread.

- Proved in the 40’s by A. D. Aleksandrov for surfaces
- Generalized to Riemannian manifolds in 1951 by H. E. Rauch
Rauch’s Comparison Theorem

Theorem

For large curvature, geodesics tend to converge, while for small (or negative) curvature, geodesics tend to spread.

- Proved in the 40’s by **A. D. Aleksandrov** for surfaces
- Generalized to Riemannian manifolds in 1951 by **H. E. Rauch**
- Probably **P. Dazord** was the first one in giving the generalized Rauch theorem in 1968
Theorem

A simply connected connected manifold with \(\frac{1}{4} < K \leq 1 \) is homeomorphic to the sphere.
Sphere Theorem

Theorem

A simply connected connected manifold with \(\frac{1}{4} < K \leq 1 \) is homeomorphic to the sphere.

- Conjecture by Rauch. First proof by M. Berger in 1960

Dazord observes that Klingenberg proof works for reversible Finsler metrics in 1968.
Sphere Theorem

Theorem

A simply connected connected manifold with $\frac{1}{4} < K \leq 1$ is homeomorphic to the sphere.

- Conjecture by Rauch. First proof by M. Berger in 1960
- Alternative proof by Klingenberg in 1961 (obtaining homotopy equivalence rather than homeomorphism)
Theorem

A simply connected connected manifold with \(\frac{1}{4} < K \leq 1 \) is homeomorphic to the sphere.

- Conjecture by Rauch. First proof by M. Berger in 1960
- Alternative proof by Klingenberg in 1961 (obtaining homotopy equivalence rather than homeomorphism)
- Dazord observes that Klingeberg proof works for reversible Finsler metrics in 1968
Theorem

A simply connected connected manifold with \(\frac{1}{4} < K \leq 1 \) is homeomorphic to the sphere.
Theorem

A simply connected connected manifold with \(\frac{1}{4} < K \leq 1 \) is homeomorphic to the sphere.

- In 2004 H. B. Rademacher (Math. Ann.) extends Klingenberg proof to non-reversible Finsler metrics using the hypothesis
 \[
 \left(1 - \frac{1}{1 + \lambda}\right)^2 < K \leq 1, \quad \text{where} \\
 \lambda = \max\{F(-X) : F(X) = 1\}
 \]
Theorem

A simply connected connected manifold with \(\frac{1}{4} < K \leq 1 \) is homeomorphic to the sphere.

- In 2004 H. B. Rademacher (Math. Ann.) extends Klingenberg proof to non-reversible Finsler metrics using the hypothesis
 \[
 \left(1 - \frac{1}{1+\lambda} \right)^2 < K \leq 1, \text{ where } \lambda = \max \left\{ F(-X) : F(X) = 1 \right\}
 \]

- In 2007 S. Brendle and R. Schoen (J. Amer. Math. Soc 2009) prove by using Ricci-flow that there exists a diffeomorphism
Sphere theorem

Theorem

A simply connected connected manifold with \(\frac{1}{4} < K \leq 1 \) *is homeomorphic to the sphere.*

- In 2004 **H. B. Rademacher** (Math. Ann.) extends Klingenberg proof to non-reversible Finsler metrics using the hypothesis
 \[
 \left(1 - \frac{1}{1+\lambda}\right)^2 < K \leq 1, \text{ where} \\
 \lambda = \max\{F(-X) : F(X) = 1\}
 \]

- In 2007 **S. Brendle and R. Schoen** (J. Amer. Math. Soc 2009) prove by using Ricci-flow that there exists a diffeomorphism

- To obtain Rademacher’s result it is enough symmetrized compact balls and bounded reversivity index
Inextendible theorems
Inextendible theorems

- Toponogov theorem? Problems with angles

Victor A. Toponogov (1930-2004)
Inextendible theorems

- Toponogov theorem? Problems with angles
- Submanifold theory (very difficult)
Inextendible theorems

- Toponogov theorem? Problems with angles
- Submanifold theory (very difficult)
- Laplacian theory

Victor A. Toponogov (1930-2004)