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Abstract

We introduce a property for a couple of topologies that allows us
to give simple proofs of some classic results about Borel sets in Ba-
nach spaces by Edgar, Schachermayer and Talagrand as well as some
new results. We characterize the existence of Kadec type renormings
in the spirit of the new results for LUR spaces by Moltó, Orihuela
and Troyanski.

1 Introduction

Throughout this paper (X, ‖.‖) will denote a Banach space, X∗ its dual, w
and w∗ the topologies weak and weak∗ respectively. BX (resp. BX∗) denotes
the unit ball of X (resp. X∗). SX will be the unit sphere of X. We shall
also consider topologies on X of convergence on some subsets of the dual
space. A subset of BX∗ is said to be norming (resp. quasi-norming) if its
w∗-closed convex envelope is BX∗ (resp. contains an open ball centered at
the origin).
A norm ‖.‖ on X is said to have the Kadec property when the weak and
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the norm topologies coincide on its unit sphere. A norm is said to be locally
uniformly rotund (LUR) if for every sequence (xn) in the unit sphere and
for every point x also in the unit sphere such that limn ‖xn + x‖ = 2 then
(xn) converges to x in norm. LUR norms have the Kadec property. For the
proof of this fact and other properties of Banach spaces having an equivalent
LUR norm we refer to the book [4]. There exists Banach spaces having a
Kadec norm and admiting no equivalent LUR norm [11].
Edgar proved [5] that in a Banach space which admits an equivalent Kadec
norm the Borel σ-algebras generated by the weak and the norm topologies
coincide. He also noted that an analogous result also holds when the Kadec
property happens for the weak∗ topology. Schachermayer [6] proved that
a Banach space X that have an equivalent Kadec norm is a Borel set in
(X∗∗, w∗). Talagrand, [26], showed that the two previous results are not
true for general Banach spaces, but he proved, [25], that for subspaces of
weakly compact generated spaces the Borel sets for the topology of point-
wise convergence on a quasi-norming subset of the dual space and the norm
Borel sets are the same.
Jayne, Namioka and Rogers [15] introduced the notion of countable cover
by sets of local small d-diameter (SLD), see Definition 2, for a topological
space with respect to some metric d and they noted that if a Banach space
X has an equivalent Kadec norm then (X, w) has SLD with respect to the
norm which implies the coincidence of Borel sets for the norm and the weak
topology. In fact, property SLD implies coincidence of Borel sets for the
original topology and the metric in a wider topological context. Oncina [22]
has done a deep study of property SLD showing that a Banach space with
SLD for the weak topology respect to the norm is a Borel set in its bidual.
Another aproach to the coincidence of Borel sets and related properties has
been given by Hansell in his unpublished preprint [10] using the notion of
descriptive topological space. In the context of a Banach space endowed
with its weak topology, Hansell’s notion of descriptive space is equivalent to
the property SLD, as pointed out by Moltó, Orihuela, Troyanski and Val-
divia, [20].
Recently Moltó, Orihuela and Troyanski, [19], have characterized the Ba-
nach spaces which does admits an equivalent LUR norm in a Banach space
as those spaces X such that (X, w) has special case of norm SLD: X has an
equivalent LUR norm if and only if (X,w) satisfies Definition 2 and the weak
neighbourhood there is a slice (the intersection with an open half space).
See also the comments after Theorem 2.
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Our aim in this paper is to show that all the above mentioned positive re-
sults on coincidence for Borel σ-algebras and the Borel nature of a Banach
space in its bidual lie in a common topological principle which can to be
used to characterize the existence of Kadec type norms when applied to a
Banach space.
In section 2 we introduce a useful condition (Definition 1) for a couple of
topologies that gives a natural aproach to the study of Borel sets (Propo-
sition 3). When one of the topologies is given by a metric, our property is
equivalent to property SLD (Definition 2, Proposition 2).
In section 3 we use the framework of topological vector spaces to study the
relation between the property SLD and the existence of Kadec type equiv-
alent norms. In particular we show that if X is a Banach space such that
(X, w) has SLD then the weak and the norm topologies coincide on the level
sets of some positive homogeneous function (Theorem 1). We also charac-
terize the existence of an equivalent Kadec norms (Theorem 2) in the spirit
of the recents results on LUR norms by Moltó, Orihuela and Troyanski [19].
In section 4 we apply the previous results to WCD Banach spaces taking ad-
vantage of the existence of a LUR norm to build Kadec norms for topologies
weaker than the weak topology (Theorem 3) and to show the coincidence
of Borel sets improving a result by Talagrand. As an application to non
metric topologies we finish showing that if K is a Radon-Nikodym compact
then C(K) has a equivalent norm such that the weak and the pointwise
topologies coincide on its unit sphere (Theorem 4).

Part of the results of this paper has been anounced in [23].

Acknowledgments. I want to express my thanks to R. Deville, B. Cas-
cales, L. Oncina, J. Orihuela and A. Pallares for fruitful discussions, and
especially, to G. Vera, who first introduced me in analysis.

2 Topological results

We begin with the main definition in this paper. Actually the idea is implicit
in [25]. We recall that a network for some topology is a family of sets not
necessary open such that every open set can be written as a union of sets
in the family.

Definition 1 Let X be a set, τ1 and τ2 two topologies on X. A subset
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A ⊂ X is said to have the property P (τ1, τ2) if there exists a sequence (An)
of subsets of X such that the family of sets (An∩U) where n ∈ N and U ∈ τ2

is a network for τ1, that is, for every x ∈ A and every V ∈ τ1 with x ∈ V
there exists n ∈ N and U ∈ τ2 such that x ∈ An ∩ U ⊂ V .

Evidently, if τ1 ⊂ τ2 then X has P (τ1, τ2), but this case is not interesting.
The relevant case happens when τ2 ⊂ τ1, for instance, in applications to Ba-
nach spaces τ1 and τ2 will be the norm and the weak topology respectively.
If τ1 has a countable basis (Vn) then X has P (τ1, τ2) for whatever topology
τ2, because we can take An = Vn. This happens in particular when (X, τ1)
is metrizable and separable. In fact, we shall use the property introduced
in Definition 1 to extend results valid for separable spaces to nonseparable
spaces.
Observe that if we take the sequence (An ∩ A) we can always suppose that
An ⊂ A. That means that property P (τ1, τ2) only depends on A equiped
with the relative topologies.
To check P (τ1, τ2) for a given A it is enough to verify the above set inclu-
sion for all the V ’s belonging to a sub-basis of τ1, because then A will have
P (τ1, τ2) with the countable family of the finite intersections of sets of the
sequence (An).

The following proposition contains some other elementary consequences
of the Definition 1.

Proposition 1 Let X be a set, τ1, τ2 and τ3 topologies on X and A a subset
of X. Then

i) If A has P (τ1, τ2) and B ⊂ A then B has P (τ1, τ2).

ii) If A has P (τ1, τ2) and P (τ2, τ3) then A has P (τ1, τ3).

iii) If every point of A has a τ1-basis of neighbourhoods which is made up
of τ2-closed sets then the sequence (An) in Definition 1 can be taken
of τ2-closed sets.

iv) If every set An of Definition 1 is τ2-Borel then for every V ∈ τ1 such
that A ⊂ V , there is a τ2-Borel set B satisfying A ⊂ B ⊂ V . In
particular, if A is τ1-open, or more generally, if A is a Gδ-set for the
τ1-topology, then A is τ2-Borel.
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Proof. i) The same sequence (An) satisfies Definition 1.
ii) If (Bm) is a sequence for P (τ2, τ3) it is easy to check that (An ∩ Bm)
satisfies the condition in Definition 1 for P (τ1, τ3).
iii) Fix x ∈ A. Take V ∈ τ1 with x ∈ V . Take V0 ∈ τ1 such that x ∈ V0 and
V0

τ2 ⊂ V . There exists An and U ∈ τ2 such that x ∈ An ∩ U ⊂ V0. Thus

x ∈ An
τ2 ∩ U ⊂ An ∩ U

τ2 ⊂ V0
τ2 ⊂ V

iv) For every x ∈ A there exists nx ∈ N and Ux ∈ τ2 such that x ∈ Anx∩Ux ⊂
V . Now we have that

A =
⋃
x∈A

{x} ⊂
⋃
x∈A

Anx ∩ Ux =
∞⋃

n=1

(An ∩
⋃

nx=n

Ux) = B ⊂ V

where B is clearly in Borel(X, τ2).
If A =

⋂∞
n=1 Vn where Vn ∈ τ1 we can take τ2-Borel sets (Bn) such that

A ⊂ Bn ⊂ Vn. Then A =
⋂∞

n=1 Bn.

A particularly interesting case occurs when τ1 is metrizable. In this
case the property introduced in Definition 1 agrees with the following one
given by Jayne, Namioka and Rogers in [15] which is a special case of their
σ-fragmentability.

Definition 2 Let (X, τ) be a topological space and let d be a metric on X.
It is said that X has a countable cover by set of small local diameter (SLD)
if for every ε > 0 there exists a decomposition

X =
∞⋃

n=1

Xε
n

such that for each n ∈ N every point of Xε
n has a relatively non empty

τ -neighbourhood of diameter less than ε.

A Banach space X is said to have countable Szlenk index if for every
ε > 0, there is a decreasing transfinite countable sequence of subsets (Cα)
such that BX =

⋃
α(Cα \ Cα+1) and every point of Cα \ Cα+1 has a relative

weak neighbourhood in Cα of diameter less than ε. These spaces have been
considered by Lancien in [18]. Clearly, if X has countable Szlenk index,
then (X,w) has ‖.‖-SLD. However, a separable Banach space X without
the Point of Continuity Property does not have countable Szlenk index but
(X, w) has ‖.‖-SLD.
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Proposition 2 Let (X, τ) be a topological space and d a metric on X. Then
X has countable cover by sets of small local diameter if and only if X has
P (d, τ). Moreover, if the closed d-balls are τ -closed then the sets Xε

n in
Definition 2 can be taken as differences of τ -closed sets.

Proof. If Xε
n are the sets of Definition 2 it is easy to check that the sets

(An) obtained arranging into a sequence by a diagonal proccess (X
1
m
n )n,m

satisfy Definition 1.
For the other implication, given ε > 0 just define

Xε
n = {x ∈ An : ∃U ∈ τ, x ∈ U, diam(An ∩ U) < ε}

The moreover part is consequence of point iii) of Proposition 1.

The following result shows the good Borel behaviour of a topological
space (X, τ) that has P (d, τ) for some adecuate metric d. The statement a)
has been already noted by Jayne, Namioka and Rogers in [15] and [17], in
terms of the property SLD.

Proposition 3 Let (Y, τ) be a topological space and d a metric on Y stronger
than τ and such that the closed d-balls are τ -closed. Let X be a subset of Y
having P (d, τ).

a) Considering X with the inherited topologies then

Borel(X, τ) = Borel(X, d)

b) If X is d-closed in Y then X ∈ Borel(Y, τ).

Proof. a) Evidently every τ -Borel set is a d-Borel set. Conversely, if V ⊂ X
is a d-open set then it has P (d, τ). As the closed d-balls are τ -closed we can
apply iii) and iv) of Proposition 1 to get that V is τ -Borel.
b) Being X a Gδ-set in (Y, d), the result follows from iii) and iv) of Propo-
sition 1.

The next corollary contains the applications of property SLD to Ba-
nach spaces by Jayne, Namioka and Rogers [15], Oncina [22] and Hansell
[10] (this last using the notion of descriptive space) that improve preced-
ing ones by Edgar [5] and Schachermayer [6] on Banach spaces admiting
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Kadec norms. We shall prove later that Banach spaces having P (‖.‖, τ) are
not very different from the Banach spaces that admits an equivalent Kadec
norm (Theorem 1).

Corollary 1 Let X be a Banach space and τ a vector topology weaker than
the norm and such that BX

τ
is bounded.

a) If X has P (‖.‖, τ), then Borel(X, ‖.‖) = Borel(X, τ).

b) If X has P (‖.‖, w), then X ∈ Borel(X∗∗, w∗).

Proof. Note that BX
τ

is the unit ball of an equivalent norm on X whose
closed balls are τ -closed. Then apply proposition 3.

Let us remark that BX
τ

is bounded, for instance, when τ is a topology
of convergence on a norming or a quasi-norming subset of X∗.

As a consequence of Proposition 3 we give an application to descriptive
topology. Following Fremlin, see [16], a completely regular topological space
X is Čech-analytic if for every finite sequence of positive integers s there is
a set A(s) open or closed in the Čech-Stone compactification of X such that

X =
⋃

σ∈NN

∞⋂
n=1

A(σ|n)

where σ|n denotes the finite sequence made up from the first n terms of
the sequence σ. The notion of Čech-analytic space has some interest in
the context of nonseparable and nonmetrizable topological spaces (e.g. a
Banach space endowed with its weak topology), where the classic descriptive
set theory is not applicable in general. We address the interested reader
to [16] and [10] for more information about Čech-analytic spaces and its
applications to Banach spaces.

Corollary 2 Let (X, τ) be a topological space. Suppose that there is a set T
such that X can be identified as a subspace of RT with the pointwise topology
which is made up of bounded functions and that is complete for the metric
d on X of uniform convergence on T . If X has P (d, τ), then X is a Borel
subset of RT , in fact a pointwise (F ∩G)σδ, and (X, τ) is Čech-analytic.
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Proof. We can assume that d is defined on RT and it is stronger than the
pointwise topology with pointwise d-closed balls. As X is complet for d,
then it is d-closed in RT and we finish applying the proofs of Propositions 1
and 3.
Acording to [16] a suficient condition for (X, τ) to be Čech-analytic is be-
ing homeomorphic to a Borel subset of some compact space. The reasoning

above shows that X∩[−n, n]T is Borel in [−n, n]T , so it is Borel in RT
where

R is the two points compactification of R. Now, as X = ∪∞n=1X ∩ [−n, n]T

it is a Borel set in the compact RT
.

Hansell proves in [10] that a descriptive topological space is always Čech-
analytic, in particular, every Banach space X such that (X,w) is ‖.‖-SLD
is Čech-analytic, see [20]. Corollay 2 contains more information about the
structure of X in that particular case.
Under the hypothesis of Corollary 2, it is easy to show that every d-Borel
subset of X is pointwise Borel in RT and analogously Čech-analitic.

3 Kadec norms

It is convenient for our purposes to give a more general definition of Kadec
norm involving topologies different from the weak topology.

Definition 3 Let X be a Banach space and τ a vector topology weaker than
the norm topology. An equivalent norm ‖.‖ is said τ -Kadec if the norm
topology and τ coincide on the unit sphere of ‖.‖.

Next result appears in [1].

Proposition 4 A τ -Kadec norm ‖.‖ is τ -lower semicontinuous, that is, its
unit ball is always τ -closed.

Proof. Suppose that ‖.‖ is not τ -lsc. Then there is a net (xω) on the unit
sphere SX and a point x out of the unit ball BX such that τ -limω xω = x.
Take numbers tω > 1 such that ‖x + tω(xω − x)‖ = ‖x‖. Let yω =
x + tω(xω − x). Note that {tω} is bounded because infω ‖xω − x‖ > 0.
We deduce that τ -limω yω = x. Since ‖yω‖ = ‖x‖ we should have that
limω ‖yω − x‖ = 0, but this is impossible because ‖yω − x‖ ≥ ‖xω − x‖.
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As said in the introduction, LUR norms provide us examples of norms
with the Kadec property. In fact, it is not difficult to prove that a τ -lower
semicontinuous LUR norm is τ -Kadec. At this point it is important to
remark that if the unit ball of a Banach space is τ -closed for some vec-
tor topology τ , then the new unit ball after a renorming is no necessary
τ -closed. For example, there exist a dual Banach space that admits an
equivalent LUR norm but admiting no equivalent dual LUR norm, see the
remarks after Theorem 3.

Given two topologies τ1 and τ2 on X and a family Σ of subsets of X we
shall say that Σ is good at x ∈ X if for every V ∈ τ1 with x ∈ τ1 there exists
S ∈ Σ and U ∈ τ2 such that x ∈ S ∩ U ⊂ V . Good family means a family
good at every point of X. It is easy to see that a family Σ covering X such
that on every S ∈ Σ the topologies τ1 and τ2 coincide is good and property
P (τ1, τ2) is equivalent to the existence of a countable good family.
The following lemma shows how to make a good family of “thick sets” from
a good one made up of “thin sets”.

Lemma 1 Let X be a vector space, τ2 ⊂ τ1 vector topologies on X and Σ
a family good at some x ∈ X. Then the family

{S + W : S ∈ Σ, 0 ∈ W ∈ τ1}
is good at x.
Thus, if Σ and Π are families of subsets of X such that for every S ∈ Σ and
every W ∈ τ1 with 0 ∈ W there exists P ∈ Π such that

S ⊂ P ⊂ S + W

then Π is good if and only if Σ is good.

Proof. Given V ∈ τ1 with x ∈ V we shall find S ∈ Σ, 0 ∈ W ∈ τ1 and
U ∈ τ2 such that

x ∈ (S + W ) ∩ U ⊂ V

As 0 + x ∈ V we can take W1, V
′ ∈ τ1 with 0 ∈ W1, x ∈ V ′ and

W1 + V ′ ⊂ V . Since Σ is good at x we can take S ∈ Σ and U ′ ∈ τ2

such that x ∈ S ∩ U ′ ⊂ V ′. As 0 + x ∈ U ′ we can take W2, U ∈ τ2 with
0 ∈ W2, x ∈ U and W2 + U ⊂ U ′. Now take W = W1 ∩ (−W2) ∈ τ1. We
shall show that U and W verify the above set inclusion. If y ∈ (S +W )∩U
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then there is z ∈ S such that y−z ∈ W ⊂ −W2 so z = (z−y)+y ∈ U ′ thus
z ∈ S∩U ′ ⊂ V ′. Now as y−z ∈ W ⊂ W1 we have that y = (y−z)+z ∈ V .

The applications of Kadec type norms to the results developed in sec-
tion 2 are contained in the following lemma.

Lemma 2 Let (X, ‖.‖) a normed vector space, τ2 ⊂ τ1 vector topologies
on X weaker than the norm topology. Suppose that there exists a positive
homogeneous function F on X such that:

a) F (x) ≥ c‖x‖ for some c > 0.

b) τ1 and τ2 coincide on the set S = {x ∈ X : F (x) = 1}.
Then X has P (τ1, τ2). In particular, if X is a Banach space that admits
an equivalent τ -Kadec norm for some weaker vector topology τ then X has
P (‖.‖, τ).

Proof. Consider the following families of sets: Σ = {S(t) : t ∈ [0,∞)} and
the countable one Π = {A(r, s) : r, s ∈ Q, 0 ≤ r ≤ s} where

S(t) = {x ∈ X : F (x) = t}

A(r, s) = {x ∈ X : r ≤ F (x) ≤ s}
If W ∈ τ1 is neighbourhood of 0 then it contains some ball B[0, δ]. It is easy
to see that for δ small enough

S(t) ⊂ A(t− cδ, t + cδ) ⊂ S(t) + W

The result follows from Lemma 1.

Combining Proposition 1, Corollary 1 and the previous lemma we easily
obtain the theorems of Edgar and Schachermayer. Note that a more direct
proof of Edgar’s theorem just needs a special case of lemma 1 and the idea
of point iv) of Proposition 1. Schachermayer theorem besides needs point
iii) of Proposition 1.

Corollary 3 Let X be a Banach space that admits an equivalent Kadec
norm. Then Borel(X, ‖.‖) = Borel(X,w) and X ∈ Borel(X∗∗, w∗).
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Next theorem is the main result of this section. It provides us with a
converse of Lemma 2 in the metric case. A partial similar result have been
proved by Lancien in [18].

Theorem 1 Let X be a Banach space and τ a vector topology coarser than
the norm topology such that BX

τ
is bounded. Then the following are equiv-

alent:

i) X has P (‖.‖, τ) (equivalently, (X, τ) has ‖.‖-SLD).

ii) There exists a non negative symetric homogeneous τ -lower semicon-
tinuous function F on X with ‖.‖ ≤ F ≤ 3‖.‖ such that the norm
topology and τ coincide on the set

S = {x ∈ X : F (x) = 1}

Proof. ii) ⇒ i) This is in fact Lemma 2.
i) ⇒ ii) We shall assume that X is endowed with a τ -lower semicontinuous
equivalent norm ‖.‖. B(0, a) and B[0, a] will be the open and the closed
balls of center 0 and radius a. As usual BX = B[0, 1].
Suppose that X has P (‖.‖, τ) with the sequence (An). We can suppose
every set An star shaped with respect to 0 and norm open. To see that we
are going to modify the sequence in several steps.
First step. Take A′

n = An ∩BX .
Second step. Take

A′′
n = {tx : 0 ≤ t ≤ 1, x ∈ A′

n}

We are going to check that (A′′
n) is good for the points of the unit sphere

SX . Let x ∈ SX and ε > 0. Appling Lemma 1 we can find U ∈ τ , n ∈ N
and δ > 0 such that x ∈ A′

n ∩ U and diam((A′
n + B(0, δ)) ∩ U) < ε. Now it

is clear that

A′′
n ∩ (U \B[0, 1− δ]) ⊂ (A′

n + B(0, δ)) ∩ U

Thus U ′ = U \B[0, 1− δ] ∈ τ verify x ∈ A′′
n ∩ U ′ and diam(A′′

n ∩ U ′) < ε.
Third step. The family

{rA′′
n + B(0, δ) : n ∈ N, r ≥ 0, δ > 0, r, δ ∈ Q}
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is good for X after Lemma 1. Renumbering the index this family will be
the desired (An).
Clearly the sets An

τ
are star shaped with respect to 0. Let fn be the

Minkowski’s functional of An
τ
. Since An

τ
= {fn ≤ 1} the function fn is

τ -lower semicontinuous. Let ‖fn‖ be the supremun of |fn(x)| with x ∈ BX .
The function F given by the formula

F (x) = ‖x‖+
∞∑

n=1

1

2n

fn(x)

‖fn‖ +
∞∑

n=1

1

2n

fn(−x)

‖fn‖

is τ -lower semicontinuous and symetric.
Let (xω) ⊂ S a net τ -converging to some x ∈ S. From the τ -lower semicon-
tinuity of ‖.‖ and fn we have that

‖x‖ ≤ lim inf
ω

‖xω‖

fn(x) ≤ lim inf
ω

fn(xω)

fn(−x) ≤ lim inf
ω

fn(−xω)

On the other hand, it is not difficult to see that

1 ≥ lim inf
ω

‖xω‖+
∞∑

n=1

1

2n‖fn‖ lim inf
ω

fn(xω) +
∞∑

n=1

1

2n‖fn‖ lim inf
ω

fn(−xω)

Since F (x) = 1, a simple reasoning with lim sup gives the following equalities
and the existence of its left members

lim
ω
‖xω‖ = ‖x‖

lim
ω

fn(xω) = fn(x)

lim
ω

fn(−xω) = fn(−x)

for every n ∈ N.
Fix ε > 0. After the proof of iii) of Proposition 1 there exists n ∈ N and
U ∈ τ such that x ∈ An ∩ U and diam(An

τ ∩ U) ≤ ε. In particular, as
An is norm open then fn(x) < 1 so for ω big enough fn(xω) < 1 and thus
xω ∈ An

τ
. Since for ω big enough we have that xω ∈ U we obtain that

‖xω − x‖ ≤ ε. This proves that the net (xω) converges to x in norm, so the
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norm topology and τ coincide on S.

Clearly the constant 3 in the statement ii) of the preceding theorem can
be changed by any constant greater than 1. In fact every function of the
form ‖.‖+ aF with a > 0 has the same property. This also shows that the
norm can be aproximated uniformly by functions with the Kadec property
provided the existence of one at least.
Note that S is a norm Gδ-set in B = {x ∈ X : F (x) ≤ 1}, thus (S, τ) is
completly metrisable.

A remarkable theorem of Kadec, see [2, pg. 177], shows that every sep-
arable Banach space has an equivalent τ -Kadec norm for the topology τ of
convergence on a prefixed quasi-norming subset of its dual space. The fol-
lowing result characterizes the existence of τ -Kadec norms in general Banach
spaces extending Kadec’s theorem.

Theorem 2 Let X be a Banach space and τ a weaker topology such that
BX

τ
is bounded. Then X has a equivalent τ -Kadec norm if and only if X

has P (‖.‖, τ) where the sets (An) in Definition 1 are convex, in other words,
if there exists convex sets An ⊂ X such that for every x ∈ X and every ε > 0
there is n ∈ N and U ∈ τ such that x ∈ An ∩ U and diam(An ∩ U) < ε.

Proof. If we begin with (An) convex in the proof of Theorem 1 it is easily
checked that all the families of sets built there are still convex. Thus F is
subadditive and it is so an equivalent τ -Kadec norm.
For the converse assume that the norm of X is τ -Kadec. The proof of
Lemma 2 shows that X has P (‖.‖, τ) with a sequence of differences of closed
balls centered at 0. As the closed balls are τ -closed we deduce that the se-
quence of closed balls with rational radius satisfies what is required.

We do not know if property P (‖.‖, w) implies the existence of an equiv-
alent Kadec norm.

Recently Moltó, Orihuela and Troyanski [19] have given a characteriza-
tion of the existence of an equivalent LUR norm in a Banach space using
a variant of Definition 2. Their result can be reformuled in similar terms
to those of Definition 1 as follows: a Banach space X admits a LUR norm
if and only if there exists a sequence of sets An ⊂ X such that for every
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x ∈ X and every ε > 0 there is n ∈ N and an open semispace U such that
x ∈ An ∩ U and diam(An ∩ U) < ε. Note that the topological counterpart
of this result is Theorem 1 applied to the weak topology but to deduce that
the function F is in fact a Kadec norm we did need a geometric asumption
about the sets An.

4 Applications

A Banach space X is said to be weakly countably determined (WCD) if
there exists a sequence (Kn) of w∗-compact sets of X∗∗ such that for every
x ∈ X and every y ∈ X∗∗\X there is n ∈ N with x ∈ Kn and y 6∈ Kn. WCD
Banach spaces generalise in a natural way the weakly compact generated
Banach spaces (WCG), that is, the spaces containing a total weakly compact
set. A WCD Banach space admits a LUR norm, [28].
The coincidence of Borel families in the following theorem improves one by
Talagrand [25] for subspaces of WCG Banach spaces.

Theorem 3 Let X be a WCD Banach space and let τ be a Hausdorff vec-
tor topology weaker than the weak topology of X. Then X has P (‖.‖, τ).
Moreover, if BX

τ
is bounded then X also admits a τ -Kadec norm and

Borel(X, ‖.‖) = Borel(X, τ)

Proof. We can assume without loss of generality that the sequence (Kn)
is closed by finite intersections. Indeed, we claim that the sequence of w∗-

closed convex hulls {co(Kn)
w∗} also satisfies the above definition. Indeed,

fix x ∈ X and y ∈ X∗∗ \ X. The set K =
⋂

x∈Kn
Kn is a weakly compact

set of X containing x. Now, since co(K)
w

is a weak∗-compact convex set
not containing y, there is a weak∗-open half space H such that x ∈ H and

y 6∈ H
w∗

. By compactness, there is n ∈ N such that x ∈ Kn ⊂ H. As

co(Kn)
w∗ ⊂ H

w∗
we have that x ∈ co(Kn)

w∗
and y 6∈ co(Kn)

w∗
. This ends

the proof of the claim.
First we are going to check that X has P (w, τ). For every x ∈ X define

Sx =
⋂

Kn3x

Kn

By definiton of WCD it is clear that Sx is weakly compact set of X. If
we take {Sx} as Σ and the traces on X of finite intersections of Kn’s as a
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countable family Π, we shall show that conditions in Lemma 1 are fulfilled.
Indeed, Σ covers X and τ and w coincide on every Sx by compactness so
it is good for (w, τ). Now let W be a weak neighbourhood of 0 and let W ′

be a weak∗ neighbourhood of 0 in X∗∗ such that W = X ∩W ′. For some
increasing sequence of integers (nj) we have Sx =

⋂
j Knj

. By compactness
there is a finite number of Knj

’s whose intersection is contained in Sx +W ′.
So X has convex P (w, τ).
Since a WCD banach space admits a Kadec norm, it has convex P (‖.‖, w).
Now X has P (‖.‖, τ) by ii) of Proposition 2 with convex sets. The existence
of a τ -Kadec equivalent norm follows from Theorem 2 and the coincidence
of Borel sets follows from Corollary 1.

Using the general definition of countably determined topological space
(X, τ1) by usco maps it is possible to prove that X has P (τ1, τ2) for every
weaker Hausdorff topolgy τ2, but it is not clear if that implies the coinci-
dence of Borel sets. For example, in the preceding theorem, if we want to
prove the coincidence of Borel sets for τ and the weak topology directly
from the fact that X has P (w, τ) we have to check that X ∩Kn is τ -Borel
which is not evident except in the case of a WCG space. Roughly speaking
that was the argument of Talagrand [25], but WCD spaces were introduced
some years later.
In the particular case of a dual WCD space when τ is the weak∗ topology it is
known that the space admits a equivelent dual LUR norm [8]. Without the
hypothesis of WCD the result may be no true: the space J(ω1) is a dual with
the Radon-Nikodym property, so it admits a equivalent LUR norm [9], but
Borel(J(ω1), w

∗) is a proper subset of Borel(J(ω1), w) = Borel(J(ω1), ‖.‖)
[7]. A natural generalization of dual WCD are the dual spaces X∗ such that
(BX∗∗ , w∗) is a Corson compact but in this case there may be no dual LUR
norm [12].

This corollary is inspired in a result of [5] for WCG spaces.

Corollary 4 Let Y be a Banach space and τ a vector topology weaker than
the weak topology of Y such that the unit ball BY

τ
is bounded. If X is a

WCD norm closed subspace of Y then X is a τ -Borel set in Y .

Proof. Note that τ is Hausdorff. We deduce from Theorem 3 that X has
P (‖.‖, τ). Now apply b) of Proposition 3.
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It is not difficult to see that in the conditions of Corollary 3 if X is Kσδ

in (X∗∗, w∗) (for example when X is WCG) then it is a Fσδ in (Y, τ) while
the proof of Corollary 4 gives that X is a (F ∩ G)σδ. It is not known if a
WCD Banach space is always a Kσδ in (X∗∗, w∗), see [4, Problem VI.3].

It is known that K-analytic topological spaces are Čech-analytic for ev-
ery Hausdorff weaker topology. The same result is not true in general for
WCD topological spaces. The next corollary gives a positive answer in the
particular case of Banach spaces and “reasonable” topologies.

Corollary 5 Let X be a WCD Banach space and τ the topology of conver-
gence on a quasi norming subset of X∗. Then (X, τ) is Čech-analytic.

Proof. Using an equivalent norm we can suppose that τ is given by a norm-
ing subset. Then apply Corollary 2.

Let us mention here that we also have as consequence of Proposition 2
and Theorem 3 that in the hypothesis of Corollary 5, (X, τ) is σ-fragmentable
and, in particular, the τ -compact sets of X are fragmentable, see [3] for the
definitions and some consequences.

A typical situation is the case of C(K) spaces with the pointwise topol-
ogy. There is a huge family of compact spaces K called Valdivia compacts
such that C(K) admits a LUR norm which makes pointwise closed the unit
ball [27]. So the results above are applicable, in particular the Borel sets for
the norm and the pointwise topologies coincide. Recently Haydon, Jayne,
Namioka and Rogers [13] have showed that if K is a totally ordered set that
is compact in its order topology then C(K) admits a norm with the prop-
erty of Kadec for the pointwise topology so the same coincidence of Borel
sets happens.

A different class of compact spaces where we can check directly the
coincidence of Borel sets in C(K) for the weak and the pointwise topologies
is the class of Radon-Nikodym compact spaces. Originally, a compact space
is said Radon-Nikodym when it is homeomorphic to a w∗-compact of a dual
with the Radon-Nikodym property. Equivalently, a compact K is Radon-
Nikodym if and only if there exists a stronger lower semicontinuous metric
d on K such that every Radon measure on K is the restriction of a Radon
measure on (K, d), [21] and [14].

16



Theorem 4 Let K be a Radon-Nikodym compact space. Then the C(K)
has a equivalent pointwise lower semicontinuous norm such that on its unit
sphere the weak and the pointwise topologies coincide, C(K) has P (w, tp(K))
and

Borel(C(K), w) = Borel(C(K), tp(K))

Proof. A continuous function on K is d-uniformly continuous. Indeed,
suppose not. Then we can take sequences (xn) and (yn) in K such that
limn d(xn, yn) = 0 while |f(xn)−f(yn)| ≥ δ for some δ > 0. By an ultrafilter
we get the sequences to converge to the limits x and y respectly. But by
the the lower semicontinuity of d we have d(x, y) = 0 so x = y and this is a
contradiction with the continuity of f .
Fix a d-dense set (xα)α∈Γ. Now we define the seminorns On as follows

On(f) = sup
α

sup {|f(x)− f(xα)| : d(x, xα) ≤ 1

n
}

Clearly On is pointwise lower semicontinuous and since every f ∈ C(K)
is d-uniformly continuous for every δ > 0 there exists n ∈ N such that
On(f) < δ.
Define a new norm by the formula

‖|f‖| = ‖f‖+
∞∑

n=1

1

2n
On(f)

Evidently ‖.‖ ≤ ‖|.‖| ≤ 3‖.‖. Thus ‖|.‖| is an equivalent norm in C(K). It
is also no hard to check that the unit ball of ‖|.‖| is pointwise closed.
We are going to check that the weak and the pointwise topologies coincide
on the set S = {f ∈ C(K) : ‖|f‖| = 1}. Let (fω) be a net in S pointwise
converging to f ∈ S. Take a Radon measure µ with ‖µ‖ ≤ 1 that we
suppose already defined on Borel(K, d) and take ε > 0.
From the pointwise lower semicontinuity of ‖.‖ and On reasoning like in
Theorem 1 we obtain that limω On(fω) = On(f) for every n ∈ N.
Now fix n ∈ N such that On(f) ≤ ε/8. Then for ω big enough On(fω) ≤ ε/6.
Since µ has a d-separable d-support we can fix F ⊂ Γ finite such that

|µ|(
⋃
α∈F

B[xα,
1

n
]) > |µ|(K)− ε

4

17



If ω is big enough then |fω(xα)−f(xα)| ≤ ε/6 for α ∈ F . So |fω(x)−f(x)| ≤
ε/2 for every x ∈ ∪α∈F B(xα, 1/n).
Having in mind that ‖f‖ and ‖fω‖ are bounded by 1, an easy calculus gives
that

|µ(fω − f)| ≤
∫
|fω − f | d|µ| ≤ ε

which implies that (fω) converges weakly to f .
Now apply Lemma 2 to deduce that C(K) has P (w, tp(K)). Since the unit
ball is pointwise closed the weak and the pointwise topologies have the same
Borel sets by iv) of Proposition 1, moreover, every weak open is a countable
union of differences of pointwise closed sets.

Clearly Theorem 3 is still true for a continuous image of a RN-compact.
We know no example of compact space with different Borel sets for the weak
and the pointwise topology.
Note that if K is a RN-compact space such that (C(K), w) has ‖.‖-SLD,
then (C(K), tp(K)) has ‖.‖-SLD. In particular, K has the Namioka property,
see [15].
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[19] A. Moltó, J. Orihuela, S. Troyanski, Locally uniform rotund renorming
and fragmentability, Proc. London Math. Soc. (3) 75 (1997), 619-640.
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