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Abstract

Given a Banach space X and a norming subspace Z ⊂ X∗ we intro-
duce a geometrical method to characterize the existence of an equivalent
σ(X, Z)-lsc LUR norm on X. A new simple proof of the Theorem of
Troyanski: every rotund space with a Kadec norm is LUR renormable,
and a generalization of the Moltó, Orihuela and Troyanski characteriza-
tion of the LUR renormability are proved without probability arguments.
Among other applications, we obtain that a dual Banach space with a
w∗-Kadec norm admits a dual LUR norm.

1 Introduction

Throughout this paper (X, ‖.‖) will denote a Banach space and X∗ its dual. A
subset of the dual unit ball BX∗ is said to be norming (resp. quasi-norming) if
its w∗-closed convex envelope is BX∗ (resp. contains an open ball centered at 0).
A linear subspace Z ⊂ X∗ is said norming (resp. quasi-norming) if Z ∩BX∗ is
a norming (resp. quasi-norming) set. We shall denote by σ(X, Z) the topology
on X of pointwise convergence on Z, but in the particular cases of the weak
and the weak∗ topologies we shall use w and w∗ respectively. For a norm ‖.‖ it
is equivalent to to be σ(X, Z)-lower semicontinuous (σ(X, Z)-lsc for short) and
to have its unit ball σ(X,Z)-closed.

Definition 1 Let X be a Banach space endowed with a norm ‖.‖ and let SX

be the unit sphere. Then the norm is said to be

a) locally uniformly rotund (LUR), if for every x, xk ∈ X, with ‖x‖ = ‖xk‖ =
1, and such that limk ‖x + xk‖ = 2, then limk ‖x− xk‖ = 0.

b) rotund if for every x, y ∈ X, with ‖x‖ = ‖y‖ = 1 and ‖x + y‖ = 2 then
x = y, in other words, ‖.‖ is rotund if and only if every point of SX is an
extreme point in BX .
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c) σ(X,Z)-Kadec if σ(X,Z) and the norm topology coincide on SX . If Z =
X∗ we say simply that ‖.‖ is Kadec.

It is known that a LUR norm which is σ(X, Z)-lsc is also σ(X, Z)-Kadec.
We include a proof of that fact as part of Theorem 2.

Let X be a Banach space. We call an open affine half space defined by an
element x∗ ∈ X∗ a set of the form {x ∈ X : x∗(x) < α} where α ∈ R. A
relatively open subset of a set defined by an intersection with some open half
space is called slice. If Z ⊂ X∗ is a linear subspace of the dual, we shall denote
by H(Z) the set of the open affine half spaces defined by elements of Z.

The study of the existence of equivalent LUR norms plays a central role in
the geometric theory of Banach spaces. See for example the book [7] which
contains the main advances on this subject until 1993. One of the deepest
results on LUR renorming is given by Moltó, Orihuela and Troyanski in [16],
who characterizes the existence of an equivalent LUR norm in a Banach space
in terms of a variant of the following topological property introduced by Jayne,
Namioka and Rogers in [13] in a more general situation under the name of having
a countable cover by sets of local small diameter. The variant in brackets is the
property considered in [16].

Definition 2 Let (X, ‖.‖) be a Banach space. It is said that X has JNR (resp.
s-JNR) if for every ε > 0 there exists a decomposition

X =
∞⋃

n=1

Xε
n

such that for each n ∈ N every point of Xε
n has a weak neighbourhood (resp. a

slice) in Xε
n of diameter less than ε.

A dual Banach space X∗ is said to have ∗JNR (resp. s∗-JNR) if above the
neighbourhoods are weak∗-open (resp. if the slices are given by elements of the
predual X).

In [16] it is shown that a Banach space X has an equivalent LUR norm if and
only if it has s-JNR. The proof of [16] is based in some martingale arguments of
Troyanski. This technique does not allow, a priori, to build LUR norms satifying
a condition of lower semicontinuity with respect to topologies coarser than the
weak topology of the Banach space. One can realize how lower semicontinuity is
lost in Troyanski’s formula, see [7, p. 144]. It seems that to avoid that difficulty
should be interesting in the case of dual spaces or C(K) spaces. It is our aim
here to show how to do it.

In this paper we give a self contained geometric proof of the theorem of
Moltó, Orihuela and Troyanski. Moreover, our method allows us to control the
lower semicontinuity of the new norm with respect to the topology of conver-
gence on a quasi-norming subspace. In particular we prove, according to the
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intuition, that a dual Banach space X∗ has an equivalent dual LUR norm if and
only if it has s∗-JNR.

The following definition was introduced by Arkangel’skii in [2] and it will
play a fundamental role along this paper.

Definition 3 Let (X, τ) be a topological space. A family Σ of subsets of X is
said to be a network for τ if every open set is a union of sets belonging to Σ.

One can realize that a network made up of open sets is a basis for the topol-
ogy. It is shown in [18] that a Banach space has JNR if and only if there is a
sequence (An) of subsets of X such that the family of the intersections of sets
from the sequence (An) and the weak open sets of X, {An ∩ w} for short, is
a network for the norm topology. Analogously, it can be proved that X (resp.
a dual X∗) has s-JNR (resp. s∗-JNR) if and only if there is a sequence (An)
of subsets of X such that {An ∩H(X∗)} (resp. {An ∩H(X)}) is a network for
(X, ‖.‖) (resp. (X∗, ‖.‖)).

We shall use the following characterization of the existence of equivalent
Kadec norms from our previous work (see Remark 3).

[18, Theorem 2] Let X be a Banach space and Z ⊂ X∗ a quasi-norming linear
subspace. The following are equivalent:

i) X admits a σ(X, Z)-Kadec norm.

ii) There is a sequence (An) of convex subsets of X such that {An∩σ(X, Z)}
(i.e. {An∩U : n ∈ N, U ∈ σ(X, Z)}) is a network for the norm topology.

Our main theorem provides us with characterizations of the existence of
equivalent LUR norms which are σ(X, Z)-lsc.

Theorem A Let X be a Banach space and Z ⊂ X∗ a quasi-norming linear
subspace. The following are equivalent:

i) X admits a σ(X, Z)-lsc LUR norm.

ii) X admits both a rotund norm and a σ(X, Z)-Kadec norm.

iii) There is a sequence (An) of subsets of X such that {An ∩ H(Z)} is a
network for the norm topology.

It should be noted that it is enough to apply statement iii) above to check
it on the sphere SX with the relative norm topology, see Remark 2. After
this observation, in the particular case when Z = X∗, our Theorem A is the
Main Theorem of [16] together the Theorem of Troyanski, [7, p. 148]. Some
other equivalent statements to those of Theorem A will be given along the paper.
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Applying Theorem A together with techniques from [16] we obtain the fol-
lowing result that answers a question of Haydon [10].

Corollary 1 Let (Kn) be a sequence of closed subsets of a compact space K
such that K =

⋃∞
n=1 Kn. Assume that C(Kn) has an equivalent pointwise-lsc

LUR norm for every n ∈ N. Then C(K) has an equivalent pointwise lsc LUR
norm.

A version of the preceding corollary without asking the LUR norms to be
pointwise-lsc appears in [16].

A dual Banach space with the Radon-Nikodym property (RNP) always ad-
mits a LUR norm by [9], but this norm is not necessary a dual norm. The fol-
lowing theorem gives some conditions equivalent to the existence of dual LUR
norms.

Theorem B Let X∗ be a dual space. The following are equivalent:

i) X∗ admits a dual LUR norm.

ii) X∗ admits a w∗-Kadec norm.

iii) X∗ has s∗-JNR.

iv) X∗ has ∗JNR and it admits a dual rotund norm.

Note that while the fact that the dual norm is w∗-Kadec implies dual-LUR
renormability, there exists Banach spaces having a Kadec norm but with no
equivalent LUR norm neither rotund norm [12]. Haydon [11] also has built a
Banach space X such that (BX∗∗ , w∗) is a Corson compact (in particular X∗

has RNP) and X∗ admits no dual LUR norm. After Theorem B we have that
this space X∗ admits no w∗-Kadec norm.

The rest of this paper is divided into four sections. Section 2 is devoted to
Troyanski’s Theorem. We give a self contained direct proof which motives the
construction for the general case in the following section. In Section 3 we prove
Theorem A under the additional assumption that the sets (An) in statement
iii) are convex. In Section 4 we remove the convexity hypothesis ending the
proof of Theorem A. Finally, in Section 5 we prove Theorem B and the results
are applied to C(K) spaces, WCD Banach spaces, etc.

Part of the results of this paper has been anounced in [19].

Acknowledgements. A very preliminary version of this paper circulated
among interested people after the Spring School at Paseky, April 1997. We
are very grateful to all of them for different suggestions in order to get the fi-
nal form presented here. In particular we thank J. Orihuela and M. Valdivia
for fruitfull discussions, and R. Deville who supervised all my work along the
Academic Year 1996/97 at Bordeaux University.
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2 A Theorem of Troyanski

In this section we shall prove a famous theorem of Troyanski, see [7, p. 148].
Althought it is a particular case of Theorem 2 in the following section, we
provide a simple proof before. Recall that a point x of a convex set C is said
to be a denting point if there are slices of C containing x of arbitrarily small
diameter. If the slices are given by the elements of some subspace Z of the dual
we say that x is Z-denting.

Theorem 1 Let X be a Banach space. The following are equivalent:

i) X admits a LUR norm.

ii) X admits both a rotund norm and a Kadec norm.

iii) X admits a norm such that every point of the unit sphere is a denting
point of the unit ball.

Proof. i) ⇒ ii) is standard. It can be found for example in [7]. We include a
proof of a slightly more general result in the next section.

ii) ⇒ iii). This a lemma of Lin-Lin-Troyanski, [15], which shows that that the
points of a bounded closed convex set which are both extreme points and points
of continuity are denting points. Nevertheless, we include the proof for sake of
completness.
First we can asume that X is endowed with a norm ‖.‖ which is both rotund and
Kadec. Indeed, if ‖.‖1 is rotund and ‖.‖2 is Kadec, then the norm ‖.‖ defined
by

‖.‖2 = ‖.‖21 + ‖.‖22
shares both properties.
Take x ∈ SX . We claim that x is an extreme point of BX∗∗ . Indeed, suppose
that x = (x1 + x2)/2, where xi ∈ BX∗∗ for i = 1, 2. Fix ε > 0 and set U a
w∗-open neighbourhood of x such that diam(BX∗∗ ∩U) < ε/2. This is possible
because of Goldstine’s Theorem and the w∗-lower semicontinuity of the metric.
Take Ui a w∗-open neighbourhood of xi for i = 1, 2 such that U1 + U2 ⊂ 2U . If
y ∈ BX∗∗ ∩ U1 then

y + x2

2
∈ BX∗∗ ∩ U

because of the convexity. We deduce that diam(BX∗∗ ∩U1) < ε. Since BX ∩U1

is non empty, we obtain that x1 can be aproximated uniformly by points of
BX . As BX is norm complete, x1 ∈ BX , and in consequence x2 ∈ BX . As
x is an extreme point in BX , we have that x = x1 = x2. Now, since x is an
extreme point of the w∗-compact set BX∗∗ , we can apply Choquet’s Lemma,
see [5, Proposition 25.13], to conclude that the slices of BX∗∗ given by elements
of X∗ are a local basis for the norm topology at x, and thus x is denting in BX .

iii) ⇒ i). We shall need the following lemma relative to convex functions.
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Lemma 1 Let f be a convex function on a Banach space X. Consider the
symmetric function

Qf (x, y) =
f(x)2 + f(y)2

2
− f(

x + y

2
)2

Then the following properties are verified:

1) Qf ≥ 0.

2) If (fn) is a sequence of convex functions such that
∑∞

n=1 f2
n is convergent

then the positive function f defined by f2 =
∑∞

n=1 f2
n is convex and

Qf =
∞∑

n=1

Qfn

3) Given x, xk ∈ X the following are equivalent

a) limk f(xk) = f(x) and limk f(x+xk

2 ) = f(x).

b) limk Qf (x, xk) = 0.

Proof. Statement 2) is a straightforward computation. To prove 1) and 3) just
consider the inequalities

Qf (x, y) =
f(x)2 + f(y)2

2
− f(

x + y

2
)2 ≥ f(x)2 + f(y)2

2
− (

f(x) + f(y)
2

)2

=
(f(x)− f(y))2

4
≥ 0

Let us go on with the proof of the theorem. Let ‖.‖ be a norm as in iii).
Consider the sets

Bε = {x ∈ BX : ∀H ∈ H(X∗), x ∈ H, diam(BX ∩H) > ε}}
The set Bε is what remains of the unit ball of the unit ball after we have removed
all slices of diameter at most ε. If ε < 2 then Bε is a closed symmetric convex set
with nonempty interior. Let fn be the Minkowski fuctional of B1/n for n ∈ N.
Since B1/n contains 1

2BX we have that fn ≤ 2‖.‖. Define an equivalent norm
‖|.‖| on X by the formula

‖|x‖|2 = ‖x‖2 +
∞∑

n=1

1
2n

fn(x)2

We claim that ‖|.‖| is LUR. Let x ∈ X and let (xk) ⊂ X be such that ‖|xk‖| =
‖|x‖| and limk ‖|x + xk‖| = 2‖x‖. We have that

lim
k

(
‖|x‖|2 + ‖|xk‖|2

2
− ‖|x + xk

2
‖|2) = 0
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Now, using Lemma 1 it follows that

lim
k
‖xk‖ = lim

k
‖x + xk

2
‖ = ‖x‖

lim
k

fn(xk) = lim
k

fn(
x + xk

2
) = fn(x)

for every n ∈ N. We deduce that in order to prove that (xk) converges to x, we
can suppose ‖xk‖ = ‖x‖ = 1 by taking the sequence (xk/‖xk‖).
Fix ε > 0. Since every point in SX is a denting point of the unit ball, there is
H ∈ H(X∗) such that x ∈ H and

diam(BX ∩H) ≤ ε/2

Take ε/2 ≤ 1/n ≤ ε, then x 6∈ B1/n. We have that fn(x) > 1, so for k ∈ N big
enough fn((x + xk)/2) > 1, and thus (x + xk)/2 ∈ BX \B1/n. By definition of
B1/n there is H ′ ∈ H(X∗) such that (x+xk)/2 ∈ H ′ and diam(BX ∩H ′) ≤ ε/2.
But, by convexity of BX \H ′ at least one of x and xk belongs to BX ∩H ′. Since

‖xk − x‖ = 2 ‖xk − x + xk

2
‖ = 2 ‖x− x + xk

2
‖

we deduce that ‖xk − x‖ ≤ ε for k big enough. Consequently xk converges to x
and the proof is finished.

Remark 1 The idea of considering the set obtained from a convex set after
removing al the points of ε-dentability in renorming of Banach spaces was con-
sidered by Lancien in [14].

3 Convexity arguments

In this section we shall prove the part of Theorem A which is contained in The-
orem 2 below. For the systematic study, it seems to be convenient to introduce
the following definition:

Definition 4 Let Σ1 and Σ2 families of subsets of a given set X. We say that
X has P (Σ1,Σ2) if there is a sequence (An) of subsets of X such that for every
x ∈ X and every V ∈ Σ1 with x ∈ V there is n ∈ N and U ∈ Σ2 such that

x ∈ An ∩ U ⊂ V

We have already used that definition in [18] in the particular case when Σ1

and Σ2 are topologies. In that case the Definition 4 means that the family of
sets {An ∩ Σ2} is a network for Σ1. One can easily realize that property P is
transitive, that is, if X has P (Σ1,Σ2) and P (Σ2, Σ3) then X has P (Σ1, Σ3).
Most of the “combinatorial type” results of the paper are based on this fact.
When X is a vector space and when the sets An in Definition 4 can be chosen
convex we shall say that X has convex-P (Σ1, Σ2). If Σ1 is the metric topology
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of X and Σ2 is a family of half spaces H(Z) we shall write P (‖.‖, Z) instead of
P (Σ1, Σ2). With this notation we have that JNR (resp. ∗JNR) is equivalent to
P (‖.‖, w) (resp. P (‖.‖, w∗). Analogously, s-JNR (resp. s∗-JNR) is equivalent
to P (‖.‖, X∗) (resp. P (‖.‖, X∗)).

Lemma 2 Let X be a vector space and τ2 ⊂ τ1 be locally convex vector topolo-
gies on X. Denote by S(τi) a sub-basis of τi given by a family of sublinear
functions for i = 1, 2. Fix any point x ∈ X and let ∆ be a family of sets of
X with the property: for every V ∈ S(τ1) with x ∈ V there exists A ∈ ∆ and
U ∈ S(τ2) such that

x ∈ A ∩ U ⊂ V

Then for every V ∈ S(τ1) with x ∈ V there exists A ∈ ∆, W ∈ τ1 and U ∈ S(τ2)
such that

x ∈ (A + W ) ∩ U ⊂ V

Proof. Suppose that x ∈ X and V ∈ τ1 with x ∈ V are given. We claim that
there is W1, V

′ ∈ S(τ1) with 0 ∈ W1, x ∈ V ′ and W1 + V ′ ⊂ V . Indeed, if
V = {y ∈ X : f(x− y) < ε} where f is a sublinear function and ε > 0 then just
take the sets W1 = {y ∈ X : f(y) < ε/2} and V ′ = {y ∈ X : f(x− y) < ε/2}.
By the property of ∆ of the hypothesis we can take A ∈ ∆ and U ′ ∈ S(τ2) such
that x ∈ A ∩ U ′ ⊂ V ′.
As above, we can take W2, U ∈ S(τ2) with 0 ∈ W2, x ∈ U and W2 + U ⊂ U ′.
Now take W = W1 ∩ (−W2) ∈ τ1. We shall show that (A + W ) ∩ U ⊂ V .
If y ∈ (A + W ) ∩ U then there is z ∈ A such that y − z ∈ W ⊂ −W2 so
z = (z − y) + y ∈ U ′ thus z ∈ A ∩ U ′ ⊂ V ′. Now as y − z ∈ W ⊂ W1 we have
that y = (y − z) + z ∈ V .

Remark 2 If SX has P (‖.‖, σ(X, Z)) with some sequence of sets An ⊂ SX

then an easy consequence of Lemma 2 is that X has P (‖.‖, σ(X,Z)) with the
countable family of the sets

An,r,s = {tx : r < t < s, x ∈ An}

where n ∈ N and 0 ≤ r < s are rational numbers.

Theorem 2 Let X be a Banach space and Z ⊂ X∗ a quasi-norming linear
subspace. The following are equivalent:

1) X admits a σ(X, Z)-lsc LUR norm.

2) X admits a norm such that every point of the unit sphere is Z-denting.

3) X admits both a rotund norm and a σ(X, Z)-Kadec norm.

4) X admits a LUR norm and X has convex-P (w, σ(X, Z)).

5) X has convex-P (‖.‖, Z).
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Proof. 1) ⇒ 2). Fix x0 ∈ SX and ε > 0. As ‖.‖ is a LUR norm, there
is δ > 0 such that if x ∈ SX and ‖x0+x

2 ‖ > 1 − δ then ‖x − x0‖ < ε. We
can suppose δ < 1. Since (1 − δ)−1x0 6∈ BX and BX is σ(X, Z)-closed, by
Hahn-Banach Theorem there is x∗ ∈ Z such that

sup{x∗(x) : x ∈ BX} < x∗(x0)

We can suppose ‖x∗‖ = 1 and thus (1− δ)−1x∗(x0) > 1. Now, define H = {x ∈
X : x∗(x) > 1− δ}. Then x0 ∈ H and if x ∈ BX ∩H then

‖x0 + x

2
‖ ≥ x∗(

x0 + x

2
) > 1− δ

and thus ‖x− x0‖ < ε.

2) ⇒ 5). We shall check that the set of balls centered at 0 with rational radius
satisfies condition 5). Fix x ∈ X, and without loss of generality suppose that
x 6= 0. Let B[0, ‖x‖] be the closed ball of center 0 and radius ‖x‖. By hypothesis,
for every ε > 0 there is H ∈ H(Z) such that x ∈ H and

B[0, ‖x‖] ∩H ⊂ B(x, ε/2)

Fix ε > 0. By Lemma 2, there is δ > 0 and H ∈ H(Z) such that x ∈ H and

(B[0, ‖x‖] + B(0, δ)) ∩H ⊂ B(x, ε/2)

Now we can find a rational r > 0 such that

B[0, ‖x‖] ⊂ B[0, r] ⊂ B[0, ‖x‖] + B(0, δ)

and thus x ∈ B[0, r] ∩H and diam(B[0, r] ∩H) < ε.

1) ⇒ 3). We shall check the Kadec property for σ(X,Z). Take (xω) ⊂ SX a
net σ(X, Z)-converging to x ∈ SX . Since σ(X, Z)-limω(x + xω) = 2x and ‖.‖ is
σ(X,Z)-lower semicontinuous we have that lim infω ‖x + xω‖ ≥ 2‖x‖ = 2. On
the other hand, ‖x + xω‖ ≤ 2 for every ω. Thus, limω ‖x + xω‖ = 2. Applying
the fact that ‖.‖ is LUR we have that ‖x− xω‖ = 0.

3) ⇒ 4). If X admits a σ(X, Z)-Kadec norm then it has convex-P (‖.‖, σ(X,Z))
by [18]. A direct proof can be obtained from the idea in 2) ⇒ 5) above. We
deduce that, in particular, X has convex-P (w, σ(X, Z)). As a σ(X,Z)-Kadec
norm is Kadec, by Theorem 1 we have that X admits a LUR norm.

4) ⇒ 5). The proof is a consequence of the following lemma and the transitivity
of property P .

Lemma 3 Convex-P (w, σ(X,Z)) implies convex-P (X∗, Z)
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Proof. Suppose that X has P (w, σ(X, Z)) with a sequence of convex sets (An).
We shall prove that X has P (X∗, Z) with the sequence (An). Fix x ∈ X and
H ∈ H(X∗). Take n ∈ N and U ∈ σ(X, Z) such that x ∈ An ∩ U ⊂ H. Since

U and the convex set An \H are disjoint, the set An \H
σ(X,Z)

cannot contain
x. By Hahn-Banach Theorem we obtain H ′ ∈ H(Z) such that x ∈ H ′ and

An \H
σ(X,Z) ∩H ′ = ∅. Thus we have x ∈ An ∩H ′ ⊂ H.

Now, to finish the proof of 4) ⇒ 5), note that if X admits a LUR norm then it
has convex-P (‖.‖, X∗) by Theorem 1 and 2) ⇒ 5) for the weak topology. This
property together with convex-P (X∗, Z) entails convex-P (‖.‖, Z).

5) ⇒ 1). Without loss of generality we can suppose that X is already endowed
with a norm ‖.‖ which is σ(X,Z)-lower semicontinuous.
Suppose that X has P (‖.‖, Z) with a sequence of convex sets (An). Then by
Lemma 2 the countable family of convex sets

{An + B(0, r) : n ∈ N, r > 0, r ∈ Q}
also satisfies 5), so we can suppose that the sets An are norm open. Fix an ∈
An for every n ∈ N and let fn be the functional of Minkowski with respect
to the point an of the set An

σ(X,Z)
, that is, if g is the Minkowski functional

of An − an
σ(X,Z)

then fn(x) = g(x − an). Clearly the fuction fn is convex,
Lipschitz and σ(X,Z)-lsc.
Now, for m ∈ N we define the sets

An,m = {x ∈ An
σ(X,Z)

: ∀H ∈ H(Z), x ∈ H, diam(An ∩H) > 1/m}
It is easy to see that the sets An,m are empty or σ(X,Z)-closed convex. For
every p ∈ N consider the sets

An,m,p = (An,m + B(0, 1/p))
σ(X,Z)

We claim that An,m =
⋂∞

p=1 An,m,p when An,m is non empty. Indeed, if x 6∈
An,m since that set is convex and σ(X, Z)-closed we can take H ∈ H(Z) such
that x ∈ H and An,m ∩ H = ∅. Taking the halfspace given by a parallel
hyperplane, we can assume that the distance between An,m and H is positive.
Then for some p ∈ N we have

(An,m + B(0, 1/p)) ∩H = ∅
and thus x 6∈ An,m,p.
Now, for every n,m ∈ N such that An,m 6= ∅ take an,m ∈ An,m. Let fn,m,p

be the functional of Minkowski with respect to an,m of the set An,m,p, which
is convex, Lipschitz and σ(X, Z)-lsc. If An,m = ∅ we take fn,m,p = 0 for every
p ∈ N.
We define a symmetric convex function F on X by the formula

F (x)2 = ‖x‖2 +
∑

n

αn fn(x)2 +
∑

n,m,p

βn,m,p fn,m,p(x)2
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+
∑

n

αn fn(−x)2 +
∑

n,m,p

βn,m,p fn,m,p(−x)2

where (αn) and (βn,m,p) are positive constants taken in such a way that the series
converges uniformly on bounded subsets of X, so F is uniformly continuous on
bounded sets, and that the absolutely convex set

B = {x ∈ X : F (x) ≤ 1}
contains 0 as a interior point. As a series of σ(X, Z)-lsc fuctions is σ(X, Z)-lsc as
well, we deduce that B is σ(X, Z)-closed. Let ‖|.‖| be the Minkowski fuctional
of B. Then ‖|.‖| is an equivalent σ(X, Z)-lsc norm on X. We claim that for
every sequence (xk) ⊂ B with limk ‖|xk‖| = 1, then limk F (xk) = 1. Since F is
‖.‖-continuous we deduce that

{x ∈ X : F (x) < 1} ⊂ {x ∈ X : ‖|x‖| < 1}
because the first set is ‖.‖-open and contained in B. Let us consider x′k =
xk/‖|xk‖| and we should have F (x′k) = 1. We have that limk ‖x′k − xk‖ = 0.
Since F is uniformly continuous on bounded sets we deduce that

lim
k

F (xk) = 1

Finally, we shall prove that ‖|.‖| is a LUR norm. Let x ∈ X and let (xk) ⊂ X
such that ‖|xk‖| = ‖|x‖| = 1 and limk ‖|x + xk‖| = 2. As we have seen above
this entails that F (xk) = F (x) = 1 and limk F (x+xk

2 ) = 1. We have that

lim
k

(
F (x)2 + F (xk)2

2
− F (

x + xk

2
)2) = 0

Now, using Lemma 1 we have that for every n,m, p ∈ N

lim
k

fn(xk) = lim
k

fn(
x + xk

2
) = fn(x)

lim
k

fn,m,p(xk) = lim
k

fn,m,p(
x + xk

2
) = fn,m,p(x)

Fix 1/2 > ε > 0. There is n ∈ N and H ∈ H(Z) such that x ∈ An ∩H and

diam(An
σ(X,Z) ∩H) ≤ ε/3

because H is σ(X, Z)-open and ‖.‖ is σ(X, Z)-lsc. Since An is ‖.‖-open, we have
that fn(x) < 1, so for k ∈ N big enough fn(xk) < 1, and thus xk ∈ An

σ(X,Z)
.

Analogously, for k ∈ N big enough, (x + xk)/2 ∈ An
σ(X,Z)

.
Take m ∈ N such that 2/ε < m < 3/ε, thus x 6∈ An,m. If An,m 6= ∅ then for some
p ∈ N we have that fn,m,p(x) > 1, so for k ∈ N big enough fn,m,p(x+xk

2 ) > 1 and
thus (x + xk)/2 6∈ An,m,p. If An,m = ∅ we have simply that (x + xk)/2 6∈ An,m.
Therefore, for k ∈ N big enough we have that

x + xk

2
∈ An

σ(X,Z) \An,m
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By definition of An,m there is H ′ ∈ H(Z) such that (x + xk)/2 ∈ An
σ(X,Z) ∩H ′

and diam(An
σ(X,Z) ∩H ′) ≤ ε/2. But either x or xk belongs to H ′, and thus,

to An
σ(X,Z) ∩H ′. Since

‖xk − x‖ = 2 ‖xk − x + xk

2
‖ = 2 ‖x− x + xk

2
‖

we deduce that ‖xk − x‖ ≤ ε. This ends the proof of Theorem 2.

Remark 3 If we have the hypothesis convex-P (‖.‖, σ(X, Z)) instead of 5) the
same proof with F defined by

F (x)2 = ‖x‖2 +
∑

n

αn fn(x)2 +
∑

n

αn fn(−x)2

suffices to prove that ‖|.‖| is an equivalent σ(X, Z)-Kadec norm on X. This
provides another proof for our Theorem [18, Th. 2] stated in the introduction.
In [18] we study the general case when the sets An are not convex giving a
characterization of the JNR property in terms of the existence of a positive
homogeneous function F , not necessary convex, with the Kadec property, that is,
the coincidence of σ(X, Z) and the norm topology on the set {x ∈ X : F (x) = 1}.

4 On Bourgain-Namioka Lemma

Here we shall complete the proof of Theorem A by proving the following result.

Theorem 3 Let X be a Banach space and let Z ⊂ X∗ a quasi-norming linear
subspace. To the list of equivalent properties given in Theorem 2, we may add
the following:

6) X has P (‖.‖, Z).

7) X has both P (‖.‖, w) (equivalently, it has JNR) and P (w,Z).

The Bourgain-Namioka Lemma (see [6] or [3]) is the master key to prove that
if a set has a point of ε-dentability, then its convex envelope also has points of
3ε-dentability. But the original point may not be a point of “small” dentability
in the convex envelope. The following lemma establishes that with some kind
of iteration “eating” in each step points of small dentability in convex envelopes
we can reach a prefixed point of ε-dentability.

Lemma 4 Let M and ε be positive constants and H ∈ H(Z) an open half space.
For every E ⊂ X such that diam(E) ≤ M and diam(E ∩H) < ε there is a set
E[H] ⊂ E with the following properties:

i) If F ⊂ E, then F [H] ⊂ E[H].

ii) For every x ∈ E\E[H], there is H ′ ∈ H(Z) such that x ∈ H ′, E[H]∩H ′ =
∅ and diam(co(E) ∩H ′) < 3ε.

12



iii) If (E[Hn]) is the sequence defined inductively by E[H1] = E[H] and
E[Hn+1] = E[Hn][H], then

⋂∞
n=1 E[Hn] ∩H = ∅.

Proof. Suppose that H = {x∗ > 1} with x∗ ∈ Z and E ∩H ⊂ B where B is

a closed ball of diameter less than 2ε. Define the convex sets C = co(E)
σ(X,Z)

,
C0 = C ∩B and C1 = C \H.
For every 0 ≤ r ≤ 1 consider the set

Dr = {(1− λ)x0 + λx1 : r ≤ λ ≤ 1, x0 ∈ C0, x1 ∈ C1}

Now, note that if x ∈ D0 \Dr then x = (1− λ)x0 + λx1 with x0 ∈ C0, x1 ∈ C1

and 0 ≤ λ < r, thus ‖x−x0‖ = λ‖x0−x1‖ ≤ Mr. Since C = D0
σ(X,Z)

we have

diam(C \Dr
σ(X,Z)

) ≤ diam(D0 \Dr) ≤ 2Mr + diam(C0) ≤ 2Mr + 2ε

Fix r > 0 small enough to have diam(C \Dr
σ(X,Z)

) ≤ 3ε. Note that r depends
only on M and ε.
Take E[H] = E ∩Dr

σ(X,Z)
. It is clear that i) holds. Now we shall check point

ii). If x ∈ E \ E[H] then x ∈ C \ Dr
σ(X,Z)

. This set has diameter less than
3ε. By Hahn-Banach Theorem, we can find H ′ ∈ H(Z) such that x ∈ H ′ and
H ′ ∩Dr

σ(X,Z)
= ∅. Thus diam(C ∩H ′) < 3ε.

Finally we shall check point iii). Note that

sup{x∗(x) : x ∈ E[H]} ≤ sup{x∗(x) : x ∈ Dr}

≤ (1− r) sup{x∗(x) : x0 ∈ C0}+ r sup{x∗(x1) : x1 ∈ C1}
≤ (1− r) sup{x∗(x) : x ∈ E}+ r

So if sn = sup{x∗(x) : x ∈ E[Hn]}. We have that sn+1 ≤ (1 − r)sn + r. This
shows that sn converges to 1. If x ∈ H, as x∗(x) > 1, then x 6∈ E[Hn] for some
n big enough.

Lemma 5 Let A ⊂ X be a bounded set and ε > 0. There exists a sequence
of convex sets (Cn) such that, for every point x contained in a Z-slice of A of
diameter less than ε, then there is n ∈ N such that x is contained in a Z slice
of Cn of diameter less than 3ε.

Proof. Given E ⊂ A, for every H ∈ H(Z) such that diam(E ∩ H) < ε, let
E[H] the set given by the preceding lemma and take E′ =

⋂
H E[H]. We claim

that for every x ∈ E \E′ there is H ∈ H(Z) such that x ∈ co(E)∩H and it has
diameter less than 3ε. Indeed, if x ∈ E \ E′ then there is H ∈ H(Z) such that
x ∈ E \ E[H]. Then, apply ii) of Lemma 4.
Now we define inductively (En) by E0 = A and En+1 = (En)′ if En 6= ∅. We
claim that for every point x contained in a Z-slice of A of diameter less than
ε there is some n such that x 6∈ En. Indeed, suppose that x ∈ A ∩ H with
H ∈ H(Z) and diam(H ∩A) < ε. Clearly we have En ⊂ E[Hn]. Condition iii)
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of Lemma 4 shows that for some n then x 6∈ En.
Finally, we have just to define Cn = co(En).

Proof of Theorem 3. The equivalence of statements 6) and 7) follows from the
transitive property of P . Clearly, statement 5) of Theorem 2 implies statement
6). We only have to prove the converse. Suppose that X has P (‖.‖, Z) with
a sequence of sets (An). It is not a restriction to assume that every An is
bounded. For every n ∈ N and every ε > 0 consider the sequence of convex sets
(Cε

n,m)∞m=0 given by Lemma 5 for A = An. The thesis in Lemma 5 entails that
the countable family of convex sets

{C1/k
n,m : k, n, m ∈ N}

satisfies statement 5) of Theorem 2.

5 Applications and related results

We give a adaptation of the transfer technique developed in [16] which involves
topologies of type σ(X, Z). If T : X → Y is linear operator between Banach
spaces we can consider on X the seminorm ‖x‖T = ‖T (x)‖.
Theorem 4 Let X and Y be Banach spaces, Z ⊂ X∗ a quasi norming subspace
and T : X → Y a bounded one to one operator. Suppose that Y is LUR, X
has P (‖.‖, ‖.‖T ) and that there is a norming subspace W ⊂ Y ∗ such that T is
σ(X,Z)-σ(Y, W )-continuous. Then X admits an equivalent σ(X, Z)-lsc LUR
norm.

Proof of Theorem 3. Suppose that W ⊂ Y ∗ is a norming subspace such that
T is σ(X, Z)-σ(Y,W )-continuous. Then Y has P (‖.‖,W ) with some sequence
An ⊂ Y . Since the elements of H(W ) can be lifted by T to elements of H(Z) we
deduce that X has P (‖.‖T , Z). If X also has P (‖.‖, ‖.‖T ), then X has P (‖.‖, Z)
so it is renormable by a σ(X, Z)-lsc LUR norm.

It is shown in [16] that a sufficient condition to X have P (‖.‖, ‖.‖T ) is
that for every bounded sequence (xn) in X such that ‖xn − x‖T we have that

x ∈ sp(xn)
‖.‖

(in particular when (xn) converges weakly to x).

Proof of Corollary 1. The proof is a modification of the proof of Corollary 8 in
[16]. For every n ∈ N let ‖.‖n be an equivalent norm on C(Kn) with ‖.‖n ≤ ‖.‖∞.
Let (Y, ‖.‖) be the l2-sum of the family of Banach spaces {(C(Kn), ‖.‖n)}n∈N.
Consider the operator T : C(K) → Y defined by T (x) = ( 1

nx|Kn)∞n=1. In [16] it
is shown that C(K) has P (‖.‖, ‖.‖T ). On the other hand, one can realize that
T is continuous from the pointwise topology of C(K) to the topology on Y of
pointwise convergence on each coordinate. To finish the proof apply Theorem 3.

Proposition 1 Let X∗ be a dual Banach space. Then X∗ admits a dual rotund
norm if and only if X∗ has convex-P (w∗, X).
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Proof. If X∗ has a dual rotund norm then every point of SX∗ is a extreme
point of BX∗ . By Choquet’s Lemma the X-slices at every point of SX∗ are a
neighbourhood basis for the weak∗ topology in BX∗ . We can apply Lemma 2,
as we have done before, to obtain that X∗ has P (w∗, X) with the balls having
center at the origin and rational radius.
Suppose now that X∗ has P (w∗, X) with some sequence of convex sets (An).
Proceding like in the proof of the Theorem 2 we can suppose that the sets (An)
are norm open. Take a point an ∈ An and consider fn the Minkowski functional
of An

w∗
with respect to an. Define a positive convex function F by the formula

F (x)2 = ‖x‖2 +
∞∑

n=1

αnfn(x)2 +
∞∑

n=1

αnfn(−x)2

where (αn) are positive numbers chosen in such a way that the series converges
uniformly on bounded subsets of X∗ and such that the symmetric convex set
B = {x ∈ X : F (x) ≤ 1 contains 0 as an interior point. From the w∗-lsc of F we
deduce that B is the unit ball of an equivalent dual norm ‖|.‖| on X∗. We claim
that ‖|.‖| is a rotund norm. Suppose that ‖|x1‖| = ‖|x2‖| = ‖|(x1 +x2)/2‖| = 1.
We have that

F (x1)2 + F (x2)2

2
− F (

x1 + x2

2
)2 = 0

The proof of Lemma 1 entails that

fn(x1) = fn(x2) = fn(
x1 + x2

2
)

for every n ∈ N. If x1 and x2 were different then we would find a w∗-closed w∗-
neighbourhood V of (x1 + x2)/2 that not contains x1 neither x2. By property
P we can find n ∈ N and H ∈ H(X) such that

x1 + x2

2
∈ An ∩H ⊂ V

In particular fn((x1 + x2)/2) < 1. Now, x1 or x2 belongs to H. Suppose that
x1 does. Since An

w∗ ∩H ⊂ V we deduce that x1 cannot belong to An
w∗

, and
thus, fn(x1) > 1. This contradiction shows that x1 = x2.

Proposition 2 If X∗ is a dual Banach space such that the weak and the weak∗

topologies coincide on the unit sphere, then X∗ admits a dual LUR norm.

Proof. If (SX∗ , w∗) = (SX∗ , w) then X∗ has convex-P (w, w∗). This can be
proved using a similar argument to the proof of 2) ⇒ 5) of Theorem 2. In the
other hand, it is well known that the coincidence of the weak and the weak∗

topologies on the unit sphere implies that X∗ has RNP, so by [9], X∗ admits
a LUR norm. Statement 4) of Theorem 2 entails that X∗ admits a dual LUR
norm.
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Proof of Theorem B.
i) ⇔ iii) ⇒ ii). It follows from Theorem A.
ii) ⇒ i). It is a consequence of Proposition 2.
i) ⇒ iv). It is obvious.
iv) ⇒ i) Since X∗ admits a dual rotund norm, by Lemma 4 it has P (w∗, X).
This together with P (‖.‖, w∗) gives that X∗ has P (‖.‖, X) and thus it admits
a dual LUR norm by Theorem A.

Given a Banach space X and a total subspace Z ⊂ X∗ consider the following
construction. For a convex set B and ε > 0 take

(B)′ε = {x ∈ B : ∀x ∈ H ∈ H(Z), diam(B ∩H) > ε}

Now we define by transfinite induction the sets (Bα
ε ) as follows

B0
ε = BX

Bα+1
ε = (Bα

ε )′ε

and for α a limit ordinal
Bα

ε =
⋂

β<α

Bβ
ε

Now take δZ(X, ε) = inf{α : Bα
ε = ∅, if it exists, and δZ(X) = supε>0 δZ(X, ε).

When defined, δZ(X) is called the Z-dentability index of X, see [1].
Lancien has shown in [14] that for a Banach space the condition δX∗(X) < ω1,
where ω1 is the first uncountable ordinal, entails the existence of a LUR norm
on X. He also proved that in the case of a dual space X∗, if δX(X∗) < ω1

then X∗ admits a dual LUR norm. His method involves distances to sets and
it seems difficult to apply it to other topologies.

Proposition 3 Let X be a Banach space, Z ⊂ X∗ a quasi-norming linear
subspace. If δZ(X) < ω1 then X admits an equivalent σ(X, Z)-LUR norm.

Proof. The countable family of convex sets
⋃∞

n=1{Bα
1/n : α < δZ(X, 1/n)}

satisfies statement 5) of Theorem 2.

A Banach space X is said weakly countably determined (WCD) if there
exists a sequence (Kn) of w∗-compact sets of X∗∗ such that for every x ∈ X
and every y ∈ X∗∗ \X there is n ∈ N with x ∈ Kn and y 6∈ Kn. A classic result
of Vašak [20] shows that a WCD Banach space admits a LUR norm. We proved
in [18] that a WCD Banach space admits σ(X,Z)-Kadec norms for every quasi
norming Z. As consequence of point ii) of Theorem A we obtain the following.

Corollary 2 Let X be a WCD Banach space, Z ⊂ X∗ a quasi-norming linear
subspace. Then X admits an equivalent σ(X, Z)-lsc LUR norm.
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When X∗ is a WCD dual space, we deduce the existence of a dual LUR
norm. That result was obtained by M. Fabian in [8].

Clearly, a separable Banach space satisfies statement 5) in Theorem 2, and
we obtain a well known result of Kadec, see [4, p. 178]. If we revise the proof
of Theorem 2, we shall realize that in the case of a separable space the slices
has no role. That allows us to improve the Theorem of Kadec obtaining τ -lsc
of the LUR norm for more general topologies.

Proposition 4 Let X be a separable Banach space and τ a vector topology on
X coarser than the norm topology such that BX

τ
is bounded. Then X admits

an equivalent τ -lower semicontinuous LUR norm.

Proof. Taking the Minkowski functional of BX
τ

we can suppose X endowed
with a τ -lower semicontinuous norm. Let (an) be a norm dense subset of X.
Consider the τ -lower semicontinuous convex function F defined by

F (x)2 =
1
3
‖x‖2 +

1
6

∞∑
n=1

1
2n

‖an − x‖2
‖an‖2 + 1

+
1
6

∞∑
n=1

1
2n

‖an + x‖2
‖an‖2 + 1

Let B = {x ∈ X : F (x) ≤ 1}. An easy calculus shows that BX ⊂ B ⊂ 2BX . Let
‖|.‖| be the functional of Minkowski of B, then ‖|.‖| is a τ -lower semicontinuous
equivalent norm. We claim that ‖|.‖| is a LUR norm. Indeed, let x, xk ∈ X
with ‖|x‖| = ‖|xk‖| = 1 and limk ‖|x + xk‖| = 2. It is not difficult to see that
F (x) = F (xk) and limk F (x+xk

2 ) = 1. From Lemma 1 we deduce for every
n ∈ N that limk ‖an − xk‖ = ‖an − x‖. Since x can be aproximated by points
of the sequence (an), this shows that limk ‖x− xk‖ = 0.

Remark 4 G. Godefroy has pointed out us that property ∗JNR in a dual Banach
space implies the existence of an equivalent dual LUR norm. The proof, which
depends on the results of this paper, will appear elsewhere.
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