
On some class of Borel measurable maps and

absolute Borel topological spaces

M. Raja∗

March 21, 2000

Abstract

We introduce a class of Borel measurable maps between topological

spaces which is stable under usual operations. We characterize those

completely regular topological spaces which are Borel sets in every

regular embedding.

1 Introduction

In the following (X, τ) will denote a Hausdorff topological space. The Borel
σ-algebra of X will be denoted Borel(X, τ), that is, the smallest family of
subsets of X which contains the topology τ and is closed by countable unions
and complementaries in X . Given another topological space (Y, δ), a map
f : X → Y is said to be Borel (measurable) if f−1(V ) belongs to Borel(X, τ)
for every open V from δ.

It is well known that all the Borel sets in a metric space can be generated
by an alternative application (indexed by the countable ordinal numbers)
of the operations “δ” (countable intersections) and “σ” (countable unions)
starting with the open sets (or the closed sets). For nonmetrizable topologies
a little change is required and the suitable definition is as follows.
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Definition 1.1 Let (X, τ) be a topological space. The family of the addi-
tive sets of class α (Aα) and the family of the multiplicative sets of class α
(Mα) are constructed for every countable ordinal α by the following inductive
process:

i) A0 consists of all the τ -open sets and M0 consists of all the τ -closed
sets.

ii) If α > 0 then the sets of Aα are of the form
⋃∞

n=1(An∩Bn) and the sets
of Mα are of the form

⋂∞
n=1(An∪Bn), where An ∈ Aαn

and Bn ∈ Mαn

with αn < α.

Every Borel set A ∈ Borel(X, τ) belongs to some additive (resp. multi-
plicative) family Aα (resp. Mα). Then we say that A is of additive (resp.
multiplicative) class α. The classification of Borel subsets allows to introduce
a classification of Borel functions.

Definition 1.2 Let (X, τ) and (Y, δ) be topological spaces. A map f : X →
Y is said to be Borel of class α if f−1(V ) ∈ Aα for every V ∈ δ. A Borel
map is said to be classifiable if it is of class α for some countable ordinal.

We may regard Borel sets as the “countably constructible” sets starting
from the sets of the topology. But this intuitive idea disappears when con-
sidering Borel functions (even classifiable). In this paper we propose a class
of maps between topological spaces which try to fill the idea of “countably
constructibity” for Borel maps. We call p-Borel maps these maps and the
definition is as follows:

Definition 1.3 Let (X, τ) and (Y, δ) be topological spaces. A map f : X →
Y is said to be p-Borel if there is sequence (An) of τ -Borel sets in X such
that for every x ∈ X and every V ∈ δ with f(x) ∈ V there is n ∈ N and
U ∈ τ such that x ∈ An ∩ U and f(An ∩ U) ⊂ V .

This definition is motivated by a suficient condition for coincidence of
σ-algebras employed in [14], which generalizes arguments of Edgar [2] and
Talagrand [15]. There are also conexions with the maps having a σ-relatively
discrete base considered by Hansell in [7]. The properties of p-Borel maps
are studied in Section 2. The first important fact is that every p-Borel map is
Borel measurable of bounded class. We study the behaviour of p-Borel maps
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with respect to composition, sums and limits among other properties. We
also show that p-Borel maps are Lusin measurable for every Radon measure
on the domain. In Section 3 we give some examples of p-Borel maps. A deep
result of Hansell is used to show that every Borel map of bounded class from
a complete metric space into a metric space is p-Borel.

In Section 4 we shall use the notion of p-Borel map to give an intrinsic
characterization of the completely regular absolute Borel spaces.

Definition 1.4 A topological space X is said to be absolute Borel if for every
embedding i : X → Z into a regular topological space, then i(X) is a Borel
subset of Z.

It is well known that a metrizable space is absolute Borel, if and only if,
it is homeomorphic to a Borel subset of a complete metric space [10]. More
recently, metrizable absolute Borel spaces have been characterized internally
in terms of complete sequences of covers [11]. Our main result uses the notion
of Čech-complete topological space and it can be stated as follows.

Theorem 1.5 Let (X, τ) a completely regular topological space. Then the
following statements are equivalent:

i) (X, τ) is absolute Borel.

ii) (A, τ) is absolute Borel for every A ∈ Borel(X, τ).

iii) There is a Čech-complete topology δ on X finer than τ such that the
identity map I : (X, τ) → (X, δ) is p-Borel.

A consequence of the theorem is an extension of a classical result of Lusin
and Souslin about injective Borel measurable maps from a Polish space into
a metrizable one [8]. We also show the following: if X is a Banach space
and X∗∗ denotes its bidual, then the property of being X a (F ∩ G)σδ in
X∗∗ endowed with the weak∗-topology is a weak invariant of X . The last
result of the paper states that Borel absolute spaces are preserved by p-Borel
isomorphisms.

The results of this paper are part of my Ph.D. Thesis, made under the
supervision of R. Deville and G. Vera. I want to express my thanks to R.
Hansell and P. Holický for fruitful discussions.
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2 Properties of p-Borel maps

Given families Σ1,Σ2, . . . of subsets of X , we shall denote top(Σ1,Σ2, . . .) the
topology on X generated by these families, that is, the smallest topology on
X containing the sets of each family. The next result shows that we may
think of the p-Borel maps as a kind of “continuous” maps. The proof is left
to the reader (we shall omit the proofs if they are very easy or rutinary).

Proposition 2.1 Let (X, τ) and (Y, δ) be topological spaces. A map f :
X → Y is p-Borel if and only if there is a countable collection {An : n ∈ N}
of Borel subsets of X such that f is continuous when X is endowed with
top(τ, {An : n ∈ N}).

The following lemma contains some properties of the additive and multi-
plicative families of Borel sets in a topological space.

Lemma 2.2 Let (X, τ) be a topological space, Aα and Mα the families de-
fined above. Then the following holds:

i) A ∈ Aα if and only if X \ A ∈ Mα.

ii) Aα is stable under countable unions and Mα is stable under countable
intersections.

iii) Aα is stable under finite intersections and Mα is stable under finite
unions.

iv) If α < β then Aα ∪Mα ⊂ Aβ ∩Mβ.

v) If α > 0 then Aα+1 = (Mα)σ and Mα+1 = (Aα)δ.

vi)
⋃

α<ω1
Aα =

⋃
α<ω1

Mα = Borel(X, τ).

Theorem 2.3 Every p-Borel map is Borel measurable of bounded class.

Proof. Let V be a δ-open set in Y . We shall check that f−1(V ) is a τ -borel
set in X . For every x ∈ f−1(V ) we can find nx ∈ N and Ux ∈ τ such that
f(Anx

∩ Ux) ⊂ V . Now note that

f−1(V ) =
⋃

x∈f−1(V )

Anx
∩ Ux =

∞⋃

n=1

⋃

nx=n

Anx
∩ Ux =

∞⋃

n=1

An ∩ (
⋃

nx=n

Ux)

4



is a τ -Borel set in X . Note that if α is a countable ordinal which bounds the
additive class of the sets (An), then for every V ∈ δ we have that f−1(V ) is
of additive class α.

The following results establishes some properties of the class of p-Borel
maps. Note that some of them are well known properties of the class of Borel
maps.

Proposition 2.4 In order to a given map f : X → Y be p-Borel, it is
enough to check the condition in Definition 1.3 for V belonging to a subbasis
of δ.

Proposition 2.5 If f : X → Y is p-Borel, and X0 ⊂ X and Y0 ⊂ Y are
such that f(X0) ⊂ Y0. Then f |X0

: X0 → Y0 is p-Borel for the relative
topologies.

Proposition 2.6 Let (Xi, τi), i = 1, 2, 3 be topological spaces, and f : X1 →
X2 and g : X2 → X3 are p-Borel, then g ◦ f : X1 → X3 is also p-Borel.

Proof. Let (An) ⊂ X1 a sequence of sets satisfying Definition 1.3 for f
and let (Bn) ⊂ X2 satisfying Definition 1.3 for g. After Theorem 2.3, the
sets f−1(Bn) are τ1-Borel. It is easy to see that the countable familly (An ∩
f−1(Bm)) of τ1-Borel sets satisfies Definition 1.3 for the map g ◦ f .

Proposition 2.7 Let (X, τ) and (Yi, δi) topological spaces for i ∈ I where I
is finite or countable. Let fi : X → Yi be p-Borel maps for i ∈ I. Then the
map f : X →

∏
i∈I Yi defined by f(x) = (fi(x))i∈I is p-Borel.

Proof. Let (Ai
n) a sequence of τ -Borel sets satisfying Definition 1.3 for fi.

Now, for every finite subset F ⊂ I and every finite sequence (ni) ⊂ N for
i ∈ F consider the set

⋂
i∈F Ai

ni
. In this way we obtain a countable familly of

τ -Borel sets. We claim that this familly satisfies Definition 1.3. Let x ∈ X
and V ⊂

∏
i∈I Yi an open neigbourhood of f(x) that we can suppose that is

of the form
∏

i∈I Vi where Vi = Yi for i ∈ I \ F and F is finite. For every
i ∈ F we set Ai

ni
and Ui ∈ τ such that fi(A

i
ni
∩Ui) ⊂ Vi. Then we have that

f((
⋂

i∈F

Ai
ni
) ∩ (

⋂

i∈F

Ui)) ⊂
∏

i∈I

Vi = V

which finish the proof of the claim.
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Corollary 2.8 Let (X, τ) be a topological space, (Y, ∗, δ) be a topological
group, and f, g : X → Y be p-Borel maps. Then f ∗ g is p-Borel as well.

Proof. The map x → (f(x), g(x)) is p-Borel after Proposition 2.7 and the
composition with the product map is p-Borel after Proposition 2.6.

In similar way to Proposition 2.7, we can prove the following.

Proposition 2.9 Let (Xi, τi) and (Yi, δi) topological spaces for i ∈ I finite
or countable. Let fi : Xi → Yi be p-Borel maps for i ∈ I. Then the map
f :

∏
i∈I Xi →

∏
i∈I Yi defined by f((xi)i∈I) = (fi(xi))i∈I is p-Borel.

Corollary 2.10 If f : X → Y is a p-Borel map between topological spaces,
then the set

graf(f) = {(x, y) ∈ X × Y : f(x) = y}

is Borel in X × Y (with the product topology).

Proposition 2.11 Let (X, τ) be a topological space, Y a set and f : X → Y
a map. Let (δn) be a sequence of topologies on Y such that for every n ∈ N,
when endowed Y with δn, the map f is p-Borel. Then f is p-Borel when Y
is endowed with top({δn : n ∈ N}).

The proof of the properties considered above depends mainly upon the
similarity between continuity and property p. The next result shows that,
when Y is metrizable, p-Borel functions, like Borel functions, are stable under
pointwise limits of sequences.

Theorem 2.12 Let f : X → Y be a map from a topological space X to
a metric space Y . If f is the pointwise limit of a sequence (fn) of p-Borel
maps, then f is also a p-Borel map.

Proof. Let (Ai
n) be a sequence satifying Definition 1.3 for fi. Fix a compat-

ible metric d on Y . From Proposition 2.7 and the continuity of d we deduce
that the map d(fi(x), fj(x)) is p-Borel, and thus the sets

Ei
k = {x ∈ X : d(fi(x), fj(x)) ≤ 1/k, ∀ j ≥ i}

are τ -Borel. We claim that the countable family of sets {Ai
n∩E

i
k : i, n, k ∈ N}

satisfies Definition 1.3 for f . Fix x ∈ X , ε > 0 and k > 3/ε. There is i ∈ N

6



such that d(fj(x), f(x)) < 1/2k for every j ≥ i, thus x ∈ Ei
k. Now take

U ∈ τ and n ∈ N such that x ∈ Ai
n ∩ U and diam(fi(A

i
n ∩ U)) ≤ ε/3. If

y ∈ Ai
n ∩ Ei

k ∩ U then

d(f(x), f(y)) ≤ d(f(x), fi(x)) + d(fi(x), fi(y)) + d(fi(y), f(y)) < ε

which proves the claim.

Remark 2.13 The pointwise limit of a sequence of continuous functions
satisfies Definition 1.3 with a sequence (An) of τ -closed sets.

Remark 2.14 With the notation of the proof, if f is limit uniformly of the
sequence (fn), then it is easy to see that f is a p-Borel map with the countable
family of Borel sets (Ai

n)n,i. In particular, this shows that a uniform limit of
real Borel measurable maps of class α is also of class α.

Corollary 2.15 Let (X, τ) be a topological space and (Y, d) a metric space.
Then the smallest family of maps from X to Y which contains the continuous
maps and is closed by pointwise limits of sequences is composed of p-Borel
maps.

The following results show that p-Borel maps preserve some good prop-
erties of measures. All the measures will be supposed to be positive and
finite.

Definition 2.16 A Borel measure µ is said to be smooth if for every family
(Uα) of open sets there is a countable sets of indexes (αn) such that

µ(
⋃

α

Uα) = µ(

∞⋃

n=1

Uαn
)

A Borel measure µ is said to be a Radon measure if for every Borel set A ⊂ X
and every ε > 0 we can find a compact set K ⊂ A such that

µ(A) < µ(K) + ε

Theorem 2.17 Let f : X → Y be p-Borel. If µ is a smooth Borel measure
on X then the image measure f(µ) is smooth on Y .
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Proof. Suppose that f is p-Borel with with some sequence (An) of subsets
of X . Let (Vi)i∈I a family of open sets in Y . Reasoning as in the proof of
Theorem 2.3, for every index i ∈ I and every n ∈ N there is a open set Un,i

in X such that

f−1(Vi) =
∞⋃

n=1

An ∩ Un,i

For every fixed n ∈ N consider the family (Un,i)i∈I of open sets in X . Since
µ is smooth we can take a countable subfamily In ⊂ I such that

µ(
⋃

i∈I

Un,i) = µ(
⋃

i∈In

Un,i)

thus
µ(An ∩

⋃

i∈I

Un,i) = µ(An ∩
⋃

i∈In

Un,i)

and we deduce that

µ(
∞⋃

n=1

⋃

i∈I

An ∩ Un,i) = µ(
∞⋃

n=1

⋃

i∈In

An ∩ Un,i)

Taking I0 =
⋃∞

n=1 In we obtain

f(µ)(
⋃

i∈I

Vi) = f(µ)(
⋃

i∈I0

Vi)

and thus f(µ) is smooth.

Theorem 2.18 Let f : X → Y be p-Borel. For every regular measure µ on
X and every ε > 0 there is a closed set F ⊂ X with µ(F ) > µ(X)− ε such
that f restricted to F is continuous. Moreover, if µ is Radon the closed set
F can be chosen compact.

Proof. Without loss of generality we can suppose that µ(X) = 1. Let τ be
the topology on X and suppose that f is p-Borel with some sequence (An)
of subsets of X . Fixed ε > 0, for every n ∈ N take τ -closed sets Fn ⊂ An

and F ′
n ⊂ X \ An such that

µ(Fn ∪ F ′
n) > 1− 2−nε
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Take F =
⋂∞

n=1(Fn ∪ F ′
n). Then we have that F is a τ -closed set with

µ(K) > 1 − ε. By construction, the topologies τ and top(τ, {An : n ∈ N})
coincide on F . Since f is continuous for the topology top(τ, {An : n ∈ N}),
then f is τ -continuous when restricted to F . When µ is Radon, the set F
can be made compact just taken Fn and F ′

n compact.

Definition 2.19 It is said that f is Lusin µ-measurable if for every ε > 0
there is a compact set K ⊂ X with µ(X \K) < ε such that f |K is continuous.

Corollary 2.20 A p-Borel map f : X → Y is Lusin µ-measurable for every
Radon measure µ on X. In particular the image measure f(µ) on Y is Radon.

The sets of a topological space (X, τ) which are measurable for every
Radon measure are called universally measurable. The family of all univer-
sally measurable subsets of (X, τ), denoted Univ(X, τ) is a σ-algebra con-
taining the Borel subsets.

Corollary 2.21 Let X be a set and τ2 ⊂ τ1 be topologies on X. If the
identity map

I : (X, τ2) → (X, τ1)

is p-Borel, then
Univ(X, τ1) = Univ(X, τ2)

The last result of the section allows us to make continuous p-Borel maps
without loss of certain good properties of the topology. For the proof we
shall use the following lemma, which will also be useful in the last section.

Lemma 2.22 Let X be a set and let C be a class of topologies on X which
satisfies these two properties:

i) If τ ∈ C and S is τ -closed, then top(τ, {S}) ∈ C.

ii) If {τn} ⊂ C is a sequence, then top({τn : n ∈ N}) ∈ C.

Then the following holds:

1) Suppose that (τα) is a transfinite sequence such that τ1 ∈ C, τα+1 =
top(τα, {F

α
n : n ∈ N}) where every F α

n is τα-closed and if α a limit
ordinal τα = top(τβ : β < α). Then τγ ∈ C and

τγ = top(τ1, {F
α
n : n ∈ N, α < γ})

for every countable ordinal γ. The sets {F α
n : n ∈ N} are of additive

class α in (X, τ1).
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2) Given τ1 ∈ C and (An) ⊂ Borel(X, τ1) of additive class γ there is a
transfinite sequence (τα)α≤γ ⊂ C as in 1) such that every An is τγ-open.
The sets {F α

n : n ∈ N, α < γ} are of additive class γ in (X, τ1).

Proof. It is not difficult using transfinite induction.

The following result is well known in the context of Polish spaces.

Proposition 2.23 Let (X, d) be a complete metric space, Y a topological
space and (fn) a sequence of p-Borel maps from X to Y . Then there is a
complete metric d0 on X finer than d such that every fn is d0-continuous and
the identity map I : (X, d) → (X, d0) is p-Borel. In particular, (X, d) and
(X, d0) have the same density character.

Proof. Let (An
m)m be a sequence of Borel sets satisfying Definition 1.3 for

fn. The class of completely metrizable topologies finer than d satisfies the
hypothesis of Lemma 2.22. Indeed, if d1 is a complete metric finer than
d and F is d1-closed, then take d2 and d3 complete metrics bounded by
1 defined respectively on F and X \ F . Take d0(x, y) equal to d1(x, y),
d2(x, y) or 1 depending if the points x and y lies in F , X \F or different sets
respectively. It is easy to check that d0 is a complete metric compatible with
top(d1, {F}). This proves condition i) of Lemma 2.22. To verify condition
ii) of the lemma, suppose that (dn) is a sequence of complete metrics on X
finer than d. It is not difficult to show that d0 =

∑∞
n=1 2

−nmin{dn, 1} is
complete metric compatible with top({dn : n ∈ N}). To finish the proof of
the proposition, apply Lemma 2.22 to the countable family (An

m)n,m in order
to get a completely metrizable topology τγ finer than d which makes every
fn continuous. The afirmation about the density character is consequence of
Proposition 3.6.

3 Examples of p-Borel maps

In this section we shall give some suficient conditions for a map between
topological spaces to be p-Borel. The first and second examples are just
trivial remarks.

Example 3.1 Let f : X → Y a map between topological spaces such that
there is a sequence Borel sets An ⊂ X such that f |An

is continuous and
X =

⋃∞
n=1An. Then f is p-Borel.
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We call the maps as above σ-continuous. In particular, Borel measurable
maps with countable range are σ-continuous, and so p-Borel (if the range is
finite, we have the simple maps). When the space Y is metric, it is possible
to show that a p-Borel map f : X → Y is uniform limit of a sequence of
σ-continuous maps.

Example 3.2 Let f : X → Y a Borel measurable map. Suppose that f(X)
has a countable network of relatively Borel sets. Then f is p-Borel.

It is well known that if X is a Polish space, Y metrizable space and
f : X → Y a Borel measurable map, then f(X) is separable. Thus we have
the following.

Corollary 3.3 Any Borel measurable map from a Polish space into a metric
space is p-Borel.

In a complete metric space a subset is called analytic if it can be obtained
by Souslin’s operation applied to closed sets. This notion of analytic subset
coincides with the classical one if the metric space is separable. An indexed
family {Hi : i ∈ I} is said σ-discretely decomposable if for each i ∈ I there
is a decomposition Hi =

⋃∞
n=1Hi,n such that the family {Hi,n : i ∈ I} is

discrete for every n ∈ N. A deep result of Hansell [6] allows us to remove the
separability hypothesis from the metric case.

Theorem 3.4 (Hansell) Let X be a complete metric space. Then every
disjoint family with the property that arbitrary unions of sets from the family
are analytic is σ-discretely decomposable.

The following is a reformulation of Hansell’s result about the existence of
σ-discrete bases for Borel measurable map between metric spaces.

Example 3.5 If X is a complete metric space and Y is metrizable, then
every Borel map of bounded class f : X → Y is p-Borel.

Proof. Suppose that f is of class α. Let
⋃∞

n=1Bn a basis of Y where every
Bn is disjoint. Since f is Borel measurable, f−1(Bn) satisfy the hypothesis
of the theorem above, so it is σ-discretely decomposable. For every V ∈ Bn

put f−1(V ) =
⋃∞

m=1H(m, V ) where {H(m, V ) : V ∈ Bm} is discrete. Define

A(n,m) =
⋃

V ∈Bn

f−1(V ) ∩H(m, V )
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A discrete union of sets of additive class α is also of class α (see [10]), in
particular, the sets A(n,m) are Borel. It is easy to check that f has property
p with the countable family {A(n,m) : n,m ∈ N}, thus f is p-Borel.

Fleissner’s Axiom (see [4]) implies that every disjoint family in a metric
space with the property that arbitrary unions of sets from the family are
analytic is σ-discretely decomposable. Assuming this, the proof of Example
3.5 shows that every Borel map of bounded class between metric spaces is
p-Borel.

Proposition 3.6 Let f : X → Y be a p-Borel map between topological spaces
and let A ⊂ X be a subset. If ℵ is a cardinal which bounds the density of all
the subsets of A, the ℵ bounds the density of all the subsets of f(A).

Proof. Take S ⊂ f(A). We have to construct a dense subset of S of car-
dinality not greater than ℵ. Suppose that f satisfies Definition 1.3 with a
sequence of sets (An) ⊂ X . For every n ∈ N, let Dn be a dense subset of
An ∩ f−1(S) of cardinality not greater than ℵ. We claim that f(

⋃∞
n=1Dn)

is dense in S. Indeed, let f(x) ∈ S any point. Take V a neighbourhood of
f(x). There is n ∈ N and U ∈ τ such that x ∈ An ∩ U and f(An ∩ U) ⊂ V .
Since An ∩ f−1(S) ∩ U is nonempty, it contains points of Dn, and thus V
contains points of f(Dn).

The preceding result implies when X and Y are metrizable that the p-
Borel image of separable subsets are separable.

Example 3.7 Let τ be the usual topology on R and let δ be the discrete
topology on R. Under Martin’s Axiom and the negation of the Continuum
Hypothesis there exists a uncountable subset X of R such that every subset is
a relative Fσ (see [12]). Consequently, the identity map I : (X, τ) → (R, δ)
is first Borel class but it is not p-Borel.

The following is a topological version of renorming results from [14].

Proposition 3.8 Let (X, τ) and (Y, δ) be topological spaces, and let f : X →
Y be a map. Then f is p-Borel if and only if there is a Borel measurable real
function h on X such that δ-limω f(xω) = f(x) for every net (xω) such that
τ -limω xω = x and limω h(xω) = h(x).
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Proof. Suppose that f is p-Borel with a sequence (An). Let χA be the
characteristic function of the set A. Consider the series

h(x) =

∞∑

n=1

3−nχAn
(x)

Let (xω) be a net with τ -limω xω = x and limω h(xω) = h(x). We want to
show that δ-limω f(xω) = x. Firstly, we claim that

lim
ω

χAn
(xω) = χAn

(x)

for every n ∈ N. Indeed, consider the map T : {0, 1}N → [0, 1] defined
by T ((an)

∞
n=1) =

∑∞
n=1 3

−1an. This map is continuous, from the product
topology to the standard one on [0, 1], and one-to-one as a consequence of
the inequality 1 >

∑∞
n=1 3

−n = 2−1. By compactness, the inverse T−1 :
T ({0, 1}N) → {0, 1}N is continuous. The proof of the claim follows easily
from the continuity of the projections on coordinates. Now, for every δ-
neighbourhood V of f(x) there is n and U ∈ τ such that x ∈ An ∩ U ⊂ V .
Since χAn

(xω) must be constant for ω big enough, we deduce that xω ∈
An. Also, for ω big enough xω ∈ U , thus f(xω) ∈ V which shows the δ-
convergence of (f(xω)).
To see the converse suppose that there exists such function h. Let (Bn) be a
countable basis of R. The condition means that for every x ∈ X and every
V ∈ δ with f(x) ∈ V , there is U ∈ τ and n ∈ N, with x ∈ U and h(x) ∈ Bn,
such that if y ∈ U and h(y) ∈ Bn, then f(y) ∈ V . Clearly, this implies that
f is p-Borel with the sequence An = F−1(Bn).

In [14] we have studied equivalent conditions on a Banach space for the
identity map I : (X,weak) −→ (X, ‖.‖) to be p-Borel. For the sake of
completness we include the following.

Example 3.9 If X is normed space which has an equivalent Kadec norm ‖.‖,
that is, the norm topology and the weak topology coincide on the unit sphere
S‖.‖ = {x ∈ X : ‖x‖ = 1}, then the identity map I : (X,weak) −→ (X, ‖.‖)
is p-Borel.

Proof. Using the homogenity of the norm it is easy to see that if ‖.‖ is Kadec,
then a net (xω) ⊂ X is norm convergent to a point x if and only if (xω) con-
verges weakly to x and limω ‖xω‖ = ‖x‖. Thus the function h(x) = ‖x‖
satisfies Proposition 3.8.
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As a consequence we obtain the result of Edgar [2], if a Banach space
admits an equivalent Kadec norm then the weak Borel sets coincide with the
norm Borel sets. An analogous result can be proved for a dual Banach space
X∗ having a w∗-Kadec norm, that is, the norm and the weak∗ topologies
coincide on the unit sphere. In this case, I : (X∗, weak∗) −→ (X∗, ‖.‖) is
p-Borel, and this implies that Univ(X∗, ‖.‖) = Univ(X∗, weak∗) by Corol-
lary 2.21. It is well known that for a Banach space X , it is always true
that Univ(X, ‖.‖) = Univ(X,weak). But in the case of a dual Banach
space X∗, a theorem of Edgar [2] states that the identity Univ(X∗, ‖.‖) =
Univ(X∗, weak∗) is equivalent to the Radon-Nikodym property of X∗.

4 Absolute Borel spaces

For covenience we introduce the following definition from [14].

Definition 4.1 Let Z be a set, τ1 and τ2 two topologies on Z. We say that
a subset X ⊂ Z has property P (τ1, τ2) with a sequence An ⊂ Z of sets, if for
every x ∈ X and every V ∈ τ1 with x ∈ V , there is n ∈ N and U ∈ τ2 such
that x ∈ An ∩ U ⊂ V .

Lemma 4.2 Let X be a set and τ2 ⊂ τ1 two topologies on X. If X has
P (τ1, τ2) with τ2-Borel sets, then

Borel(X, τ1) = Borel(X, τ2)

Proof. The identity map I : (X, τ2) → (X, τ1) is p-Borel.

In order to characterize the absolute Borel completely regular topological
spaces we shall use the notion of Čech-complete topological space. The defi-
nition of Čech-complete space that we shall use is in fact a result by Frolik
[5]. We prefer this definition because it is formulated in terms of the topology
of the space.

Definition 4.3 A completely regular topological space (X, δ) is said to be
Čech-complete if it has a complete sequence of open covers, that is, there are
δ-open covers (Sn) of X such that every filter F in X has a cluster point
provided that F ∩ Sn 6= ∅ for every n ∈ N.
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Next lemma is part of Frolik’s characterizations of Čech-complete topo-
logical spaces. The proof uses ideas that come from Sierpinski’s results about
completely metrizables subspaces of a regular topological space (see [9]).

Lemma 4.4 A Čech-complete topological space (X, τ) is a F∩Gδ-set in every
regular embedding. Conversely, if (X, τ) is a F ∩ Gδ-set in some compact
space, then (X, τ) is Čech-complete.

Proof. Suppose that (X, τ) is a dense subspace of a regular space (Z, τ̃).
Let (Sn) be a complete sequence of open covers of X . We define for every
n ∈ N the open sets

Gn = {z ∈ Z : ∃Un,z ∈ τ̃ , z ∈ Un,z, X ∩ Un,z ∈ Sn}

Clearly we have that X ⊂ Gn for every n ∈ N. We claim that X =
⋂∞

n=1Gn.
Indeed, take z ∈

⋂∞
n=1Gn. We have for every n ∈ N that z ∈ Un,z and

X ∩ Un,z ∈ Sn. Let F be the filter of neighbourhoods of z. The regularity of

(Z, τ̃) implies that
⋂

U∈FU
τ̃
= {z}. By the density of X in Z, we have that

F|X is also a filter and X ∩ Un,z ∈ F|X ∩ Sn for every n ∈ N. Applying that
Sn is a complete sequence of covers, we have that

∅ 6=
⋂

U∈F

(X ∩ U)
τ
⊂ X ∩

⋂

U∈F

U
τ̃

This implies that z ∈ X .
Now suppose that (X, τ) is F ∩ Gδ-set in a compact space (Z, τ̃). Changing

Z by X
τ̃
, we may assume without loss of generality that X is a dense Gδ-

set in Z. Put X =
⋂∞

n=1Gn, where every Gn is τ̃ -open. For every n ∈ N

define Sn as the collection of the sets of the form X ∩ U where U ∈ τ̃ and

U
τ̃
⊂ Gn. Every filter F must have a cluster point in Z by the compactness.

If F ∩ Sn 6= ∅ for every n ∈ N, then the cluster points must belong to Gn for
every n ∈ N, so F has its cluster points in X and this shows that (Sn) is a
complete sequence of open covers of X .

A well known consequence is that F ∩Gδ subsets of Čech-complete spaces
are also Čech-complete.

Lemma 4.5 The class of Čech-complete topologies on some set X which are
finer than a prefixed Hausdorff topology verify the properties of Lemma 2.22.
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Proof. Let τ be a Čech-complete topology on X . Let F ⊂ X a τ -closed set.
Assume that X is a Gδ-set in some compact space (Z, τ̃). It is easy to see
that the following map

i : X −→ {0, 1} × Z

defined by i(x) = (0, x) if x ∈ F and i(x) = (1, x) if x ∈ X \ F is an embed-
ding of X endowed with top(τ, {F}) and i(X) is a F ∩Gδ-set in the compact
space {0, 1} × Z, and thus top(τ, {F}) is a Čech-complete topology.
Now suppose that (τn) is a sequence of Čech-complete topologies on X . As-
sume that there is a Hausdorff topology τ0 such that τ0 ⊂ τn for every n ∈ N.
Take a compact space (Zn, τ̃n) containing (X, τn) as a Gδ subspace for each
n ∈ N. Let τ = top({τn : n ∈ N}) and consider the map

i : X −→
∞∏

n=1

Zn

defined by i(x) = (x)∞n=1. It is easy to see that i is an embedding of (X, τ)
into a compact space and

∏∞
n=1X is a Gδ subset of

∏∞
n=1 Zn. We claim that

i(X) is closed in
∏∞

n=1(X, τn). It is enough to show that i(X) is closed in the
coarser topology of

∏∞
n=1(X, τ0). Indeed, if (xn)

∞
n=1 ∈

∏∞
n=1X \ i(X), then

xn1
6= xn2

. As τ0 is Hausdorff, take U1, U2 ∈ τ0 disjoint neighbourhoods of
xn1

and xn2
respectively. Let πn be the projection on the n’th coordinate.

It is easy to see that π−1
n1
(U1) ∩ π−1

n2
(U2) is a neighbourhood of (xn)

∞
n=1 that

does not meet i(X). We have that (X, τ) is homeomorphic to a relatively
closed subset of a Gδ subset of a compact space, and thus τ is Čech-complete.

An internal characterization for absolute Borel metrizable spaces in terms
of complete sequences of covers was obtained in [11]. The main result of this
section provides a characterization of those completely regular spaces which
are absolute Borel and a sufficient condition in the regular case.

Theorem 4.6 Let (X, τ) a regular topological space. Consider the following
statements:

i) (X, τ) is absolute Borel.

ii) (A, τ |A) is absolute Borel for every A ∈ Borel(X, τ).

iii) There is a Čech-complete topology δ on X finer than τ such that X has
P (δ, τ) with a sequence (An) of τ -Borel sets.
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iv) There is a complete metric d on X finer than τ such that X has P (d, τ)
with a sequence (An) of τ -Borel sets.

Then iv) ⇒ iii) ⇒ ii) ⇒ i). If (X, τ) is completely regular, then i), ii)
and iii) are equivalent. If (X, τ) is metrizable, then all the statements are
equivalent.
Moreover, if γ > 0 is countable ordinal, then (X, τ) is of multiplicative class
γ+1 in every regular embedding if (for (X, τ) completely regular, if and only
if) the sets (An) of iii) and iv) can be taken of additive class γ.

Proof. It is clear that iv) ⇒ iii) and ii) ⇒ i).
iii) ⇒ i) Assume that (X, τ) is a subspace of a regular topological space
(Z, τ̃). Put An = A′

n ∩ X where A′
n ∈ Borel(Z, τ̃) are of additive class γ.

Applying Lemma 2.22, there is a transfinite sequence of regular topologies
(τ̃α)α≤γ with τ̃1 = τ̃ and τ̃α+1 = top(τ̃α, {F

α
n : n ∈ N}) where F α

n is τ̃α-closed,
and every A′

n is τ̃γ-open. Since δ is stronger than τ , the transfinite sequence
defined by δ1 = δ, δα+1 = top(δα, {X ∩F α

n : n ∈ N}) and for α a limit ordinal
τα = top(τβ : β < α) is made up of Čech-complete topologies by Lemmata
2.22 and 4.5. We claim that δγ = τ̃γ |X . Indeed, it is easy to see by induction
that τ̃α|X ⊂ δα for α ≤ γ. In particular, τ̃γ|X ⊂ δγ . On the other hand, every
A′

n is τ̃γ-open, and the inclusion δγ ⊂ τ̃γ |X follows.
We have that (X, τ̃γ |X) is Čech-complete, so by Lemma 4.4, X is a F∩Gδ-set
in (Z, τ̃γ). Note that a τ̃γ-open set has additive class γ in (Z, τ̃), and thus X
has multiplicative class γ + 1 in (Z, τ̃).
iii) ⇒ ii) It is enough to see that (A, τ |A) satisfies the condition iii). If δ is
a Čech-complete topology on X such that X has P (δ, τ) with τ -Borel sets,
by Lemma 2.22, we can construct a Čech-complete topology δγ on X such
that A is δγ-open and X has P (δγ, τ) with τ -Borel sets. Now (A, δγ|A) is
Čech-complete and A has P (δγ|A, τ |A) with τ |A-Borel sets.
i) ⇒ iii) Consider (X, τ) as subset of its Čech-Stone compactification (βX, τ̃ ).
IfX is of multiplicative class γ+1 in βX then it can be written X =

⋂∞
n=1Xn

where every Xn is of additive class γ. By Lemma 2.22, there is a Čech-
complete topology on βX obtained from τ̃ by adding a countable sequence
of sets of additive class γ making every Xn open. Thus X is a Gδ-set in a
Čech-complete space and so it is Čech-complete too for that finer topology.
i) ⇒ iv) It is enough to consider (X, τ) into some complete metric space and
reasoning like in i) ⇒ iii).
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Since any compact space is absolute Borel, we obtain as a corollary that
Borel subsets of a compact space are absolute Borel spaces. We also have
the following.

Corollary 4.7 A completely regular topological space is absolute Borel if and
only if it is a Borel subset in its Čech-Stone compactification.

The following extends a result of Oncina [13] about Banach spaces with
a countable cover by sets of local small diameter.

Corollary 4.8 Let (Z, τ) be a regular topological space. Let X be a subset
of Z such that there is metric d on X stronger than the restriction of τ .
Suppose that X has P (d, τ) and the closed d-balls are τ -closed in X. If
(X, d) is complete, then X is (F ∩ G)σδ-set in (Z, τ).

Proof. Assume that X has P (d, τ) with a sequence (An). We claim that X
has P (d, τ) with (An

τ
). Fix x ∈ A. Take ε > 0. There exists An and U ∈ τ

such that x ∈ An ∩ U ⊂ B(x, ε/2). Thus

x ∈ An
τ
∩ U ⊂ An ∩ U

τ
⊂ B(x, ε/2)

τ
⊂ B(x, ε)

Since closed sets are of first additive class, by applying Theorem 4.6 we de-
duce that X is a subset of the second multiplicative class of Z, that is, a
(F ∩ G)σδ subset.

An example where the above Corollary can be applied is a Banach space
having an equivalent Kadec norm. Following result appears in [3].

Corollary 4.9 (Schachermayer) If X is a Banach space having an equiv-
alent Kadec norm, then (X,weak) is an absolute Borel space. In particular,
X is weak∗-(F ∩ G)σδ-set in X∗∗.

Notice that if a Banach space X is a weak∗-Borel subset in its bidual X∗∗,
then (X,w) is absolute Borel. Indeed, (X∗∗, w∗) is absolute Borel because it
is σ-compact.

We can get as corollaries some classic results, see Kuratowski [10]. The
first one tell us that the Borel subsets of complete metric spaces are absolute
Borel spaces.
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Corollary 4.10 (Sierpinski) Let X be a metrizable space. Then X is Borel
subset in every embedding into a regular space if and only if X is homeo-
mophic to a Borel subset of a complete metric space.

Lemma 4.11 Let (X, d) be a Polish space and let τ be a coarser Hausdorff
topology on X. Then X has P (d, τ) with τ -Borel sets. In particular, (X, τ)
is an absolute Borel space.

Proof. Since d has a countable basis, it is enough to prove that any d-
open subset is τ -Borel. Observe that the d-open and d-closed subsets can
be regarded as continuous images from polish spaces to (X, τ), so they are
Souslin subsets. By the Separation Theorem [1, IX §6], disjoint Souslin
subsets in a Hausdorff space can be separed by a Borel subset. In particular,
a d-open subset of X must be τ -Borel.

Corollary 4.12 (Lusin-Souslin) Let X be a Polish space, Z a regular space
and let f : X → Z be a one-to-one p-Borel map. Then f(A) is a Borel set
in Z for every Borel subset A of X. If Z is metrizable, it is enough to ask f
to be a Borel measurable one-to-one map to get the same conclusion.

Proof. Since any Borel subset of X is a Polish space with some stronger
topology, Proposition 2.23, we only have to prove that f(X) is Borel. Again
by Proposition 2.23, we can take a metric d such that (X, d) is complete
separable and f is continuous. If τ is the topology of Z, then f−1(τ) is a
regular topology on X coarser than d. By Lemma 4.11, X has P (d, f−1(τ))
with Borel sets. Now apply Theorem 4.6 to the embedding of (X, f−1(τ))
into (Z, τ) to get the conclusion. If Z is metrizable, then f is p-Borel by
Example 3.3.

We shall say that an one-to-one map between topological spaces is a p-
Borel isomorphism if the map and its inverse are p-Borel. Theorem 4.6 says
that a topological space is absolute Borel if there is a particular p-Borel
isomorphism to a Čech-complete space. The following result shows that the
property of being absolute Borel is preserved under p-Borel isomorphism.

Theorem 4.13 A topological space is absolute Borel if it is p-Borel isomor-
phic to an absolute Borel space.
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Proof. Let f : X → Y be a p-Borel isomorphism between topological
spaces, and assume that (X, τ) is absolute Borel. Suppose that f has satisfies
Definition 1.3 with a sequence (An) of τ -Borel sets. By Theorem 4.6 there is
a Čech complete topology δ on X finer than τ such that X has I : (X, δ) →
(X, τ) is p-Borel. By Lemma 2.22 we may assume that every An is δ-open.
The topology f(δ) on Y is Čech-complete and statement iii) of Theorem 4.6
is verified, so Y is an absolute Borel space.
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[9] J.L. Kelley, Topoloǵıa General, EUDEBA, 1975.

[10] K. Kuratowski, Topology, Volume I, PWN Polish Scientific Publish-
ers, 1966.

[11] W. Marciszewski, J. Pelant, Absolute Borel sets and function
spaces, Trans. Amer. Math. Soc., 349 (1997), 3585-3596.

20



[12] D.A. Martin, R.M. Solovay, Internal Cohen Extensions, Ann.
Math. Logic., 2 (1970), 143-178.

[13] L. Oncina, The JNR property and the Borel structure of a Banach
space, Serdica Math. J., 26 (1) (2000), 13-32.

[14] M. Raja, Kadec norms and Borel sets in a Banach space. Studia Math.,
136 (1999), 1-16.

[15] M. Talagrand, Sur la structure borelienne des espaces analytiques,
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