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Abstract

We prove that a dual Banach space X
∗ has an equivalent W∗LUR

norm if and only the weak∗ topology has a σ-isolated network. We
give sufficient conditions for the existence of equivalent norms with
various kinds of differentiability.

1 Introduction

Differentiability properties of convex functions on a Banach space X are
closely related to properties of the weak∗ topology of the dual space X∗. A
Banach space X is said to be Asplund (resp. weak Asplund) if every convex
continuous function defined onX has a Gδ dense set of points of Fréchet (resp.
Gâteaux) differentiability. It is well known that X is weak Asplund if BX∗

is a fragmentable compactum (in the weak∗ topology), and X is Asplund if
and only if BX∗ is fragmented by the norm of X∗. Recall that fragmentable
means fragmented by some metric, and a topological space (Z, τ) is said to
be fragmented by a metric (or pseudometric) d defined on Z, if for every
ε > 0 and every nonempty A ⊂ Z, there is U ∈ τ such that A ∩ U 6= ∅ and
diam(A∩U) < ε. Asplund properties can be generalized using the following
notion of differentiability. Let f : X → R be a convex function defined on a
Banach space X and let M ⊂ X be a bounded subset. It is said that f is
M-differentiable at x ∈ X if the limit

lim
t→0

t−1(f(x+ th) + f(x− th)− 2f(x)) = 0
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exists uniformly in h ∈ M . A bounded subset M ⊂ X is an Asplund set
if any convex continuous function on X is M-differentiable on a dense Gδ

subset. A bounded subset M ⊂ X is an Asplund set if and only if BX∗ is
fragmented by the pseudometric of uniform convergence on M . For the proof
of all these facts and further references see the books [3, 6].

If the Banach space X has an equivalent Gâteaux smooth norm, then
BX∗ is a fragmentable compactum [20, 6]. In this paper we give general
conditions for the existence of an equivalent Gâteaux norm on a Banach
space X in terms of the weak∗ topology of its dual X∗. For this aim, we shall
use a topological property related to the fragmentability. Some terminology
is needed. Let {Hi : i ∈ I} be a family of subsets of a topological space
(Z, τ). The family is said to be isolated if it is discrete in its union endowed
with the relative topology, or in other words, if for every i ∈ I we have

Hi ∩
⋃

j∈I,j 6=i

Hj = ∅.

If there is a decomposition I =
⋃∞

n=1 In such that every family {Hi : i ∈ In}
is isolated, then the family {Hi : i ∈ I} is said to be σ-isolated. A family N

of subsets of Z is said to be a network if every open set is a union of members
of N. Topological spaces are supposed to be Hausdorff.

Definition 1.1 A compact space K is said to be descriptive if its topology
has a σ-isolated network.

Descriptive topological spaces were introduced by Hansell in [10]. A par-
ticular class of compact spaces having a σ-isolated network was studied in
[18] under the name of Namioka-Phelps compacta. The main (and simplest)
examples of descriptive compact spaces are the Eberlein compacta and the
scattered compacta K with K(ω1) = ∅, see [18]. We shall also prove that
Gul’ko compacta are descriptive too, Corollary 2.4. Recall that a compact
space K is said to be Gul’ko if the Banach space C(K) is weakly countably
determined, see [3, 6].

Let X be a Banach space such that its dual unit ball BX∗ is a descriptive
compactum. We shall prove in the paper that X has an equivalent Gâteaux
smooth norm. By Šmulyan criterion, see [3], it is enough to build an equiva-
lent strictly convex dual norm on X∗, but our construction will actually give
a stronger property.
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Definition 1.2 A dual norm ‖.‖ on X∗ is said to be weak∗ locally uniformly
rotund (W∗LUR) if w∗-limn x

∗
n = x∗, whenever x∗, x∗

n are such that ‖x∗
n‖ =

‖x∗‖ = 1 and limn ‖x
∗ + x∗

n‖ = 2.

The corresponding definition for the weak topology, that is, weak locally
uniformly rotund norms (WLUR) has been investigated by several authors.
The most striking result from the point of view of renorming was given by
Moltó, Orihuela, Troyanski and Valdivia [16]; they proved that a WLUR Ba-
nach space has an equivalent LUR norm. A version of their result for dual
Banach spaces is our Corollary 4.2.

Next theorem enumerates the main results of the paper.

Theorem 1.3 Let X be a Banach space and let K be a compact space. Then
the following affirmations hold:

(a) X∗ has an equivalent W∗LUR norm if and only if BX∗ is descriptive.

(b) Assume that BX∗ is descriptive. For every Asplund subset M ⊂ X,
there is an M-differentiable equivalent norm on X such that the dual
norm is W∗LUR.

(c) K is descriptive if and only if C(K)∗ has an equivalent W∗LUR norm.

The first consequence of Theorem 1.3 is that the existence of an equiv-
alent W∗LUR norm on a dual Banach space X∗ is a non linear topological
property. Theorem 1.3 also has as corollaries some well known results about
Gâteaux or Fréchet renormability of certain clases of Banach spaces X due
to: Amir and Lindenstrauss, if BX∗ is Eberlein compact [9]; Mercourakis, if
X is WCD [15, 3] (in this case BX∗ is Gul’ko); Fabian, if X is Asplund and
WCD [4, 3]; and Deville, for C(K) if K is scattered and K(ω1) = ∅ [2, 3].

We shall briefly describe the contains of the remaining sections of the
paper. Section 2 contains some results about topological spaces with σ-
isolated network which are essential for the proof of Theorem 1.3. Descriptive
compact spaces has much more interesting topological properties that will
be published elsewere. In Section 3 we deal with Radon measures on a
descriptive compact space K in order to prove a renorming result for C(K)∗.
The proof of Theorem 1.3 is completed in Section 4 using a transfer technique.
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2 The topological arguments

Lemma 2.1 A descriptive compact space is fragmentable.

Proof. Let {Hn
α : n ∈ N, α ∈ [1, ξn)} a network of K where every family

{Hn
α : α ∈ [1, ξn)} is isolated. We have that {Hn

α : α ∈ [1, ξn), n ∈ N} is also a
network by regularity. Take open sets Un

α for α ∈ [1, ξn) such that Hn
α ⊂ Un

α

and Un
α ∩

⋃
{Hβ : β ∈ [1, ξn), β 6= α} = ∅. Put An =

⋃
α∈[1,ξn)

Hn
α and

W n
α = An ∩ Un

α for α ∈ [1, ξn). Since Un
α is open, we have Nn

α ⊂ W n
α ⊂ Nn

α .
This implies that {W n

α : n ∈ N, α ∈ [1, ξn)} is also a network of K. Take
W n

0 = K \An and W n
ξn

= An \
⋃

α∈[1,ξn)
Un
α . For every n ∈ N, the well ordered

family {W n
α : α ∈ [0, ξn]} is a relatively open partitioning of K [6], i.e. W n

α is
a relatively open subset of

⋃
β≥αW

n
β for every α ∈ [0, ξn]. The proof finishes

by applying a result of Ribarska [6] which states that a compact space K is
fragmentable if and only if there is a sequence of relatively open partitionings
which separates the points of K.

We need to introduce a kind of covering property, see [1]. A topological
space Z is said to be weakly θ-refinable (also called weakly submeta compact)
if every open cover of Z has a σ-isolated (non necessary open) refinement. If
every subspace of Z is weakly θ-refinable, then it is said that Z is hereditarily
weakly θ-refinable. Clearly, a topological space with a σ-isolated network is
hereditarily weakly θ-refinable.

Lemma 2.2 Let (Z, τ) be a hereditarily weakly θ-refinable regular topological
space. Assume that Z is fragmented by a finer metric d. Then for every
n ∈ N there is a family Nn of disjoint relatively open subsets of a closed
subset An ⊂ Z, such that N =

⋃∞
n=1Nn is a network for (Z, d). Moreover,

(Z, τ) has a σ-isolated network.

Proof. Using the fragmentability by d and the regularity of τ , for every
n ∈ N we can take a transfinite sequence of open sets {Un

α : α < ξn} covering
Z, such that Un

α ∩ (Z \
⋃

β<α U
n
β ) is nonempty and has diameter less than

n−1. Put Dn
α = Un

α ∩ (Z \
⋃

β<α U
n
β ). Then we have

diam(Dn
α) ≤ diam(Un

α ∩ (Z \
⋃
β<α

Un
β )) ≤ n−1.

Since (Z, τ) is hereditarily weakly θ-refinable, by [11, Lemma 6.20], the family
{Dn

α : α < ξn} is σ-isolatedly decomposable, that is, for every α we can write
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Dn
α =

⋃∞
m=1H

n,m
α and the family {Hn,m

α : α < ξn} is isolated for every
m ∈ N. Thus we can take open sets Un,m

α such that Hn,m
α ⊂ Un,m

α and
Un,m
α ∩

⋃
{Hn,m

β : β < ξn, β 6= α} = ∅. Take An,m =
⋃

α<ξn
Hn,m

α . Then we
have

Un,m
α ∩ An,m = Un,m

α ∩Hn,m
α ⊂ Dn

α.

Take Nn,m = {Un,m
α ∩ An,m : α < ξn} and N =

⋃
n,m∈NNn,m. The last set

inclusion shows that N is a network for d. The proof is finished up to a
change of the indexes.

Proposition 2.3 A compact space is descriptive if and only if it is frag-
mentable and hereditarily weakly θ-refinable.

Proof. Apply Lemmata 2.1 and 2.2.

Corollary 2.4 Gul’ko compact spaces are descriptive.

Proof. Gul’ko compact spaces are fragmentable [19, 6] and hereditarily
weakly θ-refinable [8].

We shall also need the following definition, see [7]. A symmetric on a set Z
is a function ρ : Z ×Z → R satisfiying the following conditions: ρ(x, y) ≥ 0;
ρ(x, y) = 0 if and only if x = y; and ρ(x, y) = ρ(y, x). A topology τ on Z is
said to be semi-metrizable if there is a symmetric ρ such that for every point
x ∈ Z, the family of “open balls” of radius r > 0

Bρ(x, r) = {y ∈ Z : ρ(x, y) < r}

is a basis of τ at x. A semi-metrizable topological space is hereditarily weakly
θ-refinable, see [7, Theorem 9.8, Theorem 5.11] and [1, Diagram 4.1].

Lemma 2.5 Let X∗ be a dual Banach space satifying that either the unit
sphere SX∗ is weak∗ metrizable or the norm is W∗LUR. Then the weak∗ topol-
ogy of X∗ has a σ-isolated network.

Proof. Acording to [10, Theorem 7.2] it suffices to show that (SX∗ , w∗) has
a σ-isolated network. The first case follows from the fact that any metrizable
space has a σ-discrete base [14]. Assume that the norm is W∗LUR. We
claim that (SX∗ , w∗) is semi-metrizable. Consider the symmetric given by
the formula ρ(x∗, y∗) = 1 − 2−1‖x∗ + y∗‖. Fix a point x∗ ∈ SX∗ . From
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the definition of W∗LUR is clear that every neighbourhood of x∗ contains
a “ball” Bρ(x

∗, r) for some r > 0. To have that SX∗ is semi-metrized by ρ
it remains to show that Bρ(x

∗, r) is a neighbourhood of x∗. By the Hanh-
Banach Theorem find a w∗-open halfspace U containing x∗ and disjoint with
(1− r)BX∗ . If y∗ ∈ SX∗ ∩ U , then (x∗ + y∗)/2 ∈ U and thus 2−1‖x∗ + y∗‖ >
1 − r. So ρ(x∗, y∗) < r and SX∗ ∩ U ⊂ Bρ(x, r). Now, by a well known
result of Ribarska, see [6], (BX∗ , w∗) is fragmentable. Lemma 2.2 implies
that (SX∗ , w∗) has a σ-isolated network. A different proof can be obtained
adapting results from [16] which are formulated for WLUR norms.

3 Renorming of C(K)∗

Notice that if K is a descritive compactum fragmented by a finer metric d,
then every bounded d-continuous map f : K → X with values in a normed
space X is Bochner integrable with respect to each Radon measure µ on K.
Indeed, from Lemma 2.2 follows easily that the d-open sets are Borel, thus f
is Borel measurable. The fragmentability implies that there is a d-separable
subset where µ is concentrated [13], so f has essentially separable range.

Lemma 3.1 Let K a descriptive compact space, let d a finer metric frag-
menting K. Then d has a network N with the following properties:

1) there are closed sets An such that N =
⋃∞

n=1Nn where Nn is a disjoint
family of relatively open subsets of An for every n ∈ N,

2) for every n1, n2 ∈ N there is n3 ∈ N such that

Nn3
= {H1 ∩H2 : H1 ∈ Nn1

, H2 ∈ Nn2
}.

Proof. Let {An ∩ Ui : n ∈ N, i ∈ In} be the network given by Theorem 2.2
and put N′

n = {An ∩ Ui : i ∈ In}. For a given k-uple of integers (n1, . . . , nk)
the sets of the form H1 ∩ . . . ∩ Hk, where Hj ∈ N′

nj
, is a family of disjoint

relatively open subsets of the closed set An1
∩ . . . ∩ Ank

. Call this family
N′

n1,...,nj
and finally take N =

⋃
{N′

n1,...,nj
: n1, . . . , nj ∈ N}.

Lemma 3.2 Let K be a descriptive compact space, let d be a metric on K
and assume that N is a network for d verifying the conditions of Lemma 3.1.
Let µ, µω be positive measures satisfying that

6



i) limω µω(K) = µ(K).

ii) limω

∑
H∈Nn

|µω(H)− µ(H)| = 0 for every n ∈ N.

Then, for every bounded d-continuous map f : K → X with values into a
normed space,

lim
ω

‖

∫
f dµω −

∫
f dµ‖ = 0

Proof. First of all we notice that limω µω(H) = µ(H) for every H ∈ Pn

where Pn is the partition generated by N1, . . . ,Nn. To see that, just remark
that the measure of every member of Pn can be expresed as a finite linear
combination of measures of unions of sets from N, where the sets in each
union lies in some Nm. Since the canonical norm of l1(Pn) is pointwise
Kadec, the net (µω) converges to µ in the norm of l1(Pn).
Given ε > 0, we claim that for n ∈ N large enough

∑
E∈Pn

diam(f(E))µ(E) < ε

To see that, take points x1
E , x

2
E where E ∈ Pn such that

‖f(x1
E)− f(x2

E)‖ > 2−1diam(f(E)).

Define functions f 1
n(x) = f(x1

E) and f 2
n(x) = f(x2

E) if x ∈ E. Clearly

∑
E∈Pn

diam(f(E))µ(E) ≤ 2

∫
‖f 1

n − f 2
n‖ dµ.

Since N is a network, we have that limn ‖f
1
n(x)−f 2

n(x)‖ = 0 for every x ∈ X .
Thus, by Lebesgue’s Theorem, we have

∫
‖f 1

n − f 2
n‖ dµ < ε/2.

for n big enough and this proves the claim. Let us go on with the proof of
the lemma. Take ε > 0 and n ∈ N such that

∑
E∈Pn

diam(f(E))µ(E) < ε/2
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Since (µω) converges to µ in l1(Pn) we deduce that
∑
E∈Pn

diam(f(E))µω(E) < ε/2

for ω large enough. Fix points xE ∈ E ∈ Pn. Then we have

‖

∫
f dµ−

∑
E∈Pn

f(xE)‖ ≤
∑
E∈Pn

diam(f(E))µ(E)

‖

∫
f dµω −

∑
E∈Pn

f(xE)‖ ≤
∑
E∈Pn

diam(f(E))µω(E)

and we deduce that

‖

∫
f dµω −

∫
f dµ‖ ≤ ε

which finishes the proof of the claim.

Theorem 3.3 Let K be a descriptive compact space and let d be a finer
metric fragmenting K. Then there is an equivalent dual norm |||.||| on C(K)∗

such that for every bounded d-continuous function f : K → X with values
into a normed space

lim
ω

‖

∫
f dµω −

∫
f dµ‖ = 0

whenever the measures µ, µω ∈ C(K)∗ are such that limω |||µω||| = |||µ||| and
limω |||µ+ µω||| = 2|||µ|||. In particular, |||.||| is a W∗LUR norm.

Proof. Let N be a network satisfying Lemma 3.1. In particular, N =⋃∞
n=1Nn and every Nn is a disjoint family of relatively open subsets of a

closed subset An ⊂ K. Clearly, A′
n = An \

⋃
Nn is also closed.

Construction for positive measures. For any open subset U ⊂ K the
evaluation |µ|(U) is w∗-lower semicontinuous. Indeed, we have

|µ|(U) = sup{

∫
f dµ : |f | ≤ 1, supp(f) ⊂ U}.

Now we proceed to the construction of a dual norm on C(K)∗. For every
n ∈ N define a function Fn on C(K)∗ by

Fn(µ)
2 =

∑
H∈Nn

|µ|(H)2.
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The function Fn is convex and when restricted to C(An)
∗ is w∗-lower semi-

continuous. For m,n ∈ N define a seminorm ‖.‖m,n on C(K)∗ by the formula

‖µ‖2m,n = inf{m−1Fn(ν)
2 + ‖µ− ν‖2 : supp(ν) ⊂ An}.

Notice that taking ν = µ ↾An
(that is, the restriction of µ to An) we deduce

the following inequality

‖µ‖2m,n ≤ m−1‖µ‖2 + |µ|(K \ An)
2.

Using the w∗-lower semicontinuity of Fn on C(An)
∗ and compactness it is

easy to see that, for every µ ∈ C(K)∗ there is ν ∈ C(An)
∗ such that

‖µ‖2m,n = m−1Fn(ν)
2 + ‖µ− ν‖2.

Define an equivalent norm |||.|||+ on C(K)∗ by

|||µ|||2+ = ‖µ‖2+
∑
m,n

2−m−n‖µ‖2m,n+
∑
n

2−n|µ|(K \An)
2+

∑
n

2−n|µ|(K \A′
n)

2.

The norm |||.|||+ is dual because is w∗-lower semicontinuous. Suppose we are
given measures µ, µω ∈ M+(K) satisfying limω |||µω|||+ = |||µ|||+ and limω |||µ+
µω|||+ = 2|||µ|||+. We claim that (µω) converges to µ in l1(Nn) for every n ∈ N.
A standar convexity argument [3, Fact II.2.3] shows that

lim
ω

µω(K \ An) = µ(K \ An),

lim
ω

µω(K \ A′
n) = µ(K \ A′

n),

lim
ω

‖µω‖m,n = lim
ω

‖
µ+ µω

2
‖m,n = ‖µ‖m,n

for every m,n ∈ N. From the two first equalities we deduce that

lim
ω

∑
H∈Nn

|µω|(H) =
∑
H∈Nn

|µ|(H).

Since the canonical norm of l1(Nn) is pointwise Kadec it is enough to show
that limω µω(H) = µ(H) for every H ∈ Nn. Take measures νm,n, νm,n

ω sup-
ported by An such that

‖µ‖2m,n = m−1Fn(ν
m,n)2 + ‖µ− νm,n‖2,
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‖µω‖
2
m,n = m−1Fn(ν

m,n
ω )2 + ‖µω − νm,n

ω ‖2.

Again a convexity argument shows that

lim
ω

Fn(ν
m,n
ω ) = lim

ω
Fn(

νm,n + νm,n
ω

2
) = Fn(ν

m,n),

lim
ω

‖µω − νm,n
ω ‖ = ‖µ− νm,n‖.

From the first equality we obtain that limω ν
m,n
ω (H) = νm,n(H) for H ∈ N.

On the other hand we have

‖µω − νm,n
ω ‖ = µω(K \ An) + ‖µω ↾An

−νm,n
ω ‖,

‖µ− νm,n‖ = µ(K \ An) + ‖µ↾An
−νm,n‖.

We deduce that

lim
ω

‖µω ↾An
−νm,n

ω ‖ = ‖µ↾An
−νm,n‖.

Take any ε > 0. We have

‖µ↾An
−νm,n‖+ µ(K \ An) = ‖µ− νm,n‖

≤ ‖µ‖m,n ≤ [m−1‖µ‖2 + µ(K \ An)
2 ]1/2.

Thus we can take m ∈ N such that ‖µ ↾An
−νm,n‖ < ε/3. For ω big enough

we have ‖µω|An
− νm,n

ω ‖ < ε/3 and | νm,n
ω (H) − νm,n(H) | < ε/3. Then we

deduce that
|µω(H)− µ(H) | < ε

which proves the claim.
Construction of |||.|||. Let |||.|||+ the norm constructed in the former step.
Define an equivalent norm on C(K)∗ by the formula

|||µ|||2 = inf{|||µ1|||2+ + |||µ2|||2+ : µ1, µ2 ∈ M+(K), µ1 − µ2 = µ}.

A compactness argument shows that |||.||| is a dual norm and that for every
µ ∈ C(K)∗ there are µ1, µ2 ∈ M+(K) such that µ = µ1 − µ2 and

|||µ|||2 = |||µ1|||2+ + |||µ2|||2+.
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Suppose we are given measures µ, µω ∈ C(K)∗ satisfying limω |||µω||| = |||µ|||
and limω |||µ + µω||| = 2|||µ|||. We can take measures µ1

ω, µ
2
ω ∈ M+(K) such

that µω = µ1
ω − µ2

ω and

|||µω|||
2 = |||µ1

ω|||
2
+ + |||µ2

ω|||
2
+.

A standar convexity argument shows that

lim
ω

|||µi
ω|||+ = lim

ω
|||
µi + µi

ω

2
|||+ = |||µi|||+

for i = 1, 2. By the former part, (µ1
ω) and (µ2

ω) converge to µ1 and µ2

respectively on every set H ∈ N. By Lemma 3.2 we have

lim
ω

‖

∫
f dµi

ω −

∫
f dµi‖ = 0

for i = 1, 2, which easily implies that

lim
ω

‖

∫
f dµω −

∫
f dµ‖ = 0

for every bounded d-continuous map f : K → X with values into a normed
space. This ends the proof of Theorem 3.3.

4 The general case

Notice that at this point we have already proved Theorem 1.3 (c). Indeed,
one way follows from Theorem 3.3. The other one follows from Lemma 2.5
and the fact that K embeds into (C(K)∗, w∗).

Proof of Theorem 1.3 (a) If X∗ is a dual Banach space with an equivalent
W∗LUR norm, then BX∗ is a descriptive compact space after Lemma 2.5.
Suppose that BX∗ is descriptive. We may fix a finer fragmenting metric d in
order to apply Theorem 3.3. Let ‖.‖K be the equivalent W∗LUR norm on
C(BX∗)∗ given by Theorem 3.3. Consider the norm |||.||| on X∗ given by the
formula

|||x∗||| = inf{‖µ‖K : µ ∈ C(BX∗)∗,

∫
I dµ = x∗}.

It is easy to see that |||.||| is an equivalent dual norm. Also notice that the
infimum is attained. We claim that |||.||| is a W∗LUR norm. Indeed, take
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x∗, x∗
ω ∈ X∗, with |||x∗||| = |||x∗

ω||| = 1 and limω |||x
∗ + x∗

ω||| = 2. We can
take measures µ, µω ∈ C(BX∗)∗ such that

∫
I dµ = x∗,

∫
I dµω = x∗

ω and
‖µ‖K = ‖µω‖K = 1. Triangular inequality implies that limω ‖µ + µω‖K = 2.
Since ‖.‖K is W∗LUR, we have w∗-limω µω = µ. The w∗-w∗-continuity of the
integration operator implies that w∗-limω x

∗
ω = x∗, and thus |||.||| is W∗LUR.

Given any bounded subset M ⊂ X , we may define a seminorm pM on X∗

by the formula
pM(x∗) = sup{|x∗(x)| : x ∈ M}.

If M is an Asplund subset, then (BX∗ , w∗) is fragmented by pM .

Lemma 4.1 Let X be a Banach space. Assume that there is a total As-
plund set M ⊂ X and BX∗ is a descriptive compactum. Then there is equiv-
alent W∗LUR norm |||.||| on X∗ verifying that limω pM(x∗

ω −x∗) = 0 whenever
x∗, x∗

ω ∈ X∗ are such that |||x∗
ω||| = |||x∗||| = 1 and limω |||x

∗ + x∗
ω||| = 2.

Proof Let ‖.‖K be the equivalent W∗LUR norm on C(BX∗)∗ given by The-
orem 3.3 where the fragmenting metric is the one induced by pM . Define the
norm |||.||| on X∗ by the same formula that in the proof of Theorem 1.3 (a).
Suppose that x∗, x∗

ω ∈ X∗ verifies |||x∗||| = |||x∗
ω||| = 1 and limω |||x

∗ + x∗
ω||| = 2.

As above, take measures µ, µω ∈ C(BX∗)∗ such that T (µ) = x∗, T (µω) = x∗
ω

and ‖µ‖K = ‖µω‖K = 1. Again as above, we also have limω ‖µ + µω‖K = 2.
Theorem 3.3 and the continuity of the identity map I : (BX∗ , pM) → (X∗, pM)
imply that

lim
ω

pM(

∫
I dµω −

∫
I dµ) = 0,

what is the same that limω pM(x∗
ω − x∗) = 0.

Proof of Theorem 1.3 (b) Take X0 = span‖.‖(M) and let ‖.‖0 the dual
norm on X∗

0 given by Lemma 4.1. Let ‖.‖ be a W∗LUR norm on X∗, after
the proof of Theorem 1.3 (a). Define an equivalent dual norm |||.||| on X∗ by

|||x∗|||2 = ‖x∗‖2 + ‖x∗|X0
‖20.

A convexity argument shows that limω pM(x∗
ω−x∗) = 0 whenever x∗, x∗

ω ∈ X∗

are such that limω |||x
∗
ω||| = |||x∗||| and limω |||x

∗ + x∗
ω||| = 2|||x∗|||. Šmulyan’s cri-

terion [3, Theorem I.1.4] (with small modifications) implies that the predual
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norm on X is M-differentiable.

The application of Lemma 4.1 to an Asplund Banach space gives a dual
version of the result of Moltó, Orihuela, Troyanski and Valdivia [16]. See [18]
for more characterizations of the existence of equivalent dual LUR norms.

Corollary 4.2 If X is an Asplund Banach space and X∗ has a W∗LUR
norm, then X∗ has an equivalent dual LUR norm.

Remark 4.3 The existence of a dual strictly convex norm on X∗ does not
imply the existence of an equivalent W∗LUR norm on X∗ even when X is
supposed to be Asplund. Haydon [12] has built an Asplund space X with
no equivalent Fréchet differentiable norm such that the dual norm on X∗ is
strictly convex. Corollary 4.2 shows that X∗ cannot be W∗LUR renormable.
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