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Abstract

The Radon-Nikodým property in a separable Banach space X is related
to the representation of X as a weak∗ first Borel class subset of some
dual Banach space (its bidual X

∗∗, for instance) by well known results
due to Edgar and Wheeler [8], and Ghoussoub and Maurey [9, 10, 11].
The generalizations of those results depend on a new notion of Borel set
of the first class “generated by convex sets” which is more suitable to
deal with non separable Banach spaces. The asymptotic-norming property,
introduced by James and Ho [12], and the approximation by differences of
convex continuous functions are also studied in this context.

1 Introduction

This paper is devoted to show several connections between geometrical properties
of a Banach space and certain kinds of descriptive sets. Dealing with non metriz-
able topologies, as the weak topology of a Banach space, new types of Borel
subsets appear, even of the first class, that is, obtained by just one countable
operation. We say that a subset A of a topological space V is (F ∧ G)σ (resp.
(F ∨ G)δ) if there are closed subsets Fn and open subsets Gn of V such that
A =

⋃∞
n=1(Fn ∩ Gn) (resp. A =

⋂∞
n=1(Fn ∪ Gn)). Clearly, a subset is (F ∧ G)σ

if, and only if, its complement is (F ∨ G)δ.

We shall consider a Banach space X as a topological subspace of its bidual
X∗∗ endowed with the weak∗ topology. Jayne, Namioka and Rogers [13] proved
that if a Banach space X is a Borel subset of X∗∗, then X has a certain topo-
logical property called σ-fragmentability. It is natural to expect that X will
have stronger properties if it is of lower Borel class in X∗∗. Indeed, Edgar and
Wheeler showed [8] that X has the point of continuity property (PCP) if X is a
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(F ∨ G)δ subset of X∗∗ and the converse is true if X is separable. Recall that a
map has the point of continuity property if its restriction to any nonempty
closed subset has a point of continuity and a Banach space X has the point of
continuity property (PCP) if the identity map on BX from the weak to the norm
topology has it. If X∗∗ \ X =

⋃∞
n=1 Kn where every Kn is convex and weak∗

compact, then X has the Radon-Nikodým property (RNP) [8]. This is far from
being a characterization, because if a separable Banach space X is a Gδ subset of
X∗∗, then X∗ is also separable. Ghoussoub and Maurey [9] proved the following:
A separable space X has the RNP if, and only if, there is a separable Banach
space Y such that X ⊂ Y ∗ (isomorphically) and Y ∗ \X =

⋃∞
n=1 Kn where every

Kn is convex and weak∗ compact.

We shall consider a particular subclass of the (F ∧ G)σ sets in a topological
linear space (V, τ). A subset D ⊂ V is said to be a (C \ C)σ set with respect

to τ if D =
⋃∞

n=1(An \ Bn), where An and Bn are convex τ -closed subsets of
V . In case τ is the norm topology, we just say (C \ C)σ set. Using the notion of
(C \ C)σ set we are able to give the following characterization of the RNP.

Theorem 1.1 A separable Banach space X has the RNP if, and only if, X∗∗\X
is a (C \ C)σ set with respect to the weak∗ topology.

A well known result of Edgar [7] connecting renorming theory and Borel struc-
ture establishes that, in a Banach space with a Kadec norm, every norm open
set is an (F ∧ G)σ set with respect to the weak topology. Recall that the norm
‖.‖ of X is said to be locally uniformly rotund (LUR) if for every x, xk ∈ X ,
such that limk ‖xk‖ = ‖x‖ and limk ‖x+ xk‖ = 2‖x‖, then limk ‖x− xk‖ = 0. A
LUR norm is Kadec, see [6] for this and further information.

Theorem 1.2 Every norm open subset of a Banach space X is a (C \ C)σ set if,
and only if, X has an equivalent locally uniformly rotund norm.

Let V be a topological space and d a metric on V not necessarily related to the
topology of V . We say that V is fragmented by d if every nonempty subset of
V has a nonempty relatively open subset of arbitrarily small diameter. Weakly
compact subsets of a Banach space are norm fragmented [21]. If X is a Banach
space and Y ⊂ X∗ is a norming subspace, then there is a canonical embedding
of X into Y ∗. In this case, the topology σ(X,Y ) is the restriction of the weak∗

topology of Y ∗. We shall always regard X as a subset of Y ∗. Further, after a

suitable renorming, we may assume that BY ∗ = BX
w∗

. The following results
generalize [8, Theorem 4.13] and part of [9, Theorem III.1].

Theorem 1.3 Let X be a Banach space and Y ⊂ X∗ a norming subspace. As-
sume that the σ(X,Y )-compact subsets of X are fragmented by the norm and X
is a (F ∨ G)δ subset of Y ∗ in the weak∗ topology. Then the identity map on BX

from the σ(X,Y )-topology to the norm has the point of continuity property.
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Theorem 1.4 Let X be a Banach space and Y ⊂ X∗ a norming subspace. As-
sume that the σ(X,Y )-compact subsets of X are fragmented by the norm and
Y ∗ \X is (C \ C)σ subset of Y ∗ in the weak∗ topology. Then X has the RNP.

For a separable Banach space Y the following three conditions are equivalent:
(1) Y ∗ has the RNP; (2) Y ∗ is separable; (3) Y ∗ has an equivalent dual norm ‖.‖
such that w∗-limn y

∗
n = y∗ and limn ‖y∗n‖ = ‖y∗‖ implies that limn ‖y∗n− y∗‖ = 0.

Bourgain and Delbaen [2], and McCartney and O’Brien [18], built separable Ba-
nach spaces having the RNP and isomorphic to no subspace of a separable dual
Banach space. However, separable Banach spaces with RNP could be charac-
terized by a renorming property in the spirit of condition (3) above. In this
sense, James and Ho [12] introduced the asymptotic-norming property (ANP)
and showed that it implies the RNP. The equivalence between the RNP and the
ANP for separable spaces was established by Ghoussoub and Maurey [11]. Al-
though we leave the technical definition of the ANP for next paragraph, what
they actually proved read as follows: A separable Banach space X has the RNP
if, and only if, there is a separable Banach space Y such that X is isomorphic to a
subspace of Y ∗ and the following property is verified: for any sequence (xn) ⊂ X,
such that w∗-limn xn = y∗ ∈ Y ∗ and limn ‖xn‖ = ‖y∗‖, then limn ‖xn − y∗‖ = 0.
A main argument used in [11] to prove the previous equivalence motivated the
authors to introduce the concept of strong Hδ subset. We shall take advantage
of their idea to define a similar notion. Let (V, ‖.‖) be a normed space and let τ
be a vector topology on V and denote by d the induced distance between sets.
A subset D ⊂ V is said to be a strong (C \ C)σ set (with respect to τ) if
D =

⋃∞
n=1(An \ Bn) where An and Bn are convex τ -closed subsets of V such

that d(X \D,An \Bn) > 0 for every n ∈ N.

We do not need to deal with all the different ANP’s introduced in [12], so we
shall just use the weakest one along the paper, named ANP-III there. Given
a norming subset Φ ⊂ BX∗ , we say that a sequence (xn) ⊂ SX is asymptoti-
cally normed by Φ, if for every ε > 0, there is y ∈ Φ and N ∈ N, such that
y(xn) > 1 − ε for all n ≥ N . We say that a Banach space X has the Φ-ANP if⋂∞

n=1 conv
‖.‖({xm: m ≥ n}) 6= ∅ for every sequence (xn) asymptotically normed

by Φ. We say that X has the ANP if it has the Φ-ANP for some norming subset
Φ ⊂ BX∗ . The characterization of the ANP obtained by Hu and Lin [17], which
avoids asymptotically normed sequences, is a main tool to prove the following:

Theorem 1.5 A Banach space X has the ANP with some equivalent norm if,
and only if, X∗∗ \X is a strong (C \ C)σ subset of X∗∗ with respect to the weak∗

topology.

In relation with this result, we shall discuss conditions on a Banach space X
implying that X∗∗ \X is (C \C)σ or strong (C \C)σ into (X∗∗, w∗). The separable
case is generalized in a quite natural way in terms of Szlenk type indices, see
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Theorem 3.5. A different kind of example is provided by Banach spaces isomor-
phic to dual Banach spaces having a LUR norm, Theorem 4.4.

Measurability with respect to (C \ C)σ sets is related to approximation by dif-
ferences of convex functions, see Proposition 2.1. We give the following extension
of a recent result of Cepedello-Boiso [5]:

Theorem 1.6 A function h: X → R defined on a Banach space is a point-
wise limit of a sequence of differences of convex continuous functions if the sets
h−1(r,+∞) and h−1(−∞, r) are strong (C \ C)σ for all r ∈ R.

The rest of the paper is devoted to prove the results listed in this introduction
as a part of a common frame. In section 2 we study (C \ C)σ and strong (C \ C)σ
subsets of a Banach space. In section 3 we deal with Banach spaces representable
as first Borel class subsets of a dual space. The Banach spaces which embed as
strong (C \ C)σ subsets of a dual space are studied in section 4 in relation with
the ANP. Although the paper deals mainly with non separable Banach spaces,
we show in Proposition 4.7 how our techniques apply to provide a new proof of
the equivalence between RNP and ANP for a separable Banach space.

2 Differences of convex sets

The first result of the section shows that (C \ C)σ sets appear naturally when one
deals with differences of convex functions.

Proposition 2.1 Let X be a Banach space and h: X → R a function which
is uniform limit of differences of convex functions. Then both h−1(−∞, r) and
h−1(r,+∞) are (C \ C)σ subsets of X for every r ∈ R.

Proof. First assume that h = f1 − f2 where f1 and f2 are convex. Clearly, we
can restrict ourselves to examine the set h−1(0,+∞). We have

h−1(0,+∞) =
⋃
r<s

{x ∈ X : f1(x) > s, f2(x) ≤ r}

=
⋃
r<s

({x ∈ X : f2(x) ≤ r} \ {x ∈ X : f1(x) ≤ s})

where the indices r and s are rational. Thus h−1(0,+∞) is expressed as a count-
able union of differences of convex closed sets.
Let h be uniform limit of a sequence (hn) of differences of convex functions.
Changing hn(x) by hn(x) − ‖h − hn‖∞ we may assume that hn ≤ h. In that
case, h−1(r,+∞) =

⋃∞
n=1 h

−1
n (r,+∞) for any r ∈ R.

Remark 2.2 A similar result does nor hold for pointwise limits even in case
of X = R. The Cantor set C is not (C \ C)σ and it is quite easy to put the
characteristic function of C as a pointwise limit of differences of convex functions.
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For a subset A ⊂ X , we shall denote Ao the norm interior of A. Given Z ⊂ X∗

a norming subspace and A ⊂ X convex and σ(X,Z)-closed, we shall consider the
set

B[A, r] = A+ rBX
σ(X,Z)

It is easy to see that
⋂

r>0 B[A, r] = A. In the following, we shall assume that
the norming subspace Z ⊂ X∗ is 1-norming. To do that, just take the norm on

X which has as unit ball BX
σ(X,Z)

. The set of all σ(X,Z)-open halfspaces of X
will be denoted by H(Z).

Lemma 2.3 Let X be a Banach space and Z ⊂ X∗ a norming subspace. For a
given subset E of X the following conditions are equivalent:

i) X \ E is a strong (C \ C)σ subset of X with respect to σ(X,Z).

ii) There are sequences of convex σ(X,Z)-closed sets (An) and (Bn) with
nonempty norm interior such that X \ E =

⋃∞
n=1(A

o
n \Bn).

iii) There is a sequence of convex σ(X,Z)-closed subsets (An) such that for
every x ∈ X \ E, there is H ∈ H(Z) verifying that x ∈ An ∩ H and
d(An ∩H,E) > 0.

iv) There is a sequence of convex σ(X,Z)-closed subsets (An) with nonempty
norm interior such that for every x ∈ X \ E there is H ∈ H(Z) such that
x ∈ Ao

n ∩H and An ∩H ⊂ X \E.

Proof. i) ⇒ iii) Follows easily by the Hahn-Banach theorem.
iii) ⇒ iv) Let A be a σ(X,Z)-closed convex set, suppose that x0 ∈ A and there
is H ∈ H(Z) such that d(A ∩ H,E) > 0. If H = {x ∈ X : z(x) > a}, then take
b > a such that the halfspace H ′ = {x ∈ X : z(x) > b} still contains x0. Take
0 < r < inf(d(A ∩H,E), d(H ′, A \H)). It is easy to see that

B[A, r] ∩H ′ ⊂ B[A ∩H, r] ⊂ X \ E

Suppose now that (An) is a sequence as in statement iii). The argument above
shows that the double sequence B[An,m

−1] satisfies statement iv).
iv) ⇒ ii) Let Bn be the σ(X,Z)-closed convex set obtained from An removing
the σ(X,Z)-open slices disjoint from E, namely

Bn = {x ∈ An: such that An ∩H ∩E 6= ∅ whenever x ∈ H ∈ H(Z)}

Then we have X \ E =
⋃∞

n=1(A
o
n \ Bn). To ensure nonempty norm interiors

replace the sequence (Bn) by the double sequence B[Bn,m
−1].

ii) ⇒ i) Fix an ∈ Ao
n and take

An,m = an + (1−m−1)(An − an)

Then we have d(An,m, X \ Ao
n) > 0. Define the sets Bn,m = B[Bn,m

−1]. Since
E ⊂ (X \ Ao

n) ∪ Bn, we deduce that d(An,m \ Bn,m, X \ E) > 0. On the other
hand X \ E =

⋃∞
n,m=1(An,m \Bn,m).
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Theorem 2.4 Let X be a Banach space, let Z ⊂ X∗ be a norming subspace and
let E ⊂ X be a subset. The following properties are equivalent:

i) X \ E is a strong (C \ C)σ subset of X with respect to σ(X,Z).

ii) There is an equivalent σ(X,Z)-lower semicontinuous norm |||.||| such that for
any (xn) ⊂ E and x ∈ X with limn |||xn||| = |||x||| and limn |||xn + x||| = 2|||x|||,
then x ∈ E.

Proof. i) ⇒ ii) By Lemma 2.3, we may assume that X \ E =
⋃∞

n=1(A
o
n \ Bn)

where the sets An and Bn are σ(X,Z)-closed convex and have nonempty norm
interior. Fix interior points an ∈ An and bn ∈ Bn for every n ∈ N and let fn and
gn be the Minkowski functionals with respect to the points an and bn of the set
An and Bn, respectively. We define a symmetric convex function F on X by the
formula

F (x)2 = ‖x‖2 +
∑
n

αn fn(x)
2 +

∑
n

βn gn(x)
2

+
∑
n

αn fn(−x)2 +
∑
n

βn gn(−x)2

where (αn) and (βn) are positive constants taken in such a way to guarantee
the uniform convergence on bounded subsets of X of the series, so F is uni-
formly continuous on bounded sets, and that the absolutely convex set B =
{x ∈ X : F (y∗) ≤ 1} contains 0 as an interior point. Let |||.||| be the functional of
Minkowski ofB. Then |||.||| is an equivalent σ(X,Z)-lower semicontinuous norm on
X . It is standard to check that for every sequence (xk) ⊂ B with limk |||xk||| = 1,
then limk F (xk) = 1.
Suppose that we are given a sequence (xn) ⊂ E such that limn |||xn||| = |||x||| and
limn |||xn + x||| = 2|||x|||. We want to show that x ∈ E. Suppose that x ∈ X \ E
in order to get a contradiction. Then x ∈ Ao

n \ Bn for some n ∈ N, and thus
fn(x) < 1 and gn(x) > 1. An standard convexity argument [6, Fact 2.3] shows
easily that limk fn(xk) = fn(x) and limk gn(xk) = gn(x). For k large enough we
should have fn(xk) < 1 and gn(xk) > 1, which implies that xk ∈ Ao

n\Bn ⊂ X\E,
a contradiction.
ii) ⇒ i) Assume X is endowed with |||.|||. First we shall show that for every
x ∈ X \ E there is a rational r > |||x||| and H ∈ H(Z) such that x ∈ B[0, r] ∩H
and B[0, r]∩H ⊂ X \E. Suppose not and take rational numbers sn < |||x||| < rn
such that limn(rn − sn) = 0 and take Hn ∈ H(Z) containing x and disjoint from
B[0, sn]. To get a contradiction, take xn ∈ B[0, rn]∩H ∩E. By the construction,
limn |||xn||| = |||x||| and limn |||xn + x||| = 2|||x|||, thus x ∈ E which is impossible. If
(An) is an enumeration of the balls B[0, r] with r > 0 rational, the argument
above shows that for every x ∈ X \ E, there is n ∈ N and H ∈ H(Z) such that
x ∈ Ao

n ∩H and An ∩H ⊂ X \ E. Finally apply Lemma 2.3.

The following result includes Theorem 1.2.
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Theorem 2.5 For a Banach space X the following conditions are equivalent:

i) X has an equivalent LUR norm.

ii) Every norm open subset of X is a (C \ C)σ set.

iii) Every norm open subset of X is a strong (C \ C)σ set.

Proof. iii) ⇒ ii) It is trivial.
ii) ⇒ i) Let B =

⋃∞
n=1 Bn be a basis for the norm topology such that every Bn

is discrete [14, p. 236]. Take Vn =
⋃
Bn. By the hypothesis we can find convex

closed sets (Am,n) and (Bm,n) such that Vn =
⋃∞

m=1(Am,n\Bm,n). We claim that
for every x ∈ X and ε > 0 there is an open halfspace H and m,n ∈ N such that
x ∈ Am,n∩H and diam(Am,n∩H) < ε. Indeed, for some n ∈ N, there is W ∈ Bn

such that x ∈ W ⊂ B(x, ε). Now, for some m we have x ∈ Am,n \ Bm,n. Let H
be an open halfspace containing x and disjoint from Bm,n. We have Am,n ∩ H
is convex and it is contained in Vn. By the discreteness of Bn we must have
Am,n ∩ H ⊂ W ⊂ B(x, ε). The existence of an equivalent LUR norm is now a
consequence of the theorem of Moltó, Orihuela and Troyanski [19] (see also [23]).
i) ⇒ iii) An equivalent LUR norm satisfies condition ii) of Theorem 2.4 for any
norm closed subset E, and thus, every norm open subset is strong (C \ C)σ.

Proof of Theorem 1.6. Expressing h as the difference of its positive and
negative parts, we may assume that h ≥ 0. Indeed, if h = h+ − h− then
h−1
+ (r,+∞) = X , h−1

+ (−∞, r) = ∅ for r < 0, and h−1
+ (r,+∞) = h−1(r,+∞),

h−1
+ (−∞, r) = h−1(−∞, r) for r ≥ 0 (equalities for h− are similar). Let (En) be

an enumeration of the sets of the form h−1[r,+∞) and h−1(−∞, r] with r ratio-
nal. Let ‖.‖n ≤ ‖.‖ be the norm given by Theorem 2.4 for the set En. Define an
equivalent norm

‖x‖2 =
∞∑

n=1

2−n‖x‖2n

We claim that the norm ‖.‖ has the following property: limk h(xk) = h(x),
whenever that limk ‖xk‖ = ‖x‖ and limk ‖xk + x‖ = 2‖x‖. Take r > h(x) a
rational. Clearly, it is enough to show that h(xk) < r for k large. Suppose not,
then h(xk) ≥ r for infinitely many k’s. Take n such that En = h−1[r,+∞).
By [6, Fact 2.3] we have limk ‖xk‖n = ‖x‖n and limk ‖xk + x‖n = 2‖x‖n. This
implies x ∈ En, and thus h(x) ≥ r which is a contradiction.
To express h as a pointwise limit of differences of convex continuous functions
we shall use an argument from [5]. Consider

hn(x) = inf
y∈X

{h(y) + n(2‖x‖2 + 2‖y‖2 − ‖x+ y‖2)}

= 2n‖x‖2 − sup
y∈X

{n‖x+ y‖2 − 2n‖y‖2 − h(y)}
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Notice that hn(x) ≤ h(x) just putting y = x. The last equality expresses hn as a
difference of two convex continuous functions. We claim that limn hn(x) = h(x).
Indeed, take xn ∈ X such that

h(xn) + n(2‖x‖2 + 2‖xn‖
2 − ‖x+ xn‖

2) < hn(x) + n−1

Thus we have
0 ≤ 2‖x‖2 + 2‖xn‖

2 − ‖x+ xn‖
2

< n−1(hn(x)− h(xn)) + n−2

≤ n−1h(x) + n−2

As the last term goes to 0 when n grows, we deduce that limn 2‖x‖
2 + 2‖xn‖

2 −
‖x + xn‖2 = 0, and by [6, Fact 2.3] this is equivalent to limn ‖xn‖ = ‖x‖ and
limn ‖xn + x‖ = 2‖x‖. Using the first part of the proof, we have limn h(xn) =
h(x). On the other hand

h(xn)− n−1 < hn(x) ≤ h(x)

and thus limn hn(x) = h(x). This ends the proof.

Remark 2.6 Theorem 1.6 remains true, with minor changes in the proof, if the
function h is just defined on a subset of X.

Corollary 2.7 Let X be a Banach space and let h: X → R be a uniformly con-
tinuous function such that for every r ∈ R the sets h−1(−∞, r) and h−1(r,+∞)
are both (C\C)σ subsets of X. Then h is a pointwise limit of differences of convex
continuous functions.

Proof. Given any real number r, the decomposition

h−1(−∞, r) =

∞⋃
n=1

h−1(−∞, r − n−1)

shows us how to put h−1(−∞, r) as a strong (C \ C)σ subset of X (positive dis-
tances are ensured by the uniform continuity). For the set h−1(r,+∞) we can
find a similar decomposition.

Theorem 1.6 clearly extends the following result due to Cepedello-Boiso [5].

Corollary 2.8 Let X be a Banach space having an equivalent LUR norm. Then
any continuous function is the pointwise limit of a sequence of differences of
convex continuous functions.
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3 Banach spaces of the first Borel class

In this section we shall study Banach spaces which are (F∨G)δ subsets into some
dual Banach space endowed with the weak∗ topology. The important particular
class of Banach spaces X such that BX is a Gδ-subset of (BX∗∗ , w∗) was studied
by Edgar and Wheeler in [8]. In that case they proved that X = X1⊕X2 (direct
sum) where X1 and its dual X∗

1 are separable and X2 is reflexive. A trivial but
useful observation is the following: if X is a subspace of a dual Banach space
Y ∗, then Y ∗ \ X is a countable union of F ∧ G-sets (resp. differences of w∗-
compact convex sets, differences of w∗-compact symmetric convex sets) if and
only if BY ∗ \BX is a countable union of sets of the same kind.

Lemma 3.1 If a topological space V is homeomorphic to a (F ∨ G)δ subset of a
compact Hausdorff space, then V is hereditarily Baire.

Proof. Suppose that V ⊂ K and V =
⋂∞

n=1(Fn ∪ Gn) where Fn is closed and
Gn is open in K for every n ∈ N. Is enough to show that V is Baire since any
closed subset of V is also a (F ∨ G)δ subset of K. We may assume that V is
dense in K. Let F o

n denote the interior of Fn. It is easy to verify that F o
n ∪ Gn

is dense in K. The intersection
⋂∞

n=1(F
o
n ∪Gn) is a dense Čech-complete subset

of V , and thus V is a Baire space.

Proof of Theorem 1.3. The space (BX , σ(X,Y )) is Čech-analytic (see [13])
since BX is a (F ∨ G)δ subset of (BY ∗ , w∗) and thus it is also hereditarily Baire
by the former lemma. By [13, Theorem 4.1], a Čech-analytic space with a finer
lower semicontinuous metric d such that its compact subsets are fragmentable by
d is itself σ-fragmentable (see [13]) by d. A hereditarily Baire topological space
which is σ-fragmentable by a lower semicontinuous metric d is fragmentable by
d, [13, Corollary 3.1.2]. If any hereditarily Baire space is fragmented by a metric,
then the identity map to the space endowed with the metric has the point of
continuity property by [21, Lemma 1.1].

Remark 3.2 The σ(X,Y )-compact subsets of a Banach space X are fragmented
by the norm if X has an equivalent σ(X,Y )-Kadec norm, that is, on its unit
sphere the norm topology and σ(X,Y ) coincide [13]. If the dual unit ball (BX∗ , w∗)
is a Corson compact (for instance, if X is WCD), then the σ(X,Y )-compact sub-
sets of X are fragmented by the norm for any norming subspace Y ⊂ X∗ [4].

Proof of Theorem 1.4. Let (Ω,Σ, µ) a probability space and let ν: Σ → X
be a µ-continuous vector measure with average range in BX . There exists a
w∗-Borel measurable density f : Ω → BY ∗ , that is, 〈ν(C), y〉 =

∫
C
〈f, y〉 dµ for

every C ∈ Σ and y ∈ Y . The proof is based on the theory of liftings. We
shall sketch the proof because we found no suitable reference. For any y ∈ Y ,
the signed measure 〈ν, y〉 is µ-continuous, so it has a Radon-Nikodým derivative
fy ∈ L1(µ). Let ρ be a lifting of L∞(µ), see [1]. It is easy to check that the map
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y → ρ(fy)(ω) is linear for every ω ∈ Ω and bounded by ‖y‖, so there is y∗ω ∈ BY ∗

such that y∗ω(y) = ρ(fy)(ω). Clearly, the map defined by f(ω) = y∗ω is w∗-scalarly
measurable, so it is w∗-Baire measurable by [7, Theorem 2.3]. We claim that f
also is w∗-Borel measurable and the measure image f(µ) is w∗-Radon. Indeed,
if ρK is the abstract lifting considered in [1, §2] for the compact space K = BY ∗ ,
then

h ◦ ρK(f)(ω) = ρ(h ◦ f)(ω)

for every ω ∈ Ω and every h ∈ C(K). From the definition of f we get that
ρK(f) = f just taking as continuous functions h the elements y ∈ Y . The
desired properties follow from [1, Theorem 2.1].
Put BY ∗\BX =

⋃∞
n=1(An\Bn) and observe that BX is a w∗-Borel subset of BY ∗ .

We want to show that f(ω) ∈ BX for µ-almost all ω ∈ Ω. That is equivalent
to show that f(µ)(BX) = 1. Fix n ∈ N and suppose that f(µ)(An \ Bn) > 0.
Using the fact that f(µ) is w∗-Radon, we can find a w∗-open halfspace H disjoint
with Bn such that f(µ)(An ∩ H) > 0. Without loss of generality, assume that

L ∩ X = ∅, where L = An ∩H
w∗

is w∗-compact convex. Let C = f−1(L) and
x = ν(C)/µ(C) ∈ X . Take y ∈ Y such that 〈x, y〉 < infy∗∈L〈y∗, y〉. Thus

〈x, y〉 < µ(C)−1

∫
C

〈f, y〉 dµ

which is a contradiction.
We have now that f(µ) is a Radon measure on (BX , σ(X,Y )). Since the σ(X,Y )-
compact subsets of X are fragmentable, f(µ) is concentrated on a norm separa-
ble subset of BX . By [7, Theorem 5.2], there is a Bochner measurable function
g: Ω → BX , such that for every y ∈ Y , the equality 〈g(ω), y〉 = 〈f(ω), y〉 holds
for µ-almost all ω ∈ Ω. This implies 〈ν(C), y〉 = 〈

∫
C
g dµ, y〉 for every C ∈ Σ and

y ∈ Y , and thus ν(C) =
∫
C
g dµ. This proves the RNP of X .

To provide examples of Banach spaces being weak∗ first Borel class subsets
into some dual Banach space we need two definitions which are based on the
Szlenk index [15].

Definition 3.3 We say that X has countable Y -fragmentability index if for every
ε > 0 there exists a decreasing transfinite sequence (Cα)α<γε

of σ(X,Y )-closed
subsets of BX , where γε is countable, such that BX =

⋃
α<γε

(Cα \ Cα+1) and
for every x ∈ Cα \ Cα+1 there is a σ(X,Y )-open neighbourhood U of x with
diam(Cα ∩ U) < ε.

Clearly, if the Banach space X has countable Y -fragmentability index, then
BX endowed with the σ(X,Y )-topology is norm fragmentable. The converse is
true for X a separable Banach space.

Definition 3.4 We say that X has countable Y -dentability index if for every
ε > 0 there exists a decreasing transfinite sequence (Cα)α<γε

of σ(X,Y )-closed
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convex subsets of BX , where γε is countable, such that BX =
⋃

α<γε
(Cα \Cα+1)

and for every x ∈ Cα \ Cα+1 there is a σ(X,Y )-open halfspace H containing x
with diam(Cα ∩H) < ε.

Lancien [15, 16] has studied Banach spaces with countable indices. Among
other results, he proved that a dual Banach spaceX∗ has countableX-dentability
index if it has countable X-fragmentability index.

Theorem 3.5 Let X be a Banach space, Y ⊂ X∗ a norming subspace.

a) If X has countable Y -fragmentability index, then X is a (F ∨G)δ subset of
Y ∗ with respect to the weak∗ topology.

b) If X has countable Y -dentability index, then Y ∗ \X is a (C \ C)σ subset of
Y ∗ with respect to the weak∗ topology.

Proof. Given n ∈ N, let (Cn
α)α<γn

be a family of sets like in Definition 3.3 with
ε = n−1. For every α we can put

Cn
α+1 = Cn

α \
⋃
i∈In

α

Un
i

where the family {Un
i : i ∈ Inα} consists of w∗-open subsets of Y ∗ such that

diam(Cn
α ∩ Un

i ) < n−1. The set Un
α =

⋃
β<α

⋃
i∈In

β
Ui is w

∗-open. Take

A = BY ∗ ∩
⋂
n∈N

⋂
α<γn

(Cn
α

w∗

∪ Un
α )

which is clearly (F ∨ G)δ in (Y ∗, w∗). Clearly BX ⊂ A. We claim that BX = A.

Indeed, take any z ∈ A and fix n ∈ N. Since (Cn
α

w∗

) is decreasing in α, we

can take αn such that z ∈ Cn
αn

w∗

but z 6∈ Cn
αn+1

w∗

. This means that z ∈ Un
αn

and so z ∈ Un
in

for some in ∈ Inαn
. We have now that z ∈ Cn

αn

w∗

∩ Un
in
. Since

Cn
αn

w∗

∩ Un
in

⊂ Cn
αn

∩ Un
in

w∗

and diam(Cn
αn

∩ Un
in

w∗

) ≤ n−1 by the w∗-lower
semicontinuity of the norm, so we have d(z,X) ≤ n−1. Since that happens for
every n ∈ N, then z ∈ X .
Assume now that X has countable Y -dentability index. Then the w∗-open sets
Ui above can be taken to be w∗-open halfspaces and it is easy to see that the sets
(Cn

α) can be taken to be symmetric. Let us change the notation putting Hi = Ui.
We have

BX =
⋂
n∈N

⋂
α<γn

(Cn
α

w∗

∪
⋃
β<α

⋃
i∈In

β

Hi)

thus
BY ∗ \BX =

⋃
n∈N

⋃
α<γn

(Dn \Cn
α

w∗

)

11



where Dn
α =

⋂
β<α

⋂
i∈In

β
(Y ∗ \Hi) is w

∗-compact and convex.

If X is a separable Banach space with the PCP (resp. RNP) then X has
countable X∗-fragmentability (resp. X∗-dentability) index. The following result
due to Edgar and Wheeler [8] follows from Theorems 1.3 and 3.5.

Corollary 3.6 Let X be a separable Banach space. Then X has the PCP if and
only if X is a (F ∨ G)δ subset of X∗∗ with respect to the weak∗ topology.

Proof of Theorem 1.1. Just apply Theorems 1.4 and 3.5.

The convex counterpart of Gδ-sets was introduced in [9, 11] as follows. Let
C ⊂ D be subsets of a dual Banach space Y ∗. We say that C is a Hδ subset

(resp. strong Hδ subset) of D if D \ C =
⋃∞

n=1 Kn where the sets Kn are
w∗-compact and convex (resp. and d(C,Kn) > 0 for every n ∈ N). Clearly, if
C is an Hδ set then Y ∗ \ C is a (C \ C)σ set. It is not difficult to show that the
converse is true for Y separable. Analogous results holds adding “strong”.

4 Strong (C \ C)σ remainders and the ANP

In this section we shall discuss some links between the representation of a Banach
space X into a dual and renorming properties.

Lemma 4.1 Let X be a Banach space and let Y ⊂ X∗ be a norming subspace.
The following are equivalent:

i) Y ∗ \X is a strong (C \ C)σ subset of Y ∗ with respect to the weak∗ topology.

ii) There is a sequence (An) of convex w
∗-compact subsets with nonempty norm

interior such that for every y∗ ∈ Y ∗ \ X there is a w∗-open halfspace H
such that y∗ ∈ An ∩H and An ∩H ⊂ Y ∗ \X.

iii) There are sequences of convex w∗-compact sets (An), (Bn) with nonempty
norm interior such that Y ∗ \X =

⋃∞
n=1(An \Bn).

Proof. Implications i) ⇒ ii) ⇔ iii) can be deduced from Lemma 2.3 and the
ideas of its proof. It is enough to show that statement ii) above implies statement
iii) of Lemma 2.3, namely we shall prove that the sequence (An) given by ii)
verifies that for any y∗ ∈ Y ∗ \ X there is a w∗-open halfspace H such that
y∗ ∈ An ∩H and d(An ∩H,X) > 0. Let A ⊂ Y ∗ be a w∗-compact convex subset
with nonempty norm interior. Suppose that y∗ ∈ A is such that it is contained in
a w∗-open halfspace H with A∩H ⊂ Y ∗\X . Take x ∈ Ao∩X . Since X = X−x,
we may change A by A − x, and without loss of generality assume that 0 is an
interior point of A. In that case y∗ 6= 0. If H = {u∗ ∈ Y ∗: u∗(y) > a}, then take

12



b > a such that the halfspace H ′ = {u∗ ∈ Y ∗: u∗(y) > b} still contains y∗. Since
A ∩X ⊂ A \H , then d(A ∩H ′, A ∩X) > 0. Take ε > 0 small enough to have

d(A ∩H ′, (1 + ε)(A ∩X)) > 0

Since 0 is an interior point of A, then

d(A ∩H ′, Y ∗ \ (1 + ε)A) > 0

The last two inequalities imply that d(A ∩H ′, X) > 0.

Remark 4.2 Let X be a Banach space with countable Y -dentability index and
the index and the sets (Cα)α<γε

of Definition 3.4 can be taken with nonempty
norm interior. Then the proof of Theorem 3.5 together with Lemma 4.1 gives
that Y ∗ \X is a strong (C \ C)σ subset of Y ∗ with respect to the weak∗ topology.

Proposition 4.3 Let X be a Banach space and Y ⊂ X a norming subspace.
Then the following statements are equivalent:

i) Y ∗ \X is a strong (C \ C)σ subset of Y ∗ with respect to the weak∗ topology.

ii) There is an equivalent dual norm ‖.‖ on Y ∗ such that for any (xn) ⊂ X and
y∗ ∈ Y ∗ with limn ‖xn‖ = ‖y∗‖ and limn ‖xn + y∗‖ = 2‖y∗‖, then y∗ ∈ X.

iii) There is an equivalent dual norm ‖.‖ on Y ∗ such that SY ∗ ∩X is relatively
weak∗ closed in SY ∗ .

Proof. i) ⇒ ii) Follows from Theorem 2.4.
ii) ⇒ iii) Consider Y ∗ endowed with a norm satisfying ii). It is enough to show
that y∗ ∈ X , if ‖y∗‖ = 1 and (xω) ⊂ SX is a net w∗-converging to y∗. Indeed, the
net (xω+y∗) is w∗-converging to 2y∗. Since the norm is w∗-lower semicontinuous
we have limω ‖xω + y∗‖ = 2. Thus we can take an increasing sequence (ωn) such
that limn ‖xωn

+ y∗‖ = 2, and so y∗ ∈ X .
iii) ⇒ i) First we claim that for any y∗ ∈ SY ∗ \ SX , there is a w∗-open half-
space H such that y∗ ∈ H and BY ∗ ∩ H ⊂ Y ∗ \ X . To see that, just remark

that y∗ 6∈ BX
w∗

and the existence of H is a consequence of the Hahn-Banach
theorem. Now take any y∗ ∈ Y ∗ \X . By homogeneity and a small perturbation,
there is a rational r ≥ ‖y∗‖ and a w∗-open halfspace H containing y∗ such that
rBY ∗ ∩H ⊂ Y ∗ \X . Let (An) be a reenumeration of the sets of the form rBY ∗

with r ≥ 0 rational. We have proved that for any y∗ ∈ Y ∗ \ X , there is n ∈ N

and H a w∗-open halfspace containing y∗ such that An ∩H ⊂ Y ∗ \X . Then the
conclusion follows from Lemma 4.1, because the sets An have nonempty norm
interior.

The following result implies that ℓ1(Γ) is a (F ∨G)δ its bidual, which improves
the estimate (F ∧ G)σδ given in the proof of [7, Theorem 3.3].
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Theorem 4.4 Assume that X is Banach space which is isomorphic to a dual
space with a weak∗-Kadec norm. Then X∗∗ \X is a strong (C \C)σ subset of X∗∗

with respect to the weak∗ topology.

Proof. Let Y be such that X = Y ∗. Without loss of generality we may assume
that the norm of Y ∗ is w∗-Kadec. Consider in X∗ the symmetric convex body
conv‖.‖(BY ∪ 2−1BY ∗∗) which is the unit ball of some equivalent (but non dual)
norm on X∗. Let |||.||| be is dual norm, defined on X∗∗. It is easy to verify that if
we endow X∗∗ with |||.|||, then SX∗∗ ∩X = SX . We shall prove that SX is a closed
subset of SX∗∗ and the result will follow from Proposition 4.3. Let (xω) ⊂ SX a
net which is w∗-converging to x∗∗ ∈ SX∗∗ . Since x∗∗ ∈ BY ∗∗∗ , its supremum on
2−1BY ∗∗ is less that 2−1. But |||x∗∗||| = 1, so the supremum of x∗∗ on BY must
be 1. Put x = x∗∗|Y and realize that x ∈ SY ∗ . Clearly (xω) converges to x in
the weak∗ topology of Y ∗ and ‖xω‖ = ‖x‖. Since the norm is w∗-Kadec, the net
(xω) is norm converging to x. This implies that x∗∗ = x and thus x∗∗ ∈ SX .

Recall that ANP along this paper means ANP-III in the terminology of [12].
We shall use a nice characterization from [17] of the ANP to prove the following.

Proposition 4.5 A Banach space X has the ANP if and only if there is an
equivalent norm on X∗ such that its dual norm on X∗∗ induces the original
norm of X, that is SX = SX∗∗ ∩X, and SX relatively w∗-closed in SX∗∗.

Proof. Assume that X has the Φ-ANP for some norming subset Φ ⊂ BX∗ .
It is easy to see that if a sequence (xn) ⊂ SX is asymptotically normed by
conv‖.‖(Φ ∪ −Φ ∪ 2−1BX∗), then (xn) has a subsequence (xnk

) such that (xnk
)

or (−xnk
) is asymptotically normed by Φ. Without loss of generality we may

replace Φ by that convex set, which is the unit ball of some equivalent norm on
X∗. Call |||.||| that norm on X∗ and notice that once X∗∗ is endowed with the dual
norm, then SX∗∗ ∩X = SX . In [17] it is proved that if X has the Φ-ANP for any

x∗∗ ∈ X∗∗ \X , then supφ∈Φ x∗∗(φ) < ‖x∗∗‖. It follows that SX = BX
w∗

∩ SX∗∗ ,
so SX is relatively w∗-closed in SX∗∗ . Reciprocally, if SX = SX∗∗ ∩ X and SX

relatively w∗-closed in SX∗∗ , when X∗∗ is endowed with the dual of some norm
|||.||| on X∗. Let Φ = BX∗ and consider a Φ-asymptotically normed sequence (xn).
Clearly, any w∗-cluster point of (xn) in X∗∗ must be in SX∗∗ , and thus in X by
the hypothesis. This implies that (xn) is a relatively weakly compact subset and
so

⋂∞
n=1 conv

‖.‖({xm: m ≥ n}) 6= ∅.

Combining the last result with Proposition 4.3 we obtain the following result
which contains Theorem 1.5.

Theorem 4.6 For a Banach space X the following are equivalent:

i) X has the ANP with some equivalent norm.
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ii) X∗∗\X is a strong (C\C)σ subset of X∗∗ with respect to the weak∗ topology.

iii) There is an equivalent dual norm ‖.‖ on X∗∗ such that for any (xn) ⊂ X
and x∗∗ ∈ X∗∗ with limn ‖xn‖ = ‖x∗∗‖ and limn ‖xn+x∗∗‖ = 2‖x∗∗‖, then
x∗∗ ∈ X.

As an application, we shall prove that separable spaces with the RNP can be
renormed with a property stronger than the ANP.

Proposition 4.7 Let X be a separable Banach space with the RNP. Then there
is an equivalent dual norm ‖.‖ on X∗∗ such that for any (xn) ⊂ X and x∗∗ ∈ X∗∗

with limn ‖xn‖ = ‖x∗∗‖ and limn ‖xn+x∗∗‖ = 2‖x∗∗‖, then limn ‖xn−x∗∗‖ = 0.

Proof. Since X is separable, there is an equivalent dual norm ‖.‖1 on X∗∗ such
that its restriction toX is LUR. Suppose thatX∗∗\X is a strong (C\C)σ subset of
X∗∗ and let ‖.‖2 be the norm on X∗∗ given by iii) of Theorem 4.6. We claim that
the norm ‖.‖ defined by ‖.‖2 = ‖.‖21+‖.‖22 satisfies the required condition. Indeed,
if (xn) ⊂ X is a sequence with limn ‖xn‖ = ‖x∗∗‖ and limn ‖xn + x∗∗‖ = 2‖x∗∗‖,
then by [6, Fact 2.3], we have limn ‖xn‖i = ‖x∗∗‖i and limn ‖xn+x∗∗‖i = 2‖x∗∗‖i,
for i = 1, 2. Taking i = 2, we deduce that x∗∗ ∈ X , and taking i = 1, we obtain
limn ‖xn − x∗∗‖ = 0 by the LUR property.
We shall prove that X∗∗ \ X is a strong (C \ C)σ subset of X∗∗. According
to Remark 4.2 we just need to build sets (Cα)α<γε

as in Definition 3.4 with
nonempty norm interior. We shall use the following fact: if X is a Banach space
with the RNP and C,D ⊂ X closed convex subsets such that C \ D 6= ∅ and
ε > 0, then there is an open halfspace H such that H ∩ C 6= ∅, D ∩H = ∅ and
diam(C ∩ H) < ε. That is a consequence of the norm density in X∗ of the ele-
ments x∗ strongly exposing points of C [3, Theorem 3.5.4]. Fix ε > 0 and define
a transfinite sequence of closed convex sets (Cα)α≤γ which is strictly decreasing
and such that C1 = BX , Cγ = 2−1BX , Cα =

⋂
β<α Cβ if α is a limit ordinal and

Cα+1 = Cα \Hα, where Hα = {x ∈ X : x∗
α(x) > sα} is an open halfspace disjoint

from 2−1BX such that diam(Cα ∩Hα) < ε. The construction is possible because
of the fact and γ must be countable since (Cα) is strictly decreasing and X is sep-
arable. To obtain a sequence (Cα)α<γε

as in Definition 3.4 we have to repeat the
process again starting at 2−1BX and finishing at 2−2BX , and so on. Clearly, it is
enough to iterate that process n times, where n is such that 2−n+1 < ε, to reach
the empty set with some Cα. Then take γε as the first index α such that Cα = ∅.

It is possible to arrange the ideas behind Proposition 4.7 in order to give a quite
selfcontained proof of the result of Ghoussoub and Maurey [10] on the equivalence
of the RNP and the ANP for separable Banach spaces. The key fact, as above,
is “to eat” the unit ball in such a way that the remainders have nonempty interior.

We do not know if the ANP implies the existence of an equivalent Kadec
norm. A negative answer will provide a Banach space with the RNP and no
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equivalent LUR norm. Actually, a Banach space with RNP and a Kadec norm
has an equivalent LUR norm [20]. As a consequence, if a Banach space has the
ANP and an equivalent Kadec norm, then X can be renormed to verify stronger
asymptotic-norming properties [17]. Recall that Banach spaces with countable
dentability index has an equivalent LUR norm [15]. In fact, if the sets (Cα)α<γε

of Definition 3.4 have nonempty norm interior, a convex series of their Minkowski
functionals produces a norm which is LUR and has the ANP, see Remark 4.2.
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